计量经济学之模型估计方法的比较

合集下载

四计量经济学联立方程模型的单方程估计方法

四计量经济学联立方程模型的单方程估计方法
• 联立方程计量经济学模型的估计方法分为两大类: 单方程估计方法与系统估计方法。
• 所谓单方程估计方法,指每次只估计模型系统中 的一个方程,依次逐个估计。 • 所谓系统估计方法,指同时对全部方程进行估计, 同时得到所有方程的参数估计量。
• 联立方程模型的单方程估计方法不同于单方程模 型的估计方法 。
⒊间接最小二乘法也是一种工具变量方法
• ILS等价于一种工具变量方法:依次选择X作为 (Y0,X0)的工具变量。
• 数学证明见《计量经济学—方法与应用》(李子 奈编著,清华大学出版社,1992年3月)第126— 128页。 • 估计结果为:
0 X 0 ILS
Y1 0 Y0 1 X0

00
Y00 00 1 X0
Y00 00 X 00 00 X 00 X 0 0
X0 00 00 * 00 X 0 0 X0
四、三种方法的等价性证明
⒈三种单方程估计方法得到的参数估计量
* 0 X0 X0 0 IV
1
Y
0
X 0
X
* 0
0
X 0
1
X
* 0
X 0 Y1

⒋讨论
• 该估计量与OLS估计量的区别是什么?
• 该估计量具有什么统计特性? • (k- k1)工具变量与(g1-1)个内生解释变量的 对应关系是否影响参数估计结果?为什么? • IV是否利用了模型系统中方程之间相关性信息?
• 对于过度识别的方程,可否应用IV ?为什么?
⒊ IV参数估计量
• 方程的矩阵表示为
0 Y1 (Y0 , X 0 ) 1 0

《计量经济学》期末重点知识归纳整理

《计量经济学》期末重点知识归纳整理

计量经济学期末重点知识归纳1.普通最小二乘法:已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为存在多重共线性。

AR(p)模型参数估计方法比较和实证分析

AR(p)模型参数估计方法比较和实证分析

AR(p)模型参数估计方法比较和实证分析陈杨林;刘业【摘要】对时间序列AR(p)模型的参数估计YULE-WALKER法、最小二乘法、最大似然法三种估计方法进行分析和比较,从模型推导出最小二乘估计、最大似然估计实质上是同一种估计方法,应用MATLAB软件对我国CPI数据建立AR(2)模型并应用3种方法对其参数进行估计、模型检验、预测结果比较,得出的结论与理论推导相符,实证上说明 AR(p)模型参数估计使用最小二乘法和最大似然法估计的结果是一样的。

%By analyzing and comparing YULE-WALKER,least squares method and maximum likelihood es-timation method of time series AR (p)model,least squares method and maximum likelihood estimation method are found essentially the same kind of estimate method.Building China's CPI data AR (2)model by using MATLAB software and then applying three methods to estimate the parameters,check the models and compare the prediction results,the conclusion obtained are found consistent with the theoretical deriva-tion.The empirical analysis shows the estimated results of AR (p)model parameter are the same by using least squares method and maximum likelihood method.【期刊名称】《南昌大学学报(理科版)》【年(卷),期】2014(000)002【总页数】4页(P124-127)【关键词】AR(p)模型;最小二乘估计;最大似然估计【作者】陈杨林;刘业【作者单位】九江职业技术学院,江西九江 332007;九江职业技术学院,江西九江 332007【正文语种】中文【中图分类】O211.61时间序列分析是数理统计中的一个重要分支是用数理统计和随机过程研究随机数据的规律最早起源于1927年,它在经济、信息等领域的研究和应用越来越活跃,George E.P.Box和 Gwilym M.Jenkins(1979)合著的《Time Series Anaysis -Forecasting and Control》一书[1]引起广泛的重视,但在我国,时间序列分析从70年代末到80年代中后期才得以深入研究和应用。

计量经济学的模型方法

计量经济学的模型方法

计量经济学的模型方法本文就计量经济学模型方法的几个哲学基础问题进行讨论。

(一)计量经济学模型的检验与发现一般认为的“只能检验,不能发现”,对于狭义的计量经济学模型方法,即模型检验而言是成立的,但广义的或者说完整的计量经济学模型方法,包括模型设定和模型检验两个阶段,是一个能够作出科学发现的研究过程。

狭义的计量经济学,它以模型估计和模型检为核心内容,说到底,就是回归分析。

那么它显然处于对假说进行检验的位置。

回归分析是一种统计分析方法,它针对已经设定的总体回归模型,按照随机抽样理论抽取样本观测值,采用适当的模型估计方法估计模型参数,并进行严格的检验,得到样本回归函数,从而完成统计分析的全过程。

