【人教版】七年级下册数学《期末检测卷》(带答案)
2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
(完整版)人教版七年级数学下册期末试卷及答案

(完整版)人教版七年级数学下册期末试卷及答案一、选择题1.对于算式20203﹣2020,下列说法错误的是()A.能被2019整除B.能被2020整除C.能被2021整除D.能被2022整除2.如图所示图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.3.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10114.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.145.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A.90°B.120°C.135°D.150°6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x元,馒头每个y元,则下列能表示题目中的数量关系的二元一次方程组是()A.53502115900.9x yx y+=+⎧⎨+=⨯⎩B.53502115900.9x yx y+=+⎧⎨+=÷⎩C.53502115900.9x yx y+=-⎧⎨+=⨯⎩D.53502115900.9x yx y+=+⎧⎨+=⨯⎩7.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4 C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2 8.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2 9.一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7 B.8 C.9 D.1010.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b >的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.15.已知m a =2,n a =3,则2m n a -=_______________.16.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.17.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.18.因式分解:224x x -=_________.19.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.24.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 25.已知a +a 1-=3, 求(1)a 2+21a(2)a 4+41a 26.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。
人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
人教版七年级数学下册期末试卷(含答案)(共4套)

人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 下列艺术字中,可以看作是轴对称图形的是()A. B. C. D.2. 下列各式运算正确的是()A.a2+a2=2a4B.a2⋅a3=a5C.(−3x)3÷(−3x)=−9x2D.(−ab2)2=−a2b43. 下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4. 计算(x+3)(x−3)的结果为()A.x2+6x+9B.x2−6x+9C.x2+9D.x2−95. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30∘,则∠1的度数为()A.30∘B.45∘C.60∘D.75∘6. 下列各组数据,能构成三角形的是()A.1cm,2cm,3cmB.2cm,2cm,5cmC.3cm,4cm,5cmD.7cm,5cm,1cm7. 如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S38. 李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点EDE的长为半径画弧,两弧在∠AOB的内部相交于点C.①分别以点D、E为圆心,大于12①画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSSB.SASC.ASAD.AAS9. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A. B. C. D.10. 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30∘B.40∘C.45∘D.36∘二、填空题11.化简(a+b)(a−b)=________.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为________.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为________.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为________.三、解答题)2−(3.14−π)0;15.(1)(−1)2020+(−13(2)(a−1)(a+1)−(a−2)2;(3)(20x2y−10xy2)÷(−5xy);(4)(2x3y)2⋅(−2xy)+(−2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2−2x(x+2y)+(x−3y)(x+3y),其中x=−1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90∘,EC⊥AF.