《函数及其表示》学案

合集下载

学案4函数及其表示

学案4函数及其表示

学案4 函数及其表示导学目标: 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.(5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.函数y =1log 0.5(4x -3)的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x , x ≤0,则f(f (19))等于( )A .4 B.14 C .-4 D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围 .探究点一 函数与映射的概念例1 下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+(x -1)0lg (2-x )的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f (x 2)1+lg (x +1)的定义域是________________________________________________________________________. 探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移4 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题 第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=(x +3)(x -5)x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=(x +1)(x -1); (3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1; (5)f 1(x )=(2x -5)2,f 2(x )=2x -5. A .(1)(2) B .(2)(3) C .(4) D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2 (-1<x <2),2x (x ≥2),若f (x )=3,则x 的值是 ( )A .1B .1或32C .1,32或±3 D. 34.函数y =ln (x +1)-x 2-3x +4的定义域为 ( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]5.设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( ) A .∅ B .{1} C .∅或{2} D .∅或{1} 二、填空题(每小题4分,共12分)6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x ∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧ 3x +1 (x ≥0)x 2 (x <0),g (x )=⎩⎪⎨⎪⎧2-x 2(x ≤1)2 (x >1),则f [g (3)]=________,g [f (-12)]=________.8.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式;(3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f (x )+|f (x )|2,并写出g (x )的解析式. 11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?。

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。

函数及其表示、解析式学生学案

函数及其表示、解析式学生学案

函数及其表示、解析式(学生学案)函数及其表示、解析式(学生学案)知识结构:1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.2.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.3.分段函数与复合函数①如果一个函数在定义域的不同子集中因对应关系不同而用几个不同的式子来表示,这样的函数叫做分段函数.分段函数的求法是分别求出解析式再组合在一起,但要注意各区间之间的点不重复、无遗漏。

②如果y=f(u),u=g(x),那么函数y=f[g(x)]叫做复合函数,其中f(u)叫做外层函数,g(x)叫做内层函数。

基础训练:1.下列各对函数中,表示同一函数的是( ).A.f(x)=lg x2,g(x)=2lg x B.f(x)=lg,g(x)=lg(x+1)-lg(x-1)C.f(u)=,g(v)= D.f(x)=()2,g(x)=2.设函数,则=________.3.设集合,,从到有四种对应如图所示:其中能表示为到的函数关系的有_____ ____.4.已知函数是一次函数,且, ,则 __ __.5.设函数,,则 _________; __________.6.设函数, ,则 ___________; ____; ____.7.(1),,;(2),,;(3),,.上述三个对应__________________是到的映射.例题选讲:例1:判断下列对应是否是从集合A到集合B的映射: (1)A=R,B={x|x0},f:x→|x|; (2)A=N,B=N?,f:x→|x-2|; (3)A={x|x0},B=R,f:x→x2.例2:设有函数组:① ,;② ,;③ ,;④ ,.其中表示同一个函数的有_________例3:(1)已知f=lg x,求f(x);(2)已知函数,求;(3)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的表达式.(4)已知f(x)+ 2f()=2x+1,求f(x).例4例4.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出的函数解析式.例5.矩形的长,宽,动点、分别在、上,且,(1)将的面积表示为的函数,求函数的解析式;(2)求的最大值.巩固作业:A组:一、选择题:1.下列函数中,与函数相同的函数是()2.已知集合,映射,在作用下点的象是,则集合()二、填空题:3.给定映射,点的原象是 _______ .4.设有函数组:① ,;② ,;③ ,;④ ,;⑤ ,.其中表示同一个函数的有___ ___.5.已知,且,则m等于________.6.已知a,b为常数,若,,则 _______.第8题7.设f(x)=,则f[f( )]=_____________.8.如图所示的图象所表示的函数解析式为__________________________.三、解答题:已知函数与分别由下表给出:(1)求的值; (2)若 2时,求的值;10.下列从M到N的各对应法则中,哪些是映射?哪些是函数?哪些不是映射?为什么?(1)M={直线Ax+By+C=0},N=R,f1:求直线Ax+By+C=0的斜率;(2)M={直线Ax+By+C=0},N={α|0≤α<π},f2:求直线Ax+By+C=0的倾斜角;(3)当M=N=R,f3:求M中每个元素的正切;(4)M=N={x|x≥0},f4:求M中每个元素的算术平方根.11.(1)已知,求;(2)已知,求;(3)已知是一次函数,且满足,求;(4)已知满足,求.(5)已知,求的解析式12.已知二次函数的最小值等于4,且,求的解析式.B组:一、选择题:1.(2010·陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( ).A.y= B.y= C.y= D.y=2.(2011·辽宁)设函数f(x)=则满足f(x)≤2的x 的取值范围是( ).A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)二、填空题:3.(2011·江苏)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.函数,其中P,M为实数集R的两个非空子集,又规定,,给出下列四个命题:①若,则②若,则③若,则④若,则其中真命题的序号有____ __.设集合对任意实数x恒成立},则下列结论中:①P Q ;②Q P;③P=Q;④P Q= .其中正确结论的序号有______ ______.三、解答题:6.已知函数与的图像关于点对称,求的解析式.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.(1)设,求函数的解析式;(2)已知,求函数的解析式.。

