雷达发射机主要指标
发射机的指标测量

发射机的指标测量一、参考资料●GB/T 12192—1990 移动通信调频无线电话发射机测量方法●GB/T 15844.1 移动通信调频无线电话机通用技术条件●GB/T 15874—1995 集群移动通信系统设备通用规范●《通信技术标准汇编(移动通信卷)》二、测量条件1、国标要求的条件国标对指标测量条件作了详细的规定,大致有以下方面。
●被测设备安装完整性●基本电源的标准条件●标准大气条件●测量场所、被测设备和测量工具的电磁屏蔽条件●测量仪器的精度●辅助测量设备的工作状况2、现有测量条件:●被测设备可能由于实时调试需要而未按规定安装完整,容易引入外界无线电干扰。
●应用由市电供电的直流稳压电源,交流市电源未经滤波稳压等净化处理,可能引进各种频段的干扰。
●由于缺乏电磁屏蔽室,整个测量过程只能暴露在存在各种电磁干扰的环境中进行,可能导致测量结果稍偏低于实际值。
●测量仪器主要有综测8920A、频谱仪8560E和失真度测量仪,对某些指标只能作近似测量或者对比测量。
●辅助测量设备主要是连接线、衰减器、耦合器,尽量其工作状态良好。
三、主要指标1、射频输出阻抗2、信道间隔3、工作频段4、频率误差5、输出载波功率6、输入功率与总效率7、音频失真8、频率稳定度9、调制灵敏度10、调制限制11、调制特性(音频相应)12、剩余调频13、邻道功率(邻道发射)14、杂散射频分量(杂波发射、杂散抑制)15、剩余调幅16、高调制频率时的发射频偏17、杂散噪声18、平均辐射载波功率19、发射机之间的互调20、共址多信道发射隔离21、相对音频互调产物电平22、发射机启动时间23、平均无故障工作时间四、部分主要指标的测量方法根据以往的设备送检报告、南京厂验,针对性地对发射机(由发射模块和功放模块连接构成的大功率发射机)的主要指标中的射频输出阻抗、信道间隔、工作频段、频率误差、输出载波功率、输入功率与总效率、音频失真、频率稳定度、调制灵敏度、调制限制、调制特性、剩余调频、邻道功率、杂散射频分量这14个指标进行了详细测量,其余9个主要指标的测量将在日后陆续跟进。
全固态雷达发射机的使用分析

全固态雷达发射机的使用分析摘要随着电子元器件的不断升级发展与应用,我们已经使用了大量的全固态雷达发射机,全固态雷达发射机凭借它的众多优点取代了真空管雷达发射机。
同时随着电子元器件制造技术与工艺等方面的发展,全固态雷达发射机将继续进一步发展。
本文简单介绍了全固态雷达发射机的组成及其特点,并对全固态雷达发射机的故障监控、故障检测、信号测试方法等进行了论述。
关键词全固态雷达发射机;故障维修;电子元器件引言雷达发射机是为雷达系统提供射频发射信号,并将低频交流能量转换成高频率和大功率射频信号,然后经天馈线系统传输到天线并辐射到空间的设备。
其一般由调制器、荡源和功率放大器等组成。
在真空管雷达发射机中,主要器件都是由磁控管、真空管、闸流管等电子器件组成的。
随着晶体管电路的发展和应用,组成发射机的这些真空管器件逐步被晶体管代替。
因晶体管又被称为全固态器件,所以当发射机全部采用晶体管作为微波振荡源和放大器等组成发射机电路时,就被称为全固态雷达发射机。
由于发射机是雷达系统中最难实现全固态化的子系统,因此,雷达发射机全固态化以后,便实现了使整个雷达系统的全固态化,这样便减轻了系统的体积与重量,可大大提高雷达系统的可靠性与机动性。
1 全固态雷达发射机的介绍早期的全固态雷达发射机主要在HF、VHF和UHF波段工作。
但随着全固态雷达发射机的成熟应用和雷达系统的实际使用需求,其工作频段已逐步扩展至L波段和S波段。
全固態雷达发射机一般由前级放大器、末级功率放大器、功率分配器/合成器、电源、控保、冷却和监测指示电路等部分组成。
全固态雷达发射机目前基本上分为两大类:一类是采用高功率的、集中放大式的雷达发射机;第二类是采用分布式的有源相控阵雷达发射机。
前者一般用于要求具有高功率输出的单一天线发射的雷达系统;后者主要用于新型的有源相控阵雷达,此类雷达发射机的广泛应用,使雷达系统获得了更长的寿命、更高的可靠性,同时大大降低了雷达设备的维护、维修成本。
雷达发射机主要指标