求证:AB // CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD // CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.21.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD =BE(2)△APC≅△BQC(3)△PCQ是等边三角形.22.如图1,∠FBD=90∘,EB=EF,CB=CD.(1)求证:EF // CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG // BC,∠FBD=90∘,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.23.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100∘,∠B=∠ADC=90∘.E,F分别是BC,CD上的点.且∠EAF=50∘.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≅△ADG,再证明△AEF≅△AGF,可得出结论,他的结论是________(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180∘,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45∘,直接写出△DEF的周长.参考答案:一、1-5 BBADC 6-10 CCACD二、11.a2−b212.y=−2x2+20x13.12cm14.12三、15.原式=1+19−1=19.原式=a2−1−(a2−4a+4)=a2−1−a2+4a−4=4a−5.原式=−4x+2y.原式=4x6y2⋅(−2xy)+(−8x9y3)÷(2x2)=−8x7y3−4x7y3=−12x7y3.16.原式=x2+6xy+9y2−2x2−4xy+x2−9y2=2xy,当x=−1,y=2时,原式=2×(−1)×2=−4.17.A′点即为所求;点P即为所求.18.证明:① EC⊥AF(已知),① ∠CHF=90∘(垂直的定义),① ∠1+∠C=90∘(三角形内角和定理),① ∠2+∠C=90∘(已知),① ∠1=∠2(同角的余角相等),又① ∠1=∠D(已知),① ∠2=∠D(等量代换),① AB // CD(内错角相等,两直线平行).19.证明:① AD // CB(已知),① ∠ADB=∠CBD(两直线平行,内错角相等),① ∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,{∠ADE=∠CBFDE=BF∠E=∠F,① △ADE≅△CBF(ASA),① AE=CF(全等三角形的对应边相等).20.证明:在△AFC与△AGB中{AF=AG∠FAC=∠GABAB=AC,① △AFC≅△AGB(SAS),① ∠AFC=∠AGB,① ∠AFD=∠AGE,① AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.① ∠ADF=∠AEG=90∘,在△ADF与△AEG中{∠ADF=∠AEG ∠AFD=∠AGEAF=AG,① △ADF≅△AEG(AAS),① AD=AE.21.① △ABC和△CDE是正三角形,① AC=BC,CD=CE,∠ACB=∠DCE=60∘,① ∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,① ∠ACD=∠BCE,① △ADC≅△BEC(SAS),① AD=BE;① ADC≅△BEC,① ∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,① △APC≅△BQC(ASA);① CD=CE,∠DCP=∠ECQ=60∘,∠ADC=∠BEC,① △CDP≅△CEQ(ASA).① CP=CQ,① ∠CPQ=∠CQP=60∘,① △CPQ是等边三角形.22.证明:如图1,连接FD,① EB=EF,CB=CD,① ∠EBF=∠EFB,∠CBD=∠CDB,① ∠FBD=90∘,① ∠EBF+∠CBD=90∘,∠BFD+∠BDF=90∘,① ∠EFB+∠CDB=90∘,① ∠EFD+∠CDF=180∘,① EF // CD;成立,证明:如图2,连接FD,延长CB到H,① EG // BC,① ∠EGF=∠HBF,① ∠FBD=90∘,① ∠HBF+∠CBD=90∘,∠BFD+∠BDF=90∘,① ∠EGF+∠CBD=90∘,① EG=EF,CB=CD,① ∠EGF=∠EFB,∠CBD=∠CDB,① ∠EFB+∠CDB=90∘,① ∠EFD+∠CDF=180∘,① EF // CD.23.EF=BE+DF结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.① ∠ABC+∠D=180∘,∠ABG+∠ABC=180∘,① ∠ABG=∠D,① 在△ABG与△ADF中,{AB=AD∠ABG=∠D BG=DF,① △ABG≅△ADF(SAS),① AG=AF,∠BAG=∠DAF,① 2∠EAF=∠BAD,① ∠DAF+∠BAE=∠BAG+∠BAE=12∠BAD=∠EAF,① ∠GAE=∠EAF,又AE=AE,① △AEG≅△AEF(SAS),① EG=EF.① EG=BE+BG.① EF=BE+FD;如图,延长EA到H,使AH=CF,连接BH,① 四边形ABCD是正方形,① AB=BC=7=AD=CD,∠BAD=∠BCD=90∘,① ∠BAH=∠BCF=90∘,又① AH=CF,AB=BC,① △ABH≅△CBF(SAS),① BH=BF,∠ABH=∠CBF,① ∠EBF=45∘,① ∠CBF+∠ABE=45∘=∠HBA+∠ABE=∠EBF,① ∠EBH=∠EBF,又① BH=BF,BE=BE,① △EBH≅△EBF(SAS),① EF=EH,① EF=EH=AE+CF,① △DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.