高一数学:函数及其表示(导学案含答案)

高一数学:函数及其表示(导学案含答案)

第一节 函数及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)函数y =ln (1-x )x +1+1x的定义域是( ) A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[答案] (1)D (2)B 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x );所以f (x )=x 2-5x +9(x ∈R).考点三 分段函数考法(一) 求函数值[典例] 已知f (x )=⎩⎪⎨⎪⎧ log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=()A .-2B .2C .3D .-3[答案] B考法(二) 求参数或自变量的值(或范围)[典例] 设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[答案] D[题组训练]1.设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________. 解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2.答案:23.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧ ⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4故选B.2.函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧ 2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74C.43 D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.下列函数中,同一个函数的定义域与值域相同的是( )A .y =x -1B .y =ln xC .y =13x -1 D .y =x +1x -1解析:选D5.已知函数f (x )=⎩⎪⎨⎪⎧ log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516 B .3C .-6364或3 D .-1516或3 解析:选A 6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( ) A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1,∴f (x )的定义域是[-1,1],∴要使函数f (2x +1)log 2(x +1)有意义, 需满足⎩⎪⎨⎪⎧ -1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .① 解析:选B 9.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案:(0,1]10.若函数f (x )=⎩⎨⎧ lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________. 答案:-211.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

1.2《函数及其表示》教案(新人教必修1)

1.2《函数及其表示》教案(新人教必修1)

课题:§1.2.1函数的概念教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P 20例1解:(略)说明:○1 函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P 22第1题2.判断两个函数是否为同一函数课本P 21例2解:(略)说明:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

函数及其表示(导)学案 (8)

 函数及其表示(导)学案 (8)

课题:1.2.2 函数的表示方法(1)一、三维目标:知识与技能:进一步理解函数的概念;使学生掌握函数的三种表示方法。

过程与方法:通过实例,使学生会根据具体问题选择合适的方法来表示两个变量之间的函数关系,并初步感知处理函数问题的方法。

情感态度与价值观:通过学习,让学生体会到生活离不开数学,激发学习兴趣,培养学生学数学用数学的意识。

二、学习重、难点:重点:函数的表示方法,根据具体问题选择合适的方法来表示两个变量之间的函数关系。

难点:函数三种表示方法的选择。

三、学法指导:在回顾初中所学函数的有关知识的基础上,认真阅读教材,通过对教材中的例题的研究,完成学习目标 。

四、知识链接:1. 回忆函数的两种定义;(设在某变化过程中有两个变量x 和y ,,如果给定了一个x 的值,相应地确定唯一的一个y 值,那么就称y 是x 的函数,其中x 是自变量,y 是因变量)。

