MATLAB信号分析

合集下载

matlab 信号 频谱分析实验报告

matlab 信号 频谱分析实验报告

matlab 信号频谱分析实验报告实验背景:信号频谱分析是一种通过将信号在频域上进行分解和分析的方法,用于研究信号的频率成分和频率特性。

Matlab是一种常用的科学计算软件,拥有强大的信号处理和频谱分析功能。

本实验旨在通过使用Matlab对信号进行频谱分析,探索信号的频率特性。

实验目的:1. 了解信号频谱分析的基本概念和方法;2. 掌握Matlab中信号频谱分析的基本操作;3. 分析不同类型信号的频谱特性。

实验步骤:1. 生成信号:首先,我们需要生成一个待分析的信号。

可以选择不同类型的信号,如正弦信号、方波信号或噪声信号。

在Matlab中,可以使用相关函数生成这些信号。

2. 绘制时域图:使用Matlab绘制生成的信号的时域图。

时域图展示了信号在时间上的变化情况,可以帮助我们对信号有一个直观的了解。

3. 进行频谱分析:使用Matlab中的傅里叶变换函数对信号进行频谱分析。

傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。

频谱图展示了信号在不同频率上的能量分布情况。

4. 绘制频谱图:使用Matlab绘制信号的频谱图。

频谱图可以帮助我们观察信号的频率成分和频率特性。

可以选择使用不同的频谱分析方法,如快速傅里叶变换(FFT)或功率谱密度估计(PSD)。

5. 分析频谱特性:观察频谱图,分析信号的频率成分和频率特性。

可以计算信号的主要频率分量,如峰值频率或频率范围。

还可以计算信号的能量分布情况,了解信号在不同频率上的能量分布情况。

实验结果与讨论:通过对不同类型信号进行频谱分析实验,我们可以得到以下结果和讨论:1. 正弦信号的频谱特性:正弦信号在频谱上只有一个频率成分,即信号的频率。

通过频谱分析,我们可以准确地确定正弦信号的频率。

2. 方波信号的频谱特性:方波信号在频谱上存在多个频率成分,主要包括基波频率和谐波频率。

通过频谱分析,我们可以观察到方波信号频谱上的多个峰值。

3. 噪声信号的频谱特性:噪声信号在频谱上呈现较为均匀的能量分布,没有明显的峰值。

matlab信号频域分析实验报告

matlab信号频域分析实验报告

matlab信号频域分析实验报告Matlab信号频域分析实验报告引言:信号频域分析是一种重要的信号处理技术,通过将信号从时域转换到频域,可以更好地理解信号的频率特性和频谱分布。

