第2章 构件的受力分析
建筑力学受力分析-PPT

约束反力的方向必与该约束所能够阻碍的位移方向相反,大
小通常是未知的。
大家好
5
工程中常见的几类 约束
1. 具有光滑接触表面的约束
● 约束特征:
只限制物体沿 公法线趋向于支承 面方向的运动
齿轮传动
凸轮传动
大家好
6
● 反力特征: 方位:沿接触处的共法线 指向:指向物体(物体受压)
FNC
FNB
C
A B
FNA
物体的受力分析
确定物体受了几个力,每个力的作用位置和力的作用方向。
主动力与被动力
主动力:促使物体运动或有运动趋势的力,其大小和方向 都已知。如重力、水压力等。
被动力:由主动力引起并随其变化的力,其大小和方向都 不知。如约束反力。
受力图——施力物体对研究对象的所有作用力的简图。
大家好
29
例题1
A
C
B
(3)力的作用点。
F
F0
可用一矢量表示F F = F F0
(定位矢量或固定矢量)
力的单位
N(大牛家好顿)、kN(千牛) 4
§2-1 约束和约束反力
自由体 —— 位移不受限制的物体。 非自由体 —— 位移受到限制的物体。
★ 约束:对非自由体的某些位移起限制作用的周围 物体称为约束。
★ 约束反力
约束对非自由体施加的力——约束反力
建筑力学
第二章 结构计算简图 物体受力分析
大家好
1
§2-0 刚体和力的概念
1. 刚体的概念
在力的作用下,其内部任意两点之间的距离始终保 持不变。
刚体是抽象化的力学模型
基础力学I研究的物体都是刚体 刚体力学
静力学——刚体静力学
第2章 杆件的内力分析

第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。
(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。
思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。
(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。
(6) 分布载荷q(x)向上为负,向下为正。
(7) 最大弯矩或最小弯矩必定发生在集中力偶处。
(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(9) 剪力图上斜直线部分可以肯定有分布载荷作用。
(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。
A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。
A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。
汽车构件的受力分析教案

汽车构件的受力分析教案第一章:汽车构件受力分析概述1.1 学习目标1. 了解汽车构件受力分析的重要性。
2. 掌握汽车构件受力分析的基本概念。
3. 理解汽车构件受力分析的基本原理。
1.2 教学内容1. 汽车构件受力分析的意义。
2. 汽车构件受力分析的基本概念。
3. 汽车构件受力分析的基本原理。
1.3 教学活动1. 引入汽车构件受力分析的话题,引导学生思考汽车构件受力分析的重要性。
2. 讲解汽车构件受力分析的基本概念,通过实例进行解释。
3. 讲解汽车构件受力分析的基本原理,通过图示和模型进行演示。
1.4 作业与评估1. 布置作业:要求学生绘制一辆汽车的构件受力分析图。
2. 评估方式:教师根据学生的作业完成情况进行评估。
第二章:汽车构件受力分析的基本方法2.1 学习目标1. 掌握汽车构件受力分析的基本方法。
2. 学会应用基本方法进行汽车构件受力分析。
2.2 教学内容1. 汽车构件受力分析的基本方法。
2. 应用基本方法进行汽车构件受力分析的步骤。