设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。

记作:y=f(x),x ∈A .2.函数的三要素分别是什么? 3.作出下列函数的图象;(1))(1Z x x y ∈-=, (2))30(222<≤+-=x x x y五、学习过程:1、函数的三种表示方法 (1)解析法:(将两个变量的函数关系,用一个等式表示)。

举例:如222321,,2,6y x x S r C r S t ππ=++===等。

优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:(列出表格表示两个变量的函数关系):举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。

优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。

(3)图象法:(用图象来表示两个变量的函数关系)。

函数及其表示导学案

函数及其表示导学案

1.2函数及其表示1.2.1函数的概念(第1课时)【学习目标】1.理解函数的定义,了解函数的三要素,掌握运用函数定义描述具体函数关系。

2.自主学习,独立思考,合作交流,掌握求函数定义域的基本方法。

3.积极思考,体会基本数学思想,养成严谨的数学思维习惯和良好的学习习惯。

【重点、难点】重点:理解函数定义求函数定义域难点:求定义域的方法和注意事项【使用说明及学法指导】1.阅读探究课本的基础知识,自主高效预习,提升阅读自学能力;2.完成教材助读设置的问题,在理解本节内容的基础上迅速完成预习自测题;3.将预习中不能解决的问题标出来,并写在后面“我的疑惑”处。

对比初中所学函数定义,体会函数与方程的思想,数形结合思想。

一、相关知识回忆以前学习过的与本节相关的知识,做好充分的课前预习。

1.用自己的语言复述初中阶段所学习过的函数定义。

2.初中数学学习过函数的哪些相关知识y=是函数吗?。

3.依据初中所学知识24. 从工具书《现代汉语词典》、《说文解字》或网站“象形字典”等查阅“函”的字义。

(小组内一人完成)二、教材助读阅读教材15-16页,思考下列问题。

1.函数的概念是什么?2.定义域和值域的概念是什么?3.一个函数关系是由哪几部分要素构成的?★★4.教室里的学生和凳子是唯一对应关系吗?学生集合和凳子集合能构成函数关系吗?为什么?★★5.三个实例对于数集的对应关系描述方法有什么异同?三、预习自测1.在函数定义中,把自变量的取值范围叫做 , 函数值的集合叫做。

2.如果将值域集合计做C,则C和函数定义中集合B或作答)。

的关系为C B(用⊆⊇3.一个函数的构成要素包括 、 和 三部分,它们称作函数三要素。

四、我的疑惑请将你在预习中发现的问题记录下来,在课堂上与老师和同学们交流。

探究一:归纳教材中的三个实例,它们都是在研究哪些要素之间的对应关系?对于每一个实例来讲,这种对应关系确定吗?探究二:运用函数的定义描述初中学习过的一元一次函数、一元二次函数和反比例函数。