统计分析给出的只是必要条件而非充分条件。

经济行为中客观存在的经济关系,一定能够通过表征经济行为的数据的统计分析而得到检验。

如果不能通过必要性检验,在表征经济行为的数据是准确的和采用的统计分析方法是正确的前提下,只能质疑所设定的经济关系的合理性和客观性。

但是反过来,如果在统计分析中发现了新的数据之间的统计关系,并不能就此说发现了新的经济行为关系,因为统计关系不是经济关系的充分条件。

毫无疑问,从这个意义上讲,计量经济学模型只能检验理论而不能发现理论。

尽管狭义的计量经济学模型方法的功能是有局限的,只能检验,不能发现,但它仍然是任何科学的经济学研究所不可或缺的。

经济研究以至于整个社会科学研究的一个显著特点是没有实验室,不可能通过实验室的实验来检验理论假设,那么回归分析就成为不可替代的检验方法。

广义的计量经济学,是经济理论、统计学和数学的结合。

计量经济学模型研究的完整框架是:关于经济活动的观察即行为分析关于经济理论的抽象即理论假说建立总体回归模型获取样本观测数据估计模型检验模型应用模型。

我们不妨称之为“广义的计量经济学模型理论与方法”。

大量有价值的应用计量经济学模型的实证经济研究成果,并不是“没有理论的检验”,都是首先提出理论假说,然后进行检验。

计量经济学实际案例

计量经济学实际案例

二、均值分析1、分性别对身高进行的比较假设男女身高相等,否定假设可认为男生身高明显高于女生。

2、分南北地区进行比较(1)身高假设两者均值相等,检验结果不能否定原假设,因而不能认为南北方身高有显著差异。

(2)体重通过假设两者均值相等,检验结果无法否定原假设,因而认为南北方体重没有明显差异。

3、分出生年份月份进行比较年份性别身高体重84 男均值172.00 56.00N 1 1总计均值172.00 56.00N 1 185 男均值180.33 70.67N 3 3女均值161.00 51.00N 2 2总计均值172.60 62.80N 5 586 男均值174.20 65.40N 20 20女均值162.11 52.28N 18 18总计均值168.47 59.1887 男均值178.50 66.58N 6 6女均值164.83 52.83N 18 18总计均值168.25 56.27N 24 2488 男均值170.50 65.00N 2 2女均值167.00 53.50N 2 2总计均值168.75 59.25N 4 489 女均值165.00 50.00N 1 1总计均值165.00 50.00N 1 1总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表可看出,各年份出生的人身高体重无显著性差异。

总计均值171.00 64.00N 6 6 3 男均值174.50 69.50N 4 4 女均值160.25 50.75N 4 4 总计均值167.38 60.13N 8 8 4 男均值181.25 68.50N 4 4 女均值162.25 52.00N 4 4 总计均值171.75 60.25N 8 8 5 男均值169.50 65.25N 2 2 女均值156.00 43.00N 1 1 总计均值165.00 57.83N 3 3 6 男均值175.00 63.00N 1 1 女均值171.50 57.50N 4 4 总计均值172.20 58.60N 5 5 7 男均值171.00 64.33N 3 3 女均值167.00 50.50N 2 2 总计均值169.40 58.80N 5 5 8 男均值179.20 64.90N 5 5 女均值161.50 52.50N 2 2 总计均值174.14 61.36N 7 7 9 男均值171.67 58.00N 3 3 女均值163.33 54.33N 3 3 总计均值167.50 56.1710 男均值174.67 61.83N 3 3总计均值174.67 61.83N 3 311 女均值162.50 51.67N 12 12总计均值162.50 51.67N 12 1212 男均值171.00 66.50N 2 2女均值167.00 57.00N 1 1总计均值169.67 63.33N 3 3总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表同样可得出,各月出生的人身高体重无显著性差异。

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

计量经济学模型的估计方法与模型检验

计量经济学模型的估计方法与模型检验

• 小样本估计特性实验结果比较 ⑴无偏性
OLS 2SLS 3SLS(LIML,FIML)
⑵最小方差性 LIML 2SLS FIML OLS
⑶最小均方差性 OLS LIML 2SLS 3SLS(FIML)
为什么OLS具有最好的最小方差性? 方差的计算公式:
V
1 N
N (i
i 1
) 2
均方差的计算公式:
⒉预测性能检验
• 如果样本期之外的某个时间截面上的内生变量实际 观测值已经知道,这就有条件对模型系统进行预测 检验。
• 将该时间截面上的先决变量实际观测值代入模型, 计算所有内生变量预测值,并计算其相对误差。
RE ( yi0 yi0 ) yi0
• 一般认为,RE<5%的变量数目占70%以上,并且 每个变量的相对误差不大于10%,则认为模型系统总 体预测性能较好。