人教版七年级数学下册期末试卷(含答案)第Ⅱ套一、选择题1. 如图,直线a,b相交于点O,∠1=60∘,则∠2=()A.120∘B.60∘C.30∘D.15∘2. 下列实数中是无理数的是()A. B.0.212121C. D.-3. 下列调查方式中,你认为最合适的是()A.肺炎疫情期间,对学生体温测量采用抽样调查B.驰援武汉医疗队胜利归来时,为了确定医疗队成员的健康情况,可采用抽样调查C.检查一批口罩的防护效果时,采用全面调查D.肺炎疫情期间到校上课,了解学生健康码情况时,采用全面调查4. 下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行5. 如图,数轴上点A表示的数可能是()A. B.C. D.6. 下列图形中,周长最长的是()A. B. C. D.7. 一副三角尺按如图方式叠放,含30∘角三角形尺的直角边AD在含45∘角三角形尺的直角边AC上,则∠BFE的度数是()A.60∘B.70∘C.75∘D.80∘8. 某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x≥4809. 如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(−2, 6),则点B的坐标为()A.(−6, 4)B.(,)C.(−6, 5)D.(,4)10. 在平面直角坐标系中,点M(1+m, 2m−3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题11.小红在画一组数据的直方图时,统计了这组数据中的最大值是75,最小值是4,她准备把这组数据分成8组,则组距可设为________.(填一整数)12. 如图,∠1=∠2,∠D=75∘,则∠BCD=________.13.若≈1.732,则300的平方根约为________.14.若,则x+y的值为________.15.已知a+b=4,若−2≤b≤−1,则a的取值范围是________.16.在平面直角坐标系xOy中,对于点P(x, y),我们把点P′(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3, 1),则点A2019的坐标为________.三、解答题17.计算:.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在三角形ABC中,AB // DE,∠BDE=2∠A,求证∠A=∠C.证明:作∠BDE的角平分线交AB于点F.① DF平分∠BDE,①∠1=∠2.①∠BDE=2∠A,①∠1=∠2=①AB // DE,①∠A=∠3(),①∠3=∠A=,① AC // DF( ),① ∠2=,① ∠A=∠C=∠2.20.某校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为x分(60≤x≤100),校方在参赛作品中随机抽取了50件作品进行质量评估,分数情况统计表和统计图如图所示:手工制作比赛作品分数情况频数分布表手工制作比赛作品分数情况频数分布直方图根据以上信息解答下列问题:手工制作比赛作品分数情况频数分布表(1)频数分布表中c的值为;(2)补全频数分布直方图;(3)本次比赛校方共收到参赛作品800件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.21.如图,AB // CD,AB // GE,∠B=110∘,∠C=100∘.∠BFC等于多少度?为什么?22.肺炎疫情期间,口罩成了家家户户必备的防疫物品.在某超市购买2只普通医用口罩和3只N95口罩的费用是22元;购买5只普通医用口罩和2只N95口罩的费用也是22元.(1)求该超市普通医用口罩和N95口罩的单价;(2)若准备在该超市购买两种口罩共50只,且N95口罩不少于总数的40%,试通过计算说明,在预算不超过190元的情况下有哪些购买方案.23.规定min(m, n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3, −1}=−1,、min据此解决下列问题:(1)min=;(2)若min=2,求x的取值范围;(3)若min{2x−5, x+3}=−2,求x的值.24.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ(△表示三角形)面积等于1(即S△MPQ=1),则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2, 0).(1)在点A(−1, 1),B(−1, 2),C(2, −4)中,线段OP的“单位面积点”是;(2)已知点D(0, 3),E(0, 4),将线段OP沿y轴方向向上平移t(t>0)个单位长度,使得线段DE上存在线段OP的“单位面积点”,求t的取值范围;(3)已知点F(2, 2),点M在第一象限且M的纵坐标是3,点M,N是线段PF的两个“单位面积点”,若S△OMN=3S△PFN,且MN // PF,直接写出点N的坐标.参考答案:一、1-5 BCDAB 6-10 BCABB二、11.912.105∘13.±17.3214.215.5≤a≤616.(−3,1)三、17.解:原式=10−2=8①18.解:{2x+1≥−3①x+1>2x−2由①得:x≥−2由①得:x<3不等式组的解集为:−2≤x<3在数轴上表示:19.∠A,两直线平行,同位角相等,∠1,内错角相等,两直线平行,∠C20.(1)c=22+50=0.44故答案为:0.44;(2)a=50×0.2=10,b=50×0.06=3补全的频数分布直方图如图所示;手工制作比赛作品分数情况频数分布直方图(3)800×(0.2+0.6)=208(件),即全校将展出的作品有208件.21.解:∠BFC等于30度,理由如下:ABIIGE,∠B+∠BFG=180∘∵B=110∘∠BFG=180∘−110∘=70∘ABICD,ABIGE,..CDIIGE,2C+CFE=180∘∠C=100∘2CE=180∘−100∘=80∘∠BF=180∘∠∠BFG∠∠CFE=180∘−70∘−80∘=30∘22.