雷达发射机的主要质量指标
1.雷达工作频率RF 天线面积不变时,雷达检测目标的最大作用距离1224max
2min
[]4t r i P A RF R c S σπ= 即雷达作用距离max R 正比于1/2RF
目前参考使用的发射频率为L 波段、S 波段;期望的发射频率为C 波段
2.输出功率
脉冲雷达发射机的输出功率分为峰值功率t P 和平均功率av P ① 波段工作的发射机,结合我们需要的雷达最大作用距离,可定出我们需要的整个波段中输出功率的最低值。
即确定max RF 、max R 之后,1224max 2min
[]4t r i P A RF R c S σπ=计算出的t P (峰值功率)为最低值。
② 平均功率最少应为峰值功率的0.1倍。
尚需确定的参数1.根据我们需要测量的最大作用距离确定发射机波段
2.波段确定后即可定出我们需要的最低峰值功率。
雷达原理及测试方法

雷达原理及测试方案1雷达组成和测量原理雷达(Radar)是RadioDetectionandRanging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。
1.1雷达组成1.2雷达测量原理1)目标斜距的测量图3雷达接收时域波形在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×tr式(2)式中c=3×108m/s,tr为来回传播时间2)目标角位置的测量目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。
雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。
回波的角位置还可以用测量两个分离接收天线收到信号的相位差来决定。
3)4)max t e min式中Pt 为发射机功率,G为天线增益,Ae为天线有效接收面积,σ为雷达回波功率截面积,Smin为雷达最小可探测信号。
雷达方程可以正确反映雷达各参数对其检测能力影响的程度,不能充分反映实际雷达的性能。
因为许多影响作用距离的环境和实际因素在方程中没有包括。
1.4雷达分类军用雷达主要分类:不能满足复杂雷达信号测试需求。
更为重要的是,雷达在实际工作过程中接收到的信号并不是纯净的发射回波,它包含各种杂波和多普勒效应,特别是在地形复杂或海面各种时,接收机接收到的杂波比需要探测的物体回波大的多,而这一切目前没有通用测量设备来生成雷达接收机所接收到的实际波形。
因此各个雷达研制单位投入大量人力、物力研制各种雷达模拟器,但这些模拟器往往受各种设计因素影响,只是实际雷达波形的简化,并只考虑到典型的应用,对复杂的应用环境无法模拟。
这样无法及时发现雷达研制和使用过程中问题和隐患。
天气雷达的基本工作原理和参数

WSR-
88
D
基 本 数 据 产 品
相对于风暴的 平均径向速度产品图(SRM)
与基本速度产品类似,只不过减去了由风暴 跟踪信息(STI)识别的所有风暴的平均运动速 度, 或减去由操作员选定的风暴运动速度。
(a)
(b)
(a)3.4度仰角
(b)14.9度仰角
2004年4月23日 长沙12:37时风暴相对径向速度图 (基本速度减去风暴的平均移动速度后得到的)
主用户处理器子系统(PUP)
• 多屏、多画面显示气象应用产品图形图 像功能 • 具有放大、动画、叠加等多种图像显示 功能 • 通过人机交互方式设置系统运行模式和 产品生成
多普勒天气雷达的产品介绍
新一代天气雷达系统的产品应用可 分为四类: 1. 基本数据产品 2. 物理量产品 3. 风场反演产品 4. 强天气自动识别和跟踪产品
2001年8月7日14:45反射率因子剖 面产品 (上海)
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26 中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
多普勒效应 多普勒效应是奥地利
物理学家 J.Doppler1842年 首先从运动着的发声 源中发现的现象,定 义为“当接收者或接 收器与能量源处于相 对运动状态时,能量 到达接收者(器)时 频率的变化”。
窄波束低旁瓣的天线
雷达原理

4
雷达原理
2.4 固态发射机
• 固态发射机发展概况和特点
– 逐步替代常规微波电子管发射机,优点如下 • 寿命长、可靠性高 • 体积小、重量轻 • 工作频带宽、效率高 • 系统设计和运用灵活、维护方便, 成本较低
– 平均功率大而峰值功率受限,适用于高工作比 雷达,如连续波雷达
– 在 UHF ~ L 波段发展较快
• 雷达的基本概念
– 利用电磁波的二次辐射、转发或目标固有辐射 来探测目标,获取目标空间坐标、速度、特征 等信息的一种无线电技术,相应的设备称为雷 达站或雷达机,简称雷达
– 二次辐射:反射(单基地)、散射(多基地)
– 转发:二次雷达(导航)
– 固有辐射:通信及雷达信号(被动/无源)、随 机热运动电磁辐射(导引头)
雷达原理
1.1 雷达的概念
• 雷达信号处理
– 目标信号总是被淹没于 杂波(+干扰)+ 噪声
的背景中 – 杂波及干扰强度往往超过目标信号的千万倍 – 信号处理作用
• 增强待测目标信噪比,提取目标参数 • 抑制杂波和干扰信号
雷达原理
1.2 雷达探测原理
• 雷达回波中的可用信息
– 斜距 R ( Rmax 可由雷达方程估算)
• 总效率
– 发射机输出功率与其输入总功率之比 – 对主振放大式发射机应改善输出级的效率
雷达原理
2.2 雷达发射机电性能指标
• 信号形式(调制形式)
– 不同信号形式对发射机的要求各异
波形 简单脉冲 脉冲压缩 高工作比多卜勒
调制类型 矩形调幅
线性调频、相位编码 矩形调幅
工作比(占空比)% 0.01 ~ 1 0.1 ~ 10 30 ~ 50
雷达原理第 章 雷达发射机