高三数学 2.1 函数及其表示学案 新人教A版 学案

高三数学 2.1 函数及其表示学案 新人教A版 学案

2.1 函数及其表示1.函数的基本概念 (1)函数的定义设A ,B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,其中所有x 组成的集合A 称为函数y =f (x )的定义域;将所有y 组成的集合叫做函数y =f (x )的值域. (3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. (5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 2.函数定义域的求法类型 x 满足的条件 2nf x ,n ∈N *f (x )≥0 1f x与[f (x )]0f (x )≠0 log a f (x )(a >0,a ≠1)f (x )>0log f (x )g (x ) f (x )>0,f (x )≠1,g (x )>0 tan f (x )f (x )≠k π+π2,k ∈Zf (g (x ))(f (x )定义域为[a ,b ]) a ≤g (x )≤b 的解集四则运算组成的函数各个函数定义域的交集 实际问题使实际问题有意义求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f (x )=x 2x与g (x )=x 是同一个函数.( × )(2)若两个函数的定义域与值域相同,则这两个函数相等.( × )(3)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( × )(4)f (x )=⎩⎨⎧ 1-x 2 -1≤x ≤1,x +1 x >1或x <-1,则f (-x )=⎩⎨⎧1-x 2 -1≤x ≤1,-x +1 x >1或x <-1.( √ )(5)函数是特殊的映射.( √ )(6)函数f (x )=x 2+3+1的值域是{y |y ≥1}.( × )1.(2014·某某)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 答案 C解析 要使f (x )=ln(x 2-x )有意义,只需x 2-x >0, 解得x >1或x <0.所以函数f (x )=ln(x 2-x )的定义域为 (-∞,0)∪(1,+∞).2.下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x答案 C解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x ); 对于D ,f (2x )=-2x =2f (x ),故只有C 不满足f (2x )=2f (x ),所以选C. 3.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,13x,x ≤0,则满足方程f (a )=1的所有a 的值组成的集合为________. 答案 {3,0}解析 当a >0时,由log 3a =1,解得a =3>0,符合题意,当a ≤0时,由(13)a=1,解得a =0,符合题意,综上所述,a =0或a =3. 4.给出下列四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数; 对于②f (x )是定义域为{2},值域为{0}的函数; 对于③函数y =2x (x ∈N )的图象不是一条直线; 对于④函数的定义域和值域不一定是无限集合.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 x ≥0-1x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1.综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列各组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 (2)下列四个图象中,是函数图象的是( )A .① B.①③④ C .①②③ D.③④ 答案 (1)A (2)B解析 (1)A 中,g (x )=|x |,∴f (x )=g (x ). B 中,f (x )=|x |(x ∈R ),g (x )=x (x ≥0), ∴两函数的定义域不同.C 中,f (x )=x +1 (x ≠1),g (x )=x +1(x ∈R ), ∴两函数的定义域不同.D 中,f (x )=x +1·x -1(x +1≥0且x -1≥0),f (x )的定义域为{x |x ≥1};g (x )=x 2-1(x 2-1≥0),g (x )的定义域为{x |x ≥1或x ≤-1}.∴两函数的定义域不同.故选A.(2)由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 题型二 求函数的解析式例2 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)(消去法)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x)=2f (x )1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,则f (x )=________.(2)(2013·某某)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)已知f (x )满足2f (x )+f (1x)=3x ,则f (x )=________.答案 (1)x 2-1(x ≥1) (2)-x x +12(3)2x -1x(x ≠0)解析 (1)设x +1=t (t ≥1),则x =t -1. 代入f (x +1)=x +2x , 得f (t )=t 2-1(t ≥1), ∴f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).(3)把题目中的x 换成1x,得2f (1x )+f (x )=3x,联立方程⎩⎪⎨⎪⎧2fx +f1x=3x , ①2f1x+f x =3x, ②①×2-②得3f (x )=6x -3x(x ≠0).即f (x )=2x -1x(x ≠0).题型三 求函数的定义域 例3 (1)函数f (x )=lnxx -1+12x 的定义域为( )A .(0,+∞) B.(1,+∞) C .(0,1) D .(0,1)∪(1,+∞)(2)(2013·大纲全国)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-1,-12)C .(-1,0)D .(12,1)答案 (1)B (2)B解析 (1)由⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=lnxx -1+12x 的定义域为(1,+∞).(2)由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为(-1,-12).思维升华 简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________. (2)函数y =lnx +1-x 2-3x +4的定义域为__________________________________. 答案 (1)[12,32] (2)(-1,1)解析 (1)因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x需要满足⎩⎪⎨⎪⎧0≤x +12≤2,0≤x -12≤2,解得:12≤x ≤32,所以函数g (x )的定义域是[12,32].