2.3 教学活动1. 讲解汽车构件受力分析的基本方法,通过实例进行解释。
2. 引导学生进行实际操作,应用基本方法进行汽车构件受力分析。
2.4 作业与评估1. 布置作业:要求学生应用基本方法进行汽车构件受力分析,并绘制受力分析图。
2. 评估方式:教师根据学生的作业完成情况进行评估。
第三章:汽车构件受力分析的实例分析3.1 学习目标1. 学会分析汽车构件受力实例。
2. 掌握分析结果的应用。
3.2 教学内容1. 汽车构件受力实例分析。
2. 分析结果的应用。
3.3 教学活动1. 提供几个汽车构件受力实例,引导学生进行分析。
2. 讲解如何应用分析结果,以优化汽车构件设计。
3.4 作业与评估1. 布置作业:要求学生选择一个汽车构件受力实例进行分析,并提出优化设计建议。
2. 评估方式:教师根据学生的作业完成情况进行评估。
第四章:汽车构件受力分析的软件应用4.1 学习目标1. 了解汽车构件受力分析软件的应用。
化工机械基础 第2章 构件受力分析与平衡理论教材

力矩 Mo F h
力偶对点之矩
Mo (F ) Mo (F) F a F b F (a b) Fd
力偶对物体的作用效应,决定于: ① 力偶矩的大小; ② 力偶在其作用面内的转向。
5)力偶与力矩的区别
相同点:都使物体产生转动。
不同点:力矩与矩心有关; 力偶与矩心无关。
作用在物体上同一点的两个力,可以合成为
作用于该点的一个合力,它的大小和方向由这
两个力为边所构成的平行四边形对角线来表示。
F2
R
即:合力为原两力的矢量和。
矢量表达式:R= F1+F2
A
F1
推论 (三力汇交定理)
当刚体在三个力作用下平衡时,设其中两力的
作用线相交于某点,则第三力的作用线必定也通过
这个点。
➢力又是矢量,其实际的计算很繁杂;
➢常用的方法有两种,即作图法与解析法。
例:
方法特点: 作图法:简单、精确度不高。 解析法:精确、计算也不复杂。
(1) 图解法
1)合成的几何法:
F1 A
F2 F4 F3
表达式: R F1 F 2F3 F4
2)力的多边形规则:
把各力的矢量首尾相接,形成一条有向折线段
Q Ny M
Nx
2.4 受力分析与约束力的求解
分离体:设想将研究对象受到的约束全部
解除,将其从系统中分离出来成为所谓的 分离体。
受力图:画有分离体及其所受的全部主动 力和约束力的简图称为受力图。
解除约束原理:
为了清楚地表示给定物体的受力情 况,假设将约束解除,而以相应的约束 力来代替约束的作用。
证明:
F1
A1 A A2
F2
=
第02章构件的内力分析2讲义

2020/7/30
材料力学
14
第2章 结束
作业: 2-1 2-3 2-5
2-10 2-12 2-18 (a) (c) (f)
2-38 (c) (f) 2-47 2-20 (a) (f)
x
a
0
0 1
x a ax
3. 定义n=-1时,x-a-1为单位脉冲函数,即函数。
4. 定义n=-2时,x-a-2为单位偶极函数。
5. 规定 x x a n dx 1 x a n1 n 0
n 1
奇异函数的积分: 按一般指数函数 进行积分运算
x x a 2 dx x a 1 x x a 1 dx x a 0
2020/7/30
材料力学
2
例11 平面刚架由竖杆AB和横杆BC在B点刚性连接而 成。试分析刚架的内力,并作内力图。
解:(1) 求支座反力
Fx 0, FAx qa
1
Fy 0,
FAy
qa 2
1
M A (F ) 0,
FCy
qa 2
2020/7/30
材料力学
3
(2) 求内力
杆BC的内力:从C端开始截取
2.4 刚架和曲杆的内力
1. 刚架:
由直杆刚性地连接起来的结构。
2. 平面刚架:
杆件和载荷都在同一平面内。
3. 刚节点: 杆件间的刚性连接
受力变形时,节点处杆件间的夹角保持不变。 与铰接点不同,刚节点可以传递力和力矩。
2020/7/30
材料力学
1