第2章 雷达发射机
单级振荡式发射机与主振放大式发射机相比,最大的优点 是简单、经济, 也比较轻便。实践表明, 同样的功率电平, 单级 振荡式发射机大约只有主振放大式重量的1/3。因此, 只要有可 能, 还是尽量优先采用单级振荡式方案。但是, 当整机对发射机 有较高要求时, 单级振荡式发射机往往无法满足而必须采用主 振放大式发射机。
冲重复周期为Tr, 则有
Pav Pt Tr
Ptfr
式中的fr=1/Tr是脉冲重复频率。τ/Tr=τfr称作雷达的工作比D。 常
规的脉冲雷达工作比的典型值为D=0.001, 但脉冲多卜勒雷达的
工作比可达10-2数量级, 甚至达10-1数量级。显然, 连续波雷达的
D=1。
第2章 雷达发射机
3. 总效率
电源输出端还需要有一个电容, 以尽量减小脉冲负载对电源的影响。
12
在滤主波振 、放注大入式稳发频射及机锁中相稳, 如频前等所措述施, 载, 所频以的能精够度得和到稳很定高度的在频低T率r电稳平定级度决。定, 较易采取各种稳频措施, 例如恒温、t 防震、稳压以及采用晶体
3 单级振荡和主振放大式发射机
信号的稳定度或频谱纯度
…
NkF
图 2.9 采用频率合成技术的主振放大式发射机
第2章 雷达发射机
图2.9是采用频率合成技术的主振放大式发射机的原理方框 图, 图中基准频率振荡器输出的基准信号频率为F。在这里, 发射 信号(频率f0=NiF+MF)、稳定本振电压(频率fL=NiF)、相参振荡 电压(频率fc=MF)和定时器的触发脉冲(重复频率fr=F/n)均由基准 信号F经过倍频、分频及频率合成而产生, 它们之间有确定的相 位相参性, 所以这是一个全相参系统率 F 振荡器
雷达基本理论与基本原理

雷达基本理论与基本原理一、雷达的基本理论1、雷达工作的基本过程发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。
向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。
2、雷达工作的基本原理一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。
目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。
如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。
该频率的漂移与目标相对于雷达的速度成正比,根据2rd v f λ=,即可得到目标的速度。
3、雷达的主要性能参数和技术参数 雷达的主要性能参数 雷达的探测范围雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。
测量目标参数的精确度和误差精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。
分辨力指雷达对两个相邻目标的分辨能力。
可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。
距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2c R τ∆=。
因此,脉宽越小,距离分辨力越好数据率雷达对整个威力范围完成一次探测所需时间的倒数。
抗干扰能力指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。
雷达可靠性分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。
体积和重量体积和重量决定于雷达的任务要求、所用的器件和材料。
功耗及展开时间功耗指雷达的电源消耗总功率。
展开时间指雷达在机动中的架设和撤收时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
. 雷达发射机的主要质量指标
1.雷达工作频率RF 天线面积不变时,雷达检测目标的最大作用距离1224max
2min
[]4t r i P A RF R c S σπ= 即雷达作用距离max R 正比于1/2RF
目前参考使用的发射频率为L 波段、S 波段;期望的发射频率为C 波段
2.输出功率
脉冲雷达发射机的输出功率分为峰值功率t P 和平均功率av P
① 波段工作的发射机,结合我们需要的雷达最大作用距离,可定出我们需要的
整个波段中输出功率的最低值。
即确定max RF 、max R 之后,1224max 2min
[]4t r i P A RF R c S σπ=计算出的t P (峰值功率)为最低值。
② 平均功率最少应为峰值功率的0.1倍。
尚需确定的参数1.根据我们需要测量的最大作用距离确定发射机波段
2.波段确定后即可定出我们需要的最低峰值功率。