(2)由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x <1.题型四 分段函数例4 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f x,f x ≤M ,M ,f x >M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2 D .- 2 答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a ,2a+2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得当x ≤-1或x ≥1时,f M (x )=2-x 2; 当-1<x <1时,f M (x )=1.∴f M (0)=1.思维升华 (1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则.(2)在求分段函数值时,一定要注意自变量的值所在的区间,再代入相应的解析式;自变量的值不确定时,要分类讨论.(1)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f (f (19))=________.(2)设函数f (x )=⎩⎪⎨⎪⎧2xx ≤0,|log 2x |x >0,则方程f (x )=12的解集为________.答案 (1)14 (2){-1,22,2}解析 (1)f (f (19))=f (log 319)=f (-2)=2-2=14.(2)当x ≤0时,解2x=12得x =-1;当x >0时,解|log 2x |=12得x =22或x = 2.所以方程f (x )=12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2.分段函数意义理解不清致误典例:已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.易错分析 本题易出现的错误主要有两个方面:(1)误以为1-a <1,1+a >1,没有对a 进行讨论直接代入求解. (2)求解过程中忘记检验所求结果是否符合要求而致误. 解析 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a , 解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a ,解得a =-34.答案 -34温馨提醒 (1)对于分段函数的求值问题,若自变量的取值X 围不确定,应分情况求解. (2)检验所求自变量的值或X 围是否符合题意求解过程中,求出的参数的值或X 围并不一定符合题意,因此要检验结果是否符合要求.方法与技巧1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 失误与防X求分段函数应注意的问题:在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值X 围的并集.A 组 专项基础训练 (时间:45分钟)1.(2014·某某)函数f (x )=1log 2x2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 由题意知⎩⎪⎨⎪⎧ x >0,log 2x 2>1,解得x >2或0<x <12.故选C. 2.设函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≤1,2x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139答案 D 解析 由题意知f (3)=23,f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=139, ∴f (f (3))=f ⎝ ⎛⎭⎪⎫23=139. 3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( )A .-2x +1B .2x -1C .2x -3D .2x +7答案 D解析 f (x )=g (x +2)=2(x +2)+3=2x +7.5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( ) A .f (x )=log 2x B .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x =-log 2x . 6.下列对应关系是集合P 上的函数的是________.(填序号)①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对集合P 中的三角形求面积与集合Q 中的元素对应.答案 ②解析 由于在①中,集合P 中的元素0在集合Q 中没有对应元素,并且③中的集合P 不是数集,从而知只有②正确.7.已知函数f (x )=log 21x +1,f (a )=3,则a =________. 答案 -78解析 由题意可得log 21a +1=3,所以1a +1=23,解得a =-78. 8.已知f (x )=⎩⎪⎨⎪⎧ 2x x ≤2,f x -2x >2则f (log 27)=________.答案 74解析 f (log 27)=f (log 27-2)=f (log 274)=27log 42=74. 9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎪⎨⎪⎧ a =12,b =12.∴f (x )=12x 2+12x . 10.某人开汽车沿一条直线以60 km/h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h 后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象.解 x =⎩⎪⎨⎪⎧ 60t 0≤t ≤52,150 52<t ≤72,150-50t -7272<t ≤132.图象如右图所示. B 组 专项能力提升(时间:15分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧ -12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值X 围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}答案 B解析 当0≤x ≤4时,f (x )∈[-8,1];当a ≤x <0时,f (x )∈[-(12)a ,-1), 所以[-12a ,-1)⊆[-8,1],-8≤-12a <-1, 即-3≤a <0.12.已知f (x -1x )=x 2+1x2,则f (3)=________. 答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x)2+2, ∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.13.已知f (x )+2f (-x )=3x -2,则f (x )=______.答案 -3x -23解析 由f (x )+2f (-x )=3x -2,①可得f (-x )+2f (x )=-3x -2,②①-②×2得,-3f (x )=3x -2-2(-3x -2)=9x +2,∴f (x )=-3x -23. 14.设函数f (x )=⎩⎪⎨⎪⎧ x 2+4x +6,x ≤0,-x +6,x >0,则不等式f (x )<f (-1)的解集是________.答案 (-3,-1)∪(3,+∞)解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3,解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞).15.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过,求行驶的最大速度.解 (1)由题意及函数图象,得⎩⎪⎨⎪⎧ 402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x 100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习过程