(1)设普通医用口罩的单价为x元,N95口罩单价为y元,依题意有{2x+3y=22 5x+2y=22解得:{x=2 y=6故普通医用口罩的单价为2元,N95口罩单价为6元;(2)设购买普通医用口罩z个,则购买N95口罩(50−z)个,依题意有{50−≥50×40%2z+6(50−z)≤190解得:27.5≤2030购买方案:①购买普通医用口罩28个,购买N95口罩22个;①购买普通医用口罩29个,购买N95口罩21个;①购买普通医用口罩30个,购买N95口罩20个.23.(1)根据题中的新定义得:sin{−12,−13}=−12故答案为:−12(2)由题意2x−13≥2解得:x≥3.5(3)若2x−5=−2,解得:x=1.5,此时x+3=4.5>−2,满足题意;若x+3=−2,解得:x=−5,此时2x−5=−15<−2,不符合题意,综上,x=1.524.(1)如图1中,A(一1,1),B(一1,2),C(2,一4),P(2, 0),S△AOP=12×2×1=1,S△ODB=12×2×2=2,S△OPC′12×2××2×…点A是线段OP的“单位面积点”.故答案为:A.(2)如图2中.当点D为线段O′P′的“单位面积点”时,/3−t|=1,解得:t=2或t=4,当点E为线段O′P”’的“单位面积点”时,/4−t{=1,解得:t=3或t=5,…线段EF上存在线段O“P”的“单位面积点”,..t的取值范围为2st≤3或4sts5.(3)如图3中,图3P(2, 0),F(2, 2),..PF=2,PFlly轴.点M是线段PF的“单位面积点”,且点M的纵坐标为3,….M(1, 3)或(3, 3),当M(1, 3)时,设N(1, t),×1×/3−t=3由题意,12解得:t=∼3或9,…N(1, 3)或(1, 9),当M(3, 3)时,设N(3, n),×3×|3−n|=3由题意,12解得:n=1和5,.N(3, 1)或(3, 5),综上所述:满足条件的点N的坐标为(1, ∼3)或(1, 9)或(3, 1)或(3, 5).人教版七年级数学下册期末试卷(含答案)第Ⅲ套一、选择题1. 如图,∠B的同位角是()A.∠1B.∠2C.∠3D.∠42. 下列方程中,是二元一次方程的是()A.2x−y=3B.x+1=2C.+3y=5D.x+y+z=63. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10−9B.7.6×10−8C.7.6×109D.7.6×1084. 如图是某班学生一周参加体育锻炼情况的折线统计图.由图可知,一周参加体育锻炼7小时的人数比锻炼9小时的人数少()A.3人B.5人C.8人D.11人5. 若代数式有意义,则实数x的取值范围是()A.x=5B.x=2C.x≠5D.x≠26. 下列计算中正确的是()A.a6÷a2=a3B.(a4)2=a6C.3a2−a2=2D.a2⋅a3=a57. 下列等式从左到右变形中,属于因式分解的是()A.a(x+y)=ax+ayB.x2−2x+1=x(x−2)+1C.x2−1=(x+1)(x−1)D.a2+2a+3=(a+1)2+28. 如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cmB.22cmC.20cmD.24cm9. 现代科技的发展已经进入到了5G时代,温州地区将在2021年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程()A.-=360B.-=360C.-=360D.-=36010. 如图,正方形ABCD和长方形DEFG的面积相等,且四边形AEFH也为正方形.欧几里得在《几何原本》中利用该图得到了:AH2=AB×BH.设AB=a,BH=b.若ab=45,则图中阴影部分的周长为()A.25B.26C.28D.30二、填空题11.因式分解:a2−4a=________.12.某部门要了解当代中学生的主要娱乐方式,常用的调查方式是________调查.(填“全面”或“抽样”)13.计算:4a2b÷2ab=________.14.已知3a−b=0,则分式的值为________.15.已知关于x,y的方程组的解也是方程y+2m=1+x的一组解,则m=________.16.图1是一盏可折叠台灯.图2为其平面示意图,底座AO⊥OE于点O,支架AB,BC为固定支撑杆,∠A是∠B的两倍,灯体CD可绕点C旋转调节.现把灯体CD从水平位置旋转到CD′位置(如图2中虚线所示),此时,灯体CD′所在的直线恰好垂直支架AB,且∠BCD−∠DCD′=126∘,则∠DCD′=________.三、解答题17.计算(1)(π−2)0−3−2;(2)(a−1)2+a(3−a).18.解下列方程(组):(1);(2)+=1.19.先化简,再求值:÷-,其中a=5.20.某校开展“停课不停学”活动期间,为了更好地了解学生的学习情况,对七年级部分学生每天学习时长情况进行抽样调查,并绘制了如图频数表和频数直方图(不完整),如图所示(每组含前一个边界值,不含后一个边界值).七年级部分学生学习时间情况频数表根据以上信息,解决下列问题:(1)表中a=________,b=________;(2)补全频数直方图;(3)若该校七年级共有600名学生,估计该年级学生每天的学习时间不少于6小时的人数.21.如图,已知AB // CD,∠AED+∠C=180∘.(1)请说明DE // BC的理由.(2)若DE平分∠ADC,∠B=65∘,求∠A的度数.22.某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a 米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简.(2)记长方形空地的面积为S1,花圃的面积为S2,若2S2−S1=7b2,求的值.23.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:(1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?