2.4 刚架和曲杆的内力
4. 刚架内力: 轴力、扭矩、剪力和弯矩。
2020/7/30
材料力学
8
二、奇异函数Fn(x)图像 1. x-a-2 单位偶极函数
第二章平面构件受力分析

第二章平面构件受力分析一判断题1. 加减平衡力系公理一般不适用于一个变形体。
(√)2. 合力一定比分力大。
(×)3. 约束力的作用位置在约束与被约束物体的相互接触处。
(√)4. 汇交力系中各个力的作用点为同一点。
(×)5. 力偶不能够合成为一个力,也不能用一个力来等效替代。
(√)6. 平面汇交力系中各力在任意轴上投影的代数和分别等于零,则该力系平衡。
(√)7. 在应用平面汇交力系的平衡方程解题时,所选取的两个投影轴必须相互垂直。
(×)8.作用在同一物体上的作用力和反作用力,两力的大小相等,方向相反,沿着同一直线上。
(×)9.力的平衡条件是:大小相等,方向相反,作用在同一物体上。
(×)10.光滑接触面的约束反力方向是沿接触面法线方向而指向物体。
(√)11.固定铰链支座的约束反力方向一般是不固定的。
(√)12.作用在物体上的力,向一指定点平行移动必须同时在物体上附加一个力偶。
(√) 13.力偶可以在作用面内任意移动,而不改变它对刚体的作用效果。
(√)14.三个力作用下处于平衡状态,其中两个力的作用线汇交于一点,则第三个力的作用线必通过该点。
(√)二、选择题1. 用解析法求平面汇交力系的合力时,若选取不同的直角坐标系,所求得的结果( A )A . 相同B . 不同2. 某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的关系为( C )。
A.R A<R BB.R A>R BC.R A=R B3.可任意旋转,又可任意移动而不改变其作用效果的是( D )A 力B 某点的矩C 力偶D 力偶矩4.作用在同一物体上的两个力,若其大小相等,方向相反,则它们( C )A 只能是一对平衡力B 只能是一个力偶C 可能是一对平衡力或一个力偶D 可能是一对作用力和反作用力5.属于力矩作用的是( D )A 用丝锥攻螺纹B 双手握方向盘C 用螺丝刀扭螺钉D 用扳手拧螺母6.平面汇交力系可等价于( A )A 一个合力B 一个合力偶C 一个合力和一个合力偶D 一个分力7.作用力和反作用力应是( C )。
第二章 杆件的静力分析 复习资料(学生)

第二章杆件的静力分析复习资料一、力的概念1、力是使物体的运动状态发生变化或使物体产生变形的物体之间的相互机械作用。
2、力的三要素:、和。
当这三个要素中任何一个改变时,力对物体的作用效应就会改变。
3、力是一个既有又有的矢量。
在国际单位制中,力的单位用(牛)或(千牛)表示。
二、力的基本性质1、作用与反作用定律一个物体对另一个物体有一作用力时,另一物体对该物体必有一个反作用力。
这两个力相等、相反、作用在上,且分别作用在上。
2、二力平衡公理作用于某刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力、,且上。
作用于刚体上的力,可以沿其移动到该刚体上的,而它对刚体的作用效果。
3、力的平行四边形法则作用在物体上同一点的两个力,其合力也作用在该点上,合力的和由这两个力为邻边所作平行四边形的确定。
4、力的分解1)工程中常将作用力分解为沿方向的分力和方向的分力。
2)在人拉车相同力的情况下,越小,拉车的效果越明显,是因为起到拉车的作用,起到减少车与地面正压力的作用。
3)当物体沿水平方向运动时,常将力分解为沿方向和方向;当物体沿斜面运动时,常将力分解为方向和方向。
三、力矩1、力对物体的作用效应,除 外,还有 。
2、在力学上用F 与d 的乘积及其转向来度量力F 使物体绕O 点转动的效应,称为力F 对O 点之矩,简称 ,以符号M0(F )表示。
O 为力矩中心,简称 ;O 点到力F 作用线的垂直距离d 称为 。