一、复习预习
正比例函数、反比例函数、一次函数、二次函数等的回顾
二、知识讲解
考点1 函数与映射的概念
考点2 函数的有关概念
(1)函数的定义域、值域:
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫做函数的值域.显然,值域是集合B的子集.
(2)函数的三要素:定义域、值域和对应关系.
考点3 相等函数
如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.
考点4 函数的表示方法
表示函数的常用方法有:解析法、列表法和图象法.
考点5 分段函数
若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
三、例题精析
【例题1】
【题干】(1)以下给出的同组函数中,是否表示同一函数?为什么?
①f 1:y =x
x
;f 2:y =1.②f 1:y =⎩⎨⎧
1,x ≤1,2,1<x <2,
3,x ≥2;f 2:
③f 1:y =2x ;f 2:如图所示.
(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )
A .k >1
B .k ≥1
C .k <1
D .k ≤1
x x ≤1 1<x <2 x ≥2 y
1
2
3
【答案】(1) ①不同②同③同 (2) A
【解析】(1)①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .
②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. ③同一函数.理由同②.所以f ⎝ ⎛⎭⎪⎫
f ⎝ ⎛⎭⎪⎫12=f (0)=1.
综上可知,正确的判断是(2)(3).
(2)由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.
【总结】1.判断两个变量之间是否存在函数关系的方法:要检验两个变量之间是否存在函数关系,只需检验:(1)
定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到 唯一的函数值y 与之对应.
2.判断两个函数是否为同一个函数的方法:判断两个函数是否相同,要先看定义域是否一致,若定义域一 致,再看对应法则是否一致,由此即可判断.
【例题2】
【题干】给出下列两个条件:
(1)f(x+1)=x+2x;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.
试分别求出f(x)的解析式.
【解析】(1)令t = x +1,∴t ≥1,x =(t -1)2.
则f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1(x ≥1).
(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,
∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.
∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧
a =1,
b =-1.
∴f (x )=x 2-x +3 【总结】求函数解析式的常用方法:
(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;
(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;
(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;
(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭
⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).
【例题3】
【题干】已知函数f (x )=⎩⎨⎧
2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12
B.45
C.2
D.9
【答案】C
【解析】∵x<1,f(x)=2x+1,∴f(0)=2.
由f(f(0))=4a,得f(2)=4a,∵x≥1,f(x)=x2+ax,
∴4a=4+2a,解得a=2.
【总结】解决分段函数求值问题的方法:
(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.
(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要
注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.
【例题4】
【题干】设函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >0,log 12
(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1)
B .(-∞,-1)∪(1,+∞)
C .(-1,0)∪(1,+∞)
D .(-∞,-1)∪(0,1)
【答案】选C
【解析】①当a>0时,∵f(a)>f(-a),
∴log2a>log
1
2a=log2
1
a.
∴a>1
a
,得a>1.
②当a<0时,∵f(a)>f(-a),
∴log
1
2(-a)>log2(-a)=log
1
2
1
-a.
∴-a<1
-a
得-1<a<0,故C项为正确选项.
四、课堂运用
【基础】
1.下列各组函数中,表示相等函数的是()
A.y=5
x5与y=x2
B.y=ln e x与y=e ln x
C.y=(x-1)(x+3)
x-1
与y=x+3
D.y=x0与y=1 x0
2.已知函数f (x )=⎩⎨⎧
2x -2,x ≥0,lg (-x ),x <0,则f (f (-10))=( ) A.12
B.14 C .1
D .-14
3.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为()
A.f(x)=x2-12x+18 B.f(x)=1
3x
2-4x+6
C.f(x)=6x+9 D.f(x)=2x+3
【巩固】
4.已知f ⎝ ⎛⎭
⎪⎫x -1x =x 2+1x 2,则函数f (3)=________.
⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x的取值范围是________.
5.已知函数f(x)=


【拔高】
6.已知f (x )=⎩⎪⎨⎪⎧ x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,
且f (a )=3,求a 的值.
7.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)解不等式f(x)>2x+5.
课程小结。

相关文档
最新文档