参考答案:一、1-5 AABDC 6-10 DCBBD二、11.a(a−4)12.抽样13.2a14.15.16.36∘三、17.(π−2)0−3−2=1−=;(a−1)2+a(3−a)=a2−2a+1+3a−a2=a+1.18.,①+①得:4x=12,解得:x=3,把x=3代入①得:y=1,则方程组的解为;分式方程整理得:-=1,去分母得:4−3=x−2,解得:x=3,经检验x=3是分式方程的解.19.÷-====,当a=5时,原式==.20.10,0.35由(1)知,a=10,补全的频数直方图如右图所示;600×(0.35+0.2+0.075)=375(名),答:该年级学生每天的学习时间不少于6小时的大约有375名学生.【考点】频数(率)分布表用样本估计总体频数(率)分布直方图21.DE // BC,理由如下:① AB // CD(已知),① ∠B+∠C=180∘(两直线平行,同旁内角互补),又① ∠AED+∠C=180∘(已知),① ∠AED=∠B(同角的补角相等),① DE // BC(同位角相等,两直线平行).由(1)得∠AED=∠B,① ∠B=65∘(已知),① ∠AED=65∘(等量代换),① AB // CD(已知),① ∠CDE=∠AED=65∘(两直线平行,内错角相等),① DE平分∠ADC(已知),① ∠ADC=2∠CDE=130∘(角平分线的定义),① AB // CD(已知),① ∠A+∠ADC=180∘(两直线平行,同旁内角互补),① ∠A=180∘−∠ADC=180∘−130∘=50∘.22.平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b−2a)(2a+4b−a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;① 2S2−S1=7b2,① 2(2a2+10ab+8b2)−(8a2+20ab+8b2)=7b2,① b2=4a2,① b=2a,① S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,① ==.23.设每天生产医用口罩x万个,生产N95口罩y万个,依题意,得:,解得:.答:每天生产医用口罩50万个,生产N95口罩30万个.设从医用口罩中抽取m包,N95口罩中抽取n包,依题意,得:1.2(50−m)+3(30−n)−0.8×50−2.5×30=2,① n=11−m.① m,n均为正整数,① ,,,,.又① 捐赠的N95口罩不超过医用口罩的三分之一,① ,,.答:从医用口罩中抽取15包、从N95口罩中抽取5包或从医用口罩中抽取20包、从N95口罩中抽取3包或从医用口罩中抽取25包、从N95口罩中抽取1包.人教版七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列图形中,是轴对称图形的是()A.B. C. D.2. 新型冠状病毒的直径平均为100纳米,也就是0.0000001米,是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为()A.30×10−7B.3×10−6C.3×10−5D.0.3×10−63. 如图,若∠1=35∘,且AB // CD,则∠2的度数是()A.125∘B.135∘C.145∘D.155∘4. 下列运算正确的是()A.(a5)2=a7B.a2⋅a3=a6C.(4a)2=4a2D.a6÷a2=a45. 在一个不透明的口袋中,装有5个白球、4个红球和1个黄球,它们除颜色外其余都相同,搅匀后任意摸出一球,则摸到红球的概率为()A.15B.25C.35D.456. 若x2−mx+4是完全平方式,则m的值为()A.2B.4C.±2D.±47. 如图,点E在CB的延长线上,下列条件中,能判定AB // CD的是()A.∠1=∠4B.∠2=∠3C.∠A=∠ABED.∠A+∠ABC=180∘8. 如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.由作法可得:△ABC≅△CDA的根据是()A.SASB.ASAC.AASD.SSS9. 今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.便利店离小丽家的距离为1000米10. 如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,①∠D=∠B,①AD=CB,①DF // BE,选出三个条件可以证明△AFD≅△CEB的有()组.A.4B.3C.2D.1二、填空题11.已知x m=20,x n=5,则x m−n=________.12.如图,在△ABC中,BC的垂直平分线MN交AB于点D,若BD=3,AD=2,则AC的长度x 取值范围为________.13.为了解某地区学生的身高情况,随机抽取了该地区100名学生,他们的身高x(cm)统计如下:根据以上结果,抽取其中1名学生,估计该学生的身高不低于170cm的概率是________.14.如图,已知AB // CD,∠B=60∘,∠FCG=70∘,CF平分∠BCE,则∠BCG的度数为________.三、解答题15.计算下列各题:)−3−(−1)2021+|−3|;(1)(2020−π)0+(−12(2)(−3xy2)2⋅(−6x3y)÷(9x4y5).y),其中x=2,y=−3.16.先化简,再求值:[(2x+y)2−4(x−y)(x+y)]÷(1217.如图,已知∠A=∠ADE.(1)若∠EDC=4∠C,求∠C的度数;(2)若∠C=∠E,求证:BE // CD.18.科学家为了研究地表以下岩层的温度y(∘C)与所处的深度x(km)的变化情况,选择了一个地点来进行测试,测试结果记录下来,制成下表:①根据上表的数据,请你写出y与x的关系式;①当地下岩层13km时,岩层的温度是多少;①岩石的熔点各不相同,某种岩石在温度达到1070∘C时,就会融化成液体,请问这种岩石处在地表下多少千米时就会变成液态?19.如图,方格纸中每个小方格都是边长为1的正方形,我们把顶点均在格点上的三角形称为“格点三角形”,如图1,△ABC就是一个格点三角形.