Fd F o ±=)(M3、正负号表示两种不同的转向,规定使物体产生 旋转的力矩为正值;反之为负值。
4、力矩的单位是 (牛·米)或 (千牛·米)5、提高转动效应的方法:一方面可以 ,更有效的办法是 。
6、力矩原理的应用: 、 、 等四、力偶1、力学中,把作用在同一物体上 、 、 的一对平行力称为力偶,记作(F 1,F 2),力偶中两个力的作用线间的距离d 称为,两个力所在的平面称为力偶的作用面。
工程力学基础第2章 静力学的基本概念和受力分析

(二)常见约束的约束力性质
图2-33
(二)常见约束的约束力性质
几个构件固连在一起的连接处称为刚接点,构件之间的夹角保 持不变,如曲杆的拐角处。刚接点处的约束与固定端相似。 固定端与光滑铰链都是刚性铰,可以看做是柔性铰的两种极限 情况。在通常情况下,将构件的连接简化为刚性铰进行分析计 算,得到的结果就可以满足工程的要求。更精确的分析则要求 采用复杂的柔性铰模型,如机器人的柔性关节(图2-34
(二)常见约束的约束力性质 1 柔索 柔索指不计自重的、不可伸长且无限柔软的细长物 体。
图2-15
(二)常见约束的约束力性质
图2-16
(二)常见约束的约束力性质 2 光滑接触面 光滑接触面指摩擦阻力可以忽略不计的两物 体的刚性接触面。
图2-17
(二)常见约束的约束力性质
图2-18
(二)常见约束的约束力性质
(二)分离体和受力图
在进行受力分析时,为了清晰和便于计算,需要把研究对象从 其周围物体中分离出来,画出其简图,单独地考察它,这种被 解除了约束的物体就称为分离体或自由体;然后,将分离体所 受的全部力,包括主动力和约束力,以力矢的形式画在简图上, 这种图形称为分离体的受力图或自由体图。受力图形象地表示 了研究对象的受力情况。 解除约束原理:受约束的物体在某些主动力和约束的作用下处 于平衡状态,若将其部分或全部约束除去,代之以相应的约束 力,则物体的平衡不受影响。
图2-29
(二)常见约束的约束力性质 6 固定端和转动约束 固定端是一种常见的约束类型,其结 构特点为被约束体的一部分固嵌于约束体内,如车床上固定工 件的卡盘和固定刀具的刀架,固定电线杆和建筑物立柱的混凝 土地基,固定雨篷的墙壁等,如图2-30所示。
图2-30
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力偶的特征2
同平面内力偶的等效定理:同平面内两力偶 等效是力偶矩相等。 由定理得到推论: 任一力偶可以在它的作用面内任意移转 而不改变它对刚体的作用,因此力偶对刚体 的作用与力偶在作用面内的位置无关。 只要保持力偶的大小和力偶的转向不变, 可以同时改变力偶中力的大小和力偶臂的长 短而不改变力偶对刚体的作用。
(1)固定铰链支座约束
固定铰链支座约束
(2)活动铰链支座约束
活动铰链支座约束简图
(3)固定端约束
固定端约束
固定端约束简图
2.2.3刚体的受力分析与受力图 刚体的受力分析与受力图
作用在物体上的力可分为二大类: 主动力:重力、压力、风等; 被动力:约束反力 画受力图:确定研究对象,把施力物体对研 究对象的作用力全部画出(主动力和约束反 力),这种表示物体受力的简明图形,称为 受力图,画受力图是解决静力学问题的一个 重要步骤。
示意图
2.5平面一般力系的简化和平衡 平面一般力系的简化和平衡
2.5.1平面一般力系的简化 平面一般力系的简化 平面一般力系的简化是基于三点已熟知的力 学规律: 学规律: (1)平面汇交力学可以用一个力等效代替; (2)平面内的力偶系可以用一个合力偶等效 代替; (3)一个力可以向任何点平移,平移后的力 和产生的附加力偶可以等效代替原来的力。
=
m ( F , F ' ) = M 0 ( F ) + M 0 ( F ' ) =F ( x + d ) − F ' x =Fd (逆时针)