人生得意须尽欢,莫使金樽空对月。05:10:5605:10:5605:1011/21/2020 5:10:56 AM

安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.11.2105:10:5605:10Nov-2021-Nov-20

加强交通建设管理,确保工程建设质 量。05:10:5605:10:5605:10Saturday, November 21, 2020
• 小样本估计特性的Monte Carlo试验过程 第一步:利用随机数发生器产生随机项分布的一组 样本; 第二步:代入已经知道结构参数和先决变量观测值 的结构模型中; 第三步:计算内生变量的样本观测值; 第四步:选用各种估计方法估计模型的结构参数。 上述步骤反复进行数百次,得到每一种估计方法的 参数估计值的序列。 第五步:对每种估计方法的参数估计值序列进行统 计分析; 第六步:与真实参数(即试验前已经知道的结构参 数)进行比较,以判断各种估计方法的优劣。

计量经济模型的参数估计方法-计量经济学论文-经济学论文

计量经济模型的参数估计方法-计量经济学论文-经济学论文

计量经济模型的参数估计方法-计量经济学论文-经济学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:计量经济模型的参数估计是实证经济分析的关键,其在建模技术中处于核心的地位。

估计模型参数属于统计学中的参数估计内容。

常用的估计方法主要包括最小二剩法、极大似然估计法、矩估计法和贝叶斯估计法等。

而这些方法的应用,取决于计算机及其软件的编程。

利用R 软件可以很容易的实现对模型参数的估计,不论是线性模型,还是非线性模型,主要使用lm、glm 和nls等几个命令函数来实现。

关键词:经济建模;参数估计;经济参数;R的使用。

一位朋友获得到了一笔意想不到的奖金,于是计划着买一件观注已久的名贵消费品。

而同事同样也得到了一笔工资之外的收入,他却将这笔钱用于了投资。

用经济学的术语就是前者的消费倾向很高,而后者的消费倾向较低。

然而一个地区的消费倾向,应该是该地所有居住者的平均消费倾向。

它往往反映着该地区的生活水平和经济发达的程度,是人们比较关心的话题。

这类信息又不可能直接调查获得,因为哪些收入是新增的,以及个人之间的倾向差异较大,抽样的代表性很难保证。

所以此类信息的获得主要是通过模型测算的,即以观测得到的消费为被解释变量,收入为解释变量来构建回归方程,其回归系数就是收入的边际消费倾向。

在经济模型的各构成要件中,参数是用来表述具体经济关系的重要因素,如消费倾向就是收入决定消费模型中最重要的经济参数。

在现实的经济观察中,人们较易观测到收入和消费支出的数据,却很难直接观测到消费倾向的数据,因此我们通过建模来推算。

而这种对模型参数进行推算的过程,常被称为模型的估算。

一、经济参数估计及主要方法。

经济模型是用来描绘经济关系方程式或方程组,在经济模型中的各种变量是我们看得到的经济现实,模型中的每一个方程都表述着各变量之间的经济关联。

而变量之间精确关系的规律性反映,主要是由模型中伴随着变量存在的参数来承担的。

既然是规律性的东西,就是固定不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 按渐近无偏性比较优劣
除了OLS方法外,所有方法的参数估计量都具有大 样本下渐近无偏性。因而,除了OLS方法最差外, 其它方法无法比较优劣。
❖ 按渐近有效性比较优劣
OLS 非一致性估计,未利用任何单方程外的信 息;
IV 利用了模型系统部分先决变量的数据信息;
2SLS、LIML 利用了模型系统全部先决变量的数 据信息;
M SEE()2n 1iN 1( i )2
前者反映估计量偏离实验均值的程度;后者反映估 计量偏离真实值的程度。所以尽管OLS具有最小方 差性,但是由于它是有偏的,偏离真实值最为严重, 所以它的最小均方差性仍然是最差的。
二、为什么普通最小二乘法被普遍 采用
⒈ 小样本特性 ⒉ 充分利用样本数据信息 ⒊ 确定性误差传递 ⒋ 样本容量不支持 ⒌ 实际模型的递推(Recurred)结构