(提示:作图时,先用2B铅笔作图,确定不再修改后用中性笔描黑)(1)作出△ABC关于直线m成轴对称的图形;(2)求△ABC的面积;(3)在图2的直线m上求作点D,使得以A、C、D为顶点的格点三角形是等腰三角形.20.已知:△ABC中,∠ACB=90∘,AC=BC,过点A作AD⊥AE,且AE=AD.(1)如图1,当点D在线段BC上时,过点E作EH⊥AC于H,连接DE.求证:EH=AC;(2)如图2,当点D在CB延长线上时,连接BE交AC的延长线于点M.求证:BM=EM;(3)在(2)的条件下,若AC=7CM,请直接写出S△ADB的值(不需要计算过程).S△AEM21.如图所示,纸片甲、乙分别是长方形ABCD和正方形EFGH,将甲、乙纸片沿对角线AC,EG剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR,与甲、乙纸片一起组成纸片丙的四边形NALM,设AD=a,AB=b.(1)求纸片乙的边长(用含字母a、b的代数式表示);(2)探究纸片乙、丙面积之间的数量关系.22.甲骑车从A地到B地,乙骑车从B地到A地,甲的速度小于乙的速度,两人同时出发,沿同一条绿道骑行,图中的折线表示两人之间的距离y(km)与甲的行驶时间x(ℎ)之间的关系,根据图象回答下列问题:(1)甲骑完全程用时________小时;甲的速度是10km/ℎ;(2)求甲、乙相遇的时间;(3)求甲出发多长时间两人相距10千米.23.如图,在正方形ABCD中,点F是直线BC上一动点,连结AF,将线段AF绕点F顺时针旋转90∘,得到线段FH,连结AH交直线DC于点E,连结EF和CH,设正方形ABCD的边长为x.(1)如图1,当点F在线段BC上移动时,求△CEF的周长(用含x的代数式表示);(2)如图1,当点F在线段BC上移动时,猜想∠EFC和∠EHC的关系,并证明你的结论;(3)如图2,当点F在边BC的延长线上移动时,请直接写出∠EFC和∠EHC的关系(不需要证明).参考答案:一、1-5 CBCDB 6-10 DBDAC二、11.412.1<x<513.5710014.10∘三、15.原式=1−8+1+3=−3;原式=9x2y4⋅(−6x3y)÷(9x4y5)=−54x5y5÷(9x4y5)=−6x.16.原式=(4x2+4xy+y2−4x2+4y2)÷(12y)=(4xy+5y2)÷(12y)=4xy÷12y+5y2÷12y=8x+10y,当x=2,y=−3时,原式=8×2+10×(−3)=16−30=−14.17.① ∠A=∠ADE,① DE // AC,① ∠EDC+∠C=180∘,① ∠EDC=4∠C,① 4∠C+∠C=180∘,解得,∠C=36∘;证明:① DE // AC,① ∠E=∠ABE,① ∠C=∠E,① ∠C=∠ABE,① BE // CD.18.①y与x的关系式:y=35x+20;①当地下岩层13km时,y=35×13+20=475.故岩层的温度是475∘C;①温度达到1070∘C时,1070=35x+20,解得x=30.故这种岩石处在地表下30千米时就会变成液态.19.如图,△A′B′C′即为所求.S△ABC=4×3−12×3×2−12×1×4−12×1×3=5.5.如图,点D1,D2即为所求.20.(2)如图2,过点E作EN⊥AM,交AM的延长线于N,① AD⊥AE,EN⊥AM,① ∠ANE=∠EAD=∠ACB=90∘,① ∠DAC+∠ADC=90∘,∠DAC+∠EAN=90∘,① ∠EAN=∠ADC,又① AD=AE,∠ACD=∠ANE=90∘,① △ANE≅△DCA(AAS),① EN=AC,① BC=AC,① BC=NE,又① ∠BMC=∠EMN,∠BCM=∠ENM=90∘,① △BCM≅△ENM(AAS),① BM=EM(3)① AC=7CM,① 设CM=a,AC=7a,① △BCM≅△ENM,① CM =MN =a ,BC =NE =AC =7a ,① AN =AC +CM +MN =9a ,① △ANE ≅△DCA ,① AN =CD =9a ,① BD =2a ,① S △ADBS △AEM =12BD⋅AC 12AM⋅EN =12×2a×7a 12×8a×7a =14 21.设纸片乙的边长为x ,则OR =x −b ,RQ =a −x ,① OR =RQ ,① x −b =a −x ,解得x =a+b 2;由(1)知中间正方形纸片OPQR 的边长为a−b 2, ① (a−b 2)2+ab =(a+b 2)2, ① 中间正方形纸片OPQR 的面积+纸片甲的面积=纸片乙的面积, ① 纸片丙的面积是纸片乙面积的2倍.22.由图象可知,甲骑完全程用时3小时,甲的速度是303=10(km/ℎ).故答案为:3;10.由题意可知,乙到A 地时,甲距离A 地18千米处,① 相同时间甲、乙的速度之比等于路程之比,① V 乙=S S ×V =3018×10=503(km/ℎ), ① 相遇时间为30÷(503+10)=98(ℎ);①甲、乙相遇前,30−(10+503x)=10, 解得,x =34;①甲、乙相遇后,且未到A 地时,(10+503)(x −98)=10, 解得,x =32;综合以上可得,当x =34或32(ℎ)时,两人相距10千米.23.如图1中,延长CB到G,使得BG=DE,连接AG.① 四边形ABCD是正方形,① AD=AB,∠D=∠ABC=∠ABG=90∘,① DE=BG,① △ADE≅△ABG(SAS),① ∠BAG=∠DAE,AG=AE,① 将线段AF绕点F顺时针旋转90∘,得到线段FH,① FA=FH,∠AFH=90∘,① ∠FAH=∠AHF=45∘,① ∠BAF+∠DAE=∠BAF+∠BAG=45∘,① ∠FAG=∠FAE,① AF=AF,① △AFG≅△AFE(SAS),① EF=FG,① FG=BG+BF=DE+BF,① EF=BF+DE,① △ECF的周长=EF+CF+CE=BF+CF+DE+CE=BC+CD=2x.如图1中,过点H作HM⊥BC交BC的延长线于M.① ∠ABF=∠AEH=∠M=90∘,① ∠AFB+∠HFM=90∘,∠FHM+∠FHM=90∘,① ∠AFB=∠FHM,① AF=FH,① △ABF≅△FMH(AAS),① HM=BF,AB=FM=BC,① BF=CM=HM,① ∠HCM=∠HCE=45∘,① ∠HCF=135∘,由(1)可知,∠AFB=∠AFE,① ∠AFB+∠MFH=90∘,∠AFE+∠EFH=90∘,① ∠MFH=∠EFH,设∠MFH=∠EFH=α,则∠CHF=45∘−α,① ∠AHF=45∘,① ∠EHC=45∘+45∘−α=90∘−α,① ∠EFC=2α,∠EFC.