m ( F , F ' ) = − Fd (顺时针)
2.4.3力的平移 力的平移
力的平移定理:作用在刚体上的力矢F,可 以平移到任一新的作用点,但必须同时附加 一力偶,此附加力偶的力偶矩等于原力F对 于其新作用点的力矩,转向取决于原力绕新 作用点的旋转方向(同向)。 一个力可用一个与之平行且相等的力和一个 附加力偶来等效代替。
2二力平衡定律(可消性)
作用在刚体上的两个力,使刚体处于平衡的 必要和充分条件是:这两个力的大小相等、 方向相反,且在同一直线上。
r r F1 = − F2
只适用于刚体 二力构件和二力杆:二力杆件不一定是直杆, 可以是各种形状的构件,满足二力平衡条件
二力杆件(AB)
二力杆件(DC 、 BC)
3加减平衡力系定律
Ry = F1 y + F2 y + F3 y + F4 y
2 R = Rx2 + Ry
θ = tan −1
Ry Rx
2.3.2平面汇交力系的平衡条件 平面汇交力系的平衡条件
平面汇交力系平衡的充要条件: 该力系的合力等于零(解析法);
u r n uu r R = ∑ Fi
i =1
在平衡情况下,力多边形中最后一力的终点 与第一个力的起点重合,此时的力多边形为 封闭的力多边形(作图法)。 简言之:该力系的力多边形是封闭的
2.3.1平面汇交力系的简化 平面汇交力系的简化
目的:求平面汇交力系的合力(简化) 方法: 1.几何作图法 2.解析法
几何作图法
(1)两力合成(F1与F2) 利用力的平四边形规则 方法:分力矢F1和F2沿环绕三角形边界的 某一方向首尾相接,而合力R则沿反方向, 从起点指向最后一个分力的末端。
任意个共点力的合成
平面一般力学的平衡条件:力系的主矢和对 任一点的主矩都等于零。
uu r u r R = 0即R ' = 0
R =
'
(∑ X ) + (∑Y )
2
2
=0
M 0 = m0 ( F1 ) + m0 ( F2 ) + m0 ( F3 )
可表述为:Leabharlann ∑X =0 ∑Y = 0 ∑M (F ) = 0
0
(力系中各力对平面内任意点的力矩之和均等于零)
力偶的特征3
平面力偶系的合成和平衡条件 : 在物体的 同一平面内作用有两个以上的力偶,这些力 偶对物体的作用可用一个力偶来等效替代, 可合成性。 在同平面内的任意力偶可合成一个合力偶, 合力偶等于所有力偶矩的代数和。
m = ∑ mi = m1 + m2 + m3 +
i =1 n
平面力偶系平衡的充要条件:
例
刚架自身重力不计,AC上作用载荷,画出 AC、BC及刚架整体的受力图
解题步骤:
解题步骤
解题步骤
解题步骤
画受力图的步骤: 画受力图的步骤
(1)简化结构,画结构简图; (2)选择研究对象,画出作用在其上的全部 主动力; (3)根据约束性质,画出作用于研究对象上 的约束反力。
例2-1
例2-2
2.2.1约束与约束反力 约束与约束反力 自由体:位移不受限制的物体。 非自由体:位移受限制的物体。 约束阻碍物体的位移,也就是约束能起到改变 物体运动状态的作用,所以约束对物体的作用,实 际上就是力,这种力称为约束反力,简称为反力。 特征: 约束反力的方向必须与该约束所能够阻碍的运 动方向相反; 约束反力的大小未知。
可求解三个未知量
对平行力系:
∑Y = 0
或
∑X =0
∑M (F) = 0
柔性约束示意图
2光滑接触面(线)约束
忽略摩擦,理想光滑 特点:只受压,不受拉,沿接触点处的公法 线而指向物体,一般用N表示。又叫法向反 力。
光滑接触面示意图(1)
光滑接触面示意图(2)
光滑接触面示意图(3)
3铰链约束
约束类型:向心轴承、铰链和固定铰链 特点:只限制物体的径向的相对移动,而不 限制两物体绕铰链中心的相对转动。
2.3平面汇交力系 平面汇交力系