❖ 小样本估计特性实验结果比较 ⑴无偏性
OLS 2SLS 3SLS(LIML,FIML)
⑵最小方差性 LIML 2SLS FIML OLS
⑶最小均方差性 OLS LIML 2SLS 3SLS(FIML)
为什么OLS具有最好的最小方差性? 方差的计算公式:
V
1 N
N i1
(i )2
均方差的计算公式:
⒋样本点间误差传递检验
❖ 在联立方程模型系统中,由于经济系统的动态性, 决定了有一定数量的滞后内生变量。
❖ 由于滞后内生变量的存在,使得模型预测误差不仅 在方程之间传递,而且在不同的时间截面之间,即 样本点之间传递。
❖ 必须对模型进行滚动预测检验。
❖ 给定t=1时的所有先决变量的观测值,包括滞后内 生变量,求解方程组,得到内生变量Y1的预测值;
❖ Monte Carlo试验方法在经济实验中被广泛采用。
❖ 小样本估计特性的Monte Carlo试验过程 第一步:利用随机数发生器产生随机项分布的一组 样本; 第二步:代入已经知道结构参数和先决变量观测值 的结构模型中; 第三步:计算内生变量的样本观测值; 第四步:选用各种估计方法估计模型的结构参数。 上述步骤反复进行数百次,得到每一种估计方法的 参数估计值的序列。 第五步:对每种估计方法的参数估计值序列进行统 计分析; 第六步:与真实参数(即试验前已经知道的结构参 数)进行比较,以判断各种估计方法的优劣。
§4.6联立方程计量经济学模型的估计 方法选择和模型检验
一、模型估计方法的比较 二、为什么普通最小二乘法被普遍采用 三、模型的检验
一、模型估计方法的比较
⒈大样本估计特性的比较
❖ 在大样本的情况下,各种参数估计方法的统计特性 可以从数学上进行严格的证明,因而也可以将果样本期之外的某个时间截面上的内生变量实际 观测值已经知道,这就有条件对模型系统进行预测 检验。
❖ 将该时间截面上的先决变量实际观测值代入模型, 计算所有内生变量预测值,并计算其相对误差。
R E ( y i0 y i0 )y i0
• 一般认为,RE<5%的变量数目占70%以上,并且 每个变量的相对误差不大于10%,则认为模型系统总 体预测性能较好。
⒊方程间误差传递检验
❖ 寻找模型中描述主要经济行为主体的经济活动过程 的、方程之间存在明显的递推关系的关键路径。
❖ 在关键路径上进行误差传递分析,可以检验总体模 型的模拟优度和预测精度。
❖ 例如,计算:
T
i2(ei
ei1)2
iT 1ei2TT1
• 称为冯诺曼比,如果误差在方程之间没有传递,该 比值为0。
三、模型的检验
❖ 包括单方程检验和方程系统的检验。
❖ 凡是在单方程模型中必须进行的各项检验,对于联 立方程模型中的结构方程,以及应用2SLS或3SLS 方法过程中的简化式方程,都是适用的和需要的。
❖ 模型系统的检验主要包括:
⒈拟合效果检验
❖ 将样本期的先决变量观测值代入估计后的模型,求 解该模型系统,得到内生变量的估计值。将估计值 与实际观测值进行比较,据此判断模型系统的拟合 效果。
❖ 模型的求解方法:迭代法。为什么不直接求解?
❖ 常用的判断模型系统拟合效果的检验统计量是“均 方百分比误差”,用RMS表示。
n
RMSi ei2t / n
t1
e it (y it y it)/y it
❖ 当RMSi=0,表示第i个内生变量估计值与观测值 完全拟合。
❖ 一般地,在g个内生变量中,RMS<5%的变量数 目占70%以上,并且每个变量的RMS不大于10%, 则认为模型系统总体拟合效果较好。
3SLS、FIML 利用了模型系统全部先决变量的数 据信息和结构方程相关性信息。
⒉小样本估计特性的Monte Carlo试验
❖ 参数估计量的大样本特性只是理论上的,实际上并 没有“大样本”,所以,对小样本估计特性进行比 较更有实际意义。
❖ 而在小样本的情况下,各种参数估计方法的统计特 性无法从数学上进行严格的证明,因而提出了一种 Monte Carlo试验方法。
❖ 对于t=2,只外生给定外生变量的观测值,滞后内 生变量则以前一时期的预测值代替,求解方程组, 得到内生变量Y2的预测值;
❖ 逐年滚动预测,直至得到t=n时的内生变量Yn的预 测值;
❖ 求出该滚动预测值与实际观测值的相对误差。
相关文档
最新文档