① ∠EHC=90∘−12∠EFC.结论:∠EHC=12理由:如图2中,延长BC到M,设∠HFM=α.① FA=FH,∠AFH=90∘,① ∠AHF=45∘,① ∠HCM=45∘(已证),① ∠HCM=∠AHF=45∘,① ∠HFM=∠HCM+∠CHF,① ∠CHF=α−45∘,① ∠EHC=45∘−(α−45∘)=90∘−α,① ∠EFC=2∠AFB=2(90∘−α)=180∘−2α,∠EFC.① ∠EHC=12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第二学期期末测试人教版七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 64的立方根是()A. 4B. ±4C. 8D. ±82.下列解不等式22135x x+-f的过程中,出现错误的一步是( )①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A. ①B. ②C. ③D. ④3.已知三角形三边长分别为3,,10x,若x为正整数,则这样的三角形个数为()A. 2B. 3C. 5D. 74.如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC5.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°6.下列邮票多边形中,内角和等于540°的是()A. B.C. D.7.下列调查中,适合用普查方法的是( ) A. 了解中央电视台《中国诗词大会》的收视率 B. 了解太和县某学校初一(1)班学生的身高情况 C. 了解太和县出产的樱桃的含糖量 D. 调查某品牌笔芯的使用寿命8.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A. ()222a b a b -=- B. ()2222a b a ab b +=++ C. ()2222a b a ab b -=-+D. ()()22a b a b a b -=+-9.红领巾公园健走步道环湖而建,以红军长征路为主题,如图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,如果表示遵义的点的坐标为(-5,7),表示腊子口的点的坐标为(4,-1),那么这个平面直角坐标系原点所在位置是( )A. 泸定桥B. 瑞金C. 包座D. 湘江10.某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:科目道德与法治历史 地理 选考人数(人) 19 1318其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生( ) A. 41B. 42C. 43D. 44二、填空题11.若式子3x +在实数范围内有意义,则x 的取值范围是_____. 12.若2(a 2)b 20-+-=,则a 3=______.13.已知点A(-5,0),点B(3,0),点C 在y 轴上,△ABC 的面积为12,则点C 的坐标为______. 14.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表: 种类一日票二日票 三日票 五日票 七日票 单价(元/张) 20 30407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.15.如图,在平面直角坐标系中,以点O 为心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以从点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标(2a ,a+1),则a =_________.16.如图,已知△OAB 中,∠AOB=70°,∠OAB 的角平分线与△OBA 的外角∠ABN 的平分线所在的直线交于点D ,则∠ADB 的大小为______.三、解答题17.计算:23(2)258-+--.18.解不等式组:()()2x 131x x 1x 2132⎧--⎪⎨---⎪⎩<<,并在数轴上表示解集.19.已知xy 2=1,先化简,再求(2xy 2)2-(-2xy )2•xy 4的值.20.如图所示,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余,OF 平分∠COD 交DE 于点F ,若∠OFD=70°,求∠1的度数.(1)使用直尺和圆规,补全图形;(保留作图痕迹). (2)解∵∠EDO 与∠1互余 ∴∠EDO+∠1=90° ∵OC ⊥OD ∴∠COD=90°∴∠EDO+∠1+∠COD=180° ∴______+______=180° ∴ED ∥AB .(______)∴∠AOF=∠OFD=70°(______) ∵OF 平分∠COD ,(已知) ∴∠COF=12∠COD=45°(______) ∴∠1=∠AOF-∠COF=______°.21.在ABC V 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.22.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位,在其中有这样的记“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个慢头,正好分完,如果大和尚一人分三个,小和尚三人分一个,问大小和尚各有几人?23.如图,已知点D 为ABC V 的边BC 的中点,,⊥⊥DE AC DF AB ,垂足分别为,E F ,且BF CE =. 求证:()()12B C AD ∠=∠平分BAC ∠24.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A .