按作用线是否在同一平面内,可分为平面力 系和空间力系; 平面力系按是否相交,可分为平面汇交力系、 平面平行力系(诸力平行)和平面任意力系 (既不汇交也不平行) 比较简单的力系是平面汇交力系 平面汇交力系:指各力的作用线都在同一平 面内,且汇交于一点的力系 本节就讨论平面汇交力系
矢量加法
可合性
u r uu uu r r R1 = F1 + F2 u uu uu r r r R = R1 + F3
可分性
u uu uu r r r P = Px + Py
5刚化原理(可传性)
变形体在某力系作用下处于平衡,如将此变 形体刚化为刚体,则平衡状态保持不变。
2.2约束、约束反力与受力图 约束、 约束
力矩(力对点的矩) 力矩(力对点的矩)
M 0 ( F ) = ± Fd
力矩在两种情况下等于零: 力等于零(F=0); 力的作用线通过矩心(d=0)
合力矩定理
平面汇交力系的合力对平面内任一点的矩等 于所有各力对该点的矩的代数和。 力矩的作用效果: 有固定轴时,产生转动;无固定轴时, 不会产生纯转动。
刚体受力分析的要点:
要有明确的研究对象。根据解题的需要可取单个物体为研究对 象,也可取几个物体组成的系统为研究对象,对象不同,受力 图不同; 受力分析画的是受力图,不是施力图,在画受力图时研究对象 受到的外力一个不能少,研究对象对其它物体的作用力一个不 能画; 除力场外(重力、磁力等),只有直接与研究对象接触的物体 才有力的作用; 约束反力的画法只取决于约束的性质,不要考虑刚体在主动力 作用下,企图运动的方向; 画约束反力时,重要的是确定力线方位,力的指向在无法判定 时可任意假定; 要充分利用二力杆件定理和三力汇交定理来确定力线的方位, 不能确定时可用两个正交分力代替该力。
在已知力系上加上或减去任意的平衡力系, 并不改变原力系对刚体的作用。 这个公理对于研究力系的简化问题很重要 根据这个公理可导出的2个推论:
推理1:力的可传性
作用在刚体上某点力,可以沿着它的作用线 移到刚体上的任意一点,并不改变该力对刚 体的作用。 对刚体而言,力的作用点已不是决定力的作 用效果的要求,已被作用线所代替。
推理2:三力平衡汇交定理
作用在刚体上三个相 互平衡的力,若其中 两个力的作用线汇交 于一点,则此三力必 在同一平面内,且第 三个力的作用线通过 汇交点。
uu uu uuu r r r F1 + F2 = F1,2
uu r uur F3 = − F12
4力的平行四边形法则(可分性、可合性)
作用在物体上同一点的两个力,可合成为一 个合力,合力的作用点也在该点,合力的大 小和方向,由这两个力为边构成的四边形的 对角线确定,合力矢等于这两个力矢的几何 和。
2.1静力学的基本概念 静力学的基本概念
2.1.1力的概念 力的概念 刚体与变形体 力:物体间相互的机械作用,这种作用使物 体的机械运动状态发生变化。 力的运动效应,由理论力学研究 力的变形效应,由材料力学研究 力的三要素:大小,方向,作用点
2.1.2力学公理 力学公理
1作用与反作用定律(成对性) 作用与反作用定律(成对性) 作用与反作用定律 作用力与反作用力总是同时存在,两力 的大小相等、方向相反、沿同一作用线分别 作用在两个相互作用的物体上。 两个力是分别作用在两个物体上,不能 认为作用力和反作用力相互平衡,组成平衡 力系。
所有各力偶的代数和等于零 力偶矩是代数量,其绝对值等于力的大小与 力偶臂的乘积,正负号表示力偶的转向。
m = ∑ mi = 0
i =1
n
力偶的作用效果
改变物体的转动状态(不需固定转轴或支点 等辅助条件) 力偶对物体的转动效果可用力偶的两个力对 其作用面内某点的矩的代数和来度量。 见P25图2-25
本章的研究对象
刚体:在力的作用下,其内部任意两点之间 的距离保持不变(不发生任何变形) 这是理想化的力学模型
本章讨论的核心问题
如何从已知力求出未知力 分为两步: 1通过受力分析,确定构件的受力图(包括 各外力的方向); 2根据物体受力平衡规律,求未知外力的大 小与方向