非常满意;B .满意;C .基本满意;D .不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有 人;(2)扇形统计图中,扇形C 的圆心角度数是 . (3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A 、B 、C 类视为满意)的人数.25.在解决数学问题时,我们一般先仔细读题干,找出有用信息作为已知条件,然后用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件,而有的信息不太明显需要结合图形,特殊式子成立的条件,实际问题等发现隐含信息作为条件,这样的条件称为隐含条件,所以我们在做题时更注意发现题目中的隐含条件 【阅读理解】读下面的解题过程,体会加何发现隐含条件,并回答.化简:2(13x)1x ---.解:隐含条件1-3x≥0,解得:x 13≤,∴原式=(1-3x )-(1-x )=1-3x-1+x=-2x 【启发应用】已知△ABC 22x 1(5x)4(4x)+---,,,记△A B C 的周长为C △ABC (1)当x=2时,△ABC 的最长边的长度是______(请直接写出答案). (2)请求出C △ABC (用含x 的代数式表示,结果要求化简).26.在△ABC 中,∠A=60°,BD ,CE 是△ABC 的两条角平分线,且BD ,CE 交于点F ,如图所示,用等式表示BE ,BC ,CD 这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC ,他发现先在BC 上截取BM ,使BM=BE ,连接FM ,再利用三角形全等的判定和性质证明CM=CD 即可. (1)下面是小东证明该猜想的部分思路,请补充完整;①在BC 上截取BM ,使BM=BE ,连接FM ,则可以证明△BEF 与______全等,判定它们全等的依据是______; ②由∠A=60°,BD ,CE 是△ABC 的两条角平分线,可以得出∠EFB=______°; (2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC 的过程.27.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; 【应用】:(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . 【拓展】:我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).28.计算:22212a b a b ab 2⎛⎫-⎪⎝⎭.答案与解析一、选择题1. 64的立方根是()A. 4B. ±4C. 8D. ±8 【答案】A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.2.下列解不等式22135x x+-f 的过程中,出现错误的一步是( )①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A. ①B. ②C. ③D. ④【答案】D【解析】【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x>-10-3;合并同类项,得:-x>-13,系数化为1得:x<13.故选D.【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变x,若x为正整数,则这样的三角形个数为()3.已知三角形三边长分别为3,,10A. 2B. 3C. 5D. 7【答案】C【解析】【分析】根据三角形三边的关系确定出x的取值范围,继而根据x为正整数即可求得答案.【详解】由题意得:10-3<x<10+3,即7<x<13,又∵x为正整数,∴x的值可以为8、9、10、11、12,即这样的三角形个数为5个,故选C.【点睛】本题考查了三角形三边关系的应用,熟练掌握三角形三边关系是解题的关键.4.如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC【答案】D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA不能判定△ABD≌△ACD,故D符合要求.故选:D.【点睛】本题考查全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°【答案】A【解析】【分析】利用平行线的性质解决问题即可.【详解】如图,∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=12(180°﹣80°)=50°,故选A.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.6.下列邮票的多边形中,内角和等于540°的是()A. B.C. D.【答案】B【解析】【分析】根据n边形的内角和公式为(n-2)180°,由此列方程求边数n即可得到结果.【详解】解:设这个多边形的边数为n,则(n-2)180°=540°,解得n=5.故选:B.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.下列调查中,适合用普查方法的是()A. 了解中央电视台《中国诗词大会》的收视率B. 了解太和县某学校初一(1)班学生的身高情况C. 了解太和县出产的樱桃的含糖量D. 调查某品牌笔芯的使用寿命【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,逐项判断即可.【详解】解:A、了解中央电视台《中国诗词大会》的收视率,调查范围广,适合抽样调查,故A错误;B、了解太和县某学校初一(1)班学生的身高情况,调查范围小,适合普查,故B正确;C、了解太和县出产的樱桃的含糖量,调查范围广,适合抽样调查,故C错误;D、调查某品牌笔芯的使用寿命,具有破坏性且调查范围广,适合抽样调查,故D错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。