本实验旨在利用Matlab软件进行信号频域分析,探索信号的频域特性,并通过实验结果验证频域分析的有效性。

一、实验目的本实验的主要目的是通过Matlab软件进行信号频域分析,了解信号的频域特性和频谱分布,验证频域分析的有效性。

二、实验原理信号频域分析是将信号从时域转换到频域的过程,常用的频域分析方法有傅里叶变换和功率谱估计等。

傅里叶变换可以将信号分解为不同频率的正弦和余弦分量,从而得到信号的频谱分布。

功率谱估计则可以估计信号在不同频率上的功率。

三、实验步骤1. 生成信号:首先,使用Matlab生成一个包含多个频率分量的复合信号。

可以选择正弦信号、方波信号或者其他复杂信号。

2. 时域分析:利用Matlab的时域分析函数,如plot()和stem(),绘制信号的时域波形图。

观察信号的振幅、周期和波形特征。

3. 频域分析:使用Matlab的傅里叶变换函数fft(),将信号从时域转换到频域。

然后,利用Matlab的频域分析函数,如plot()和stem(),绘制信号的频域谱图。

观察信号的频率分量和频谱分布。

4. 功率谱估计:使用Matlab的功率谱估计函数,如pwelch()或periodogram(),估计信号在不同频率上的功率。

绘制功率谱图,观察信号的功率分布。

四、实验结果与分析通过实验,我们生成了一个包含多个频率分量的复合信号,并进行了时域分析和频域分析。

实验结果显示,信号的时域波形图反映了信号的振幅、周期和波形特征,而频域谱图则展示了信号的频率分量和频谱分布。

在时域波形图中,我们可以观察到信号的振幅和周期。

不同频率分量的信号在时域波形图中呈现出不同的振幅和周期,从而反映了信号的频率特性。

在频域谱图中,我们可以观察到信号的频率分量和频谱分布。

使用Matlab技术进行随机信号分析的基本步骤

使用Matlab技术进行随机信号分析的基本步骤

使用Matlab技术进行随机信号分析的基本步骤随机信号分析是信号与系统领域中的一个重要研究课题,它主要涉及到信号的时间特性、频率特性、概率特性等方面的分析。

而使用Matlab技术进行随机信号分析,则是一种十分高效且常见的方法。

在本文中,我们将向您介绍使用Matlab 技术进行随机信号分析的基本步骤。

第一步:信号生成随机信号的分析首先需要产生实验信号。

Matlab提供了丰富的信号生成函数,例如rand、randn等,可以生成均匀分布的随机信号、高斯分布的随机信号等。

根据所需要分析的信号类型和特性,我们可以选择适合的函数进行信号生成。

第二步:采样和量化分析随机信号之前,我们需要对其进行采样和量化。

采样是将连续信号转化为离散信号的过程,而量化则是将连续信号的振幅值转化为离散信号的过程。

Matlab 提供了相应的函数,例如downsample和quantize,可以实现信号的采样和量化操作。

第三步:时域分析时域分析是对信号在时间域上的特性进行分析。

常用的时域分析方法包括信号的均值、方差、自相关函数、互相关函数等。

在Matlab中,我们可以使用mean、var、xcorr等函数,对随机信号的时域特性进行计算和分析。

第四步:频域分析频域分析是对信号在频率域上的特性进行分析。

通过对随机信号进行傅里叶变换,我们可以得到信号的频谱特性。

Matlab中提供了fft函数,可以用于实现傅里叶变换。

通过对傅里叶变换结果进行幅度谱和相位谱的计算,我们可以更全面地了解信号在频率域上的特性。

第五步:概率分布分析概率分布分析是对信号的概率特性进行分析。

在随机信号分析中,常见的概率分布包括均匀分布、高斯分布、泊松分布等。

Matlab中提供了相应的概率分布函数,我们可以使用这些函数计算信号的概率密度函数、累积分布函数等。

第六步:建立模型和拟合通过对信号进行分析,我们可以建立信号的数学模型,并利用拟合技术将实际信号与模型进行比较。

Matlab中提供了polyfit、lsqcurvefit等函数,可以用于信号的模型建立和拟合。

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析数字信号处理是现代通信、控制系统、生物医学工程等领域中不可或缺的重要技术之一。

Matlab作为一种功能强大的科学计算软件,被广泛应用于数字信号处理与分析领域。

本文将介绍如何利用Matlab进行数字信号处理与分析,包括基本概念、常用工具和实际案例分析。

1. 数字信号处理基础在开始介绍如何利用Matlab进行数字信号处理与分析之前,我们首先需要了解一些基础概念。

数字信号是一种离散的信号,可以通过采样和量化得到。

常见的数字信号包括音频信号、图像信号等。

数字信号处理就是对这些数字信号进行处理和分析的过程,包括滤波、频谱分析、时域分析等内容。

2. Matlab在数字信号处理中的应用Matlab提供了丰富的工具箱和函数,可以方便地进行数字信号处理与分析。

其中,Signal Processing Toolbox是Matlab中专门用于信号处理的工具箱,提供了各种滤波器设计、频谱分析、时域分析等功能。

除此之外,Matlab还提供了FFT函数用于快速傅里叶变换,可以高效地计算信号的频谱信息。

3. 数字信号处理实例分析接下来,我们通过一个实际案例来演示如何利用Matlab进行数字信号处理与分析。

假设我们有一个包含噪声的音频文件,我们希望去除噪声并提取出其中的有效信息。

首先,我们可以使用Matlab读取音频文件,并对其进行可视化:示例代码star:编程语言:matlab[y, Fs] = audioread('noisy_audio.wav');t = (0:length(y)-1)/Fs;plot(t, y);xlabel('Time (s)');ylabel('Amplitude');title('Noisy Audio Signal');示例代码end接下来,我们可以利用滤波器对音频信号进行去噪处理:示例代码star:编程语言:matlabDesign a lowpass filterorder = 8;fc = 4000;[b, a] = butter(order, fc/(Fs/2), 'low');Apply the filter to the noisy audio signaly_filtered = filtfilt(b, a, y);Plot the filtered audio signalplot(t, y_filtered);xlabel('Time (s)');ylabel('Amplitude');title('Filtered Audio Signal');示例代码end通过以上代码,我们成功对音频信号进行了去噪处理,并得到了滤波后的音频信号。

Matlab中的信号处理方法与示例分析

Matlab中的信号处理方法与示例分析

Matlab中的信号处理方法与示例分析引言:信号处理是指对信号进行采集、变换、压缩、恢复等操作的一种技术。

在现代科学和工程领域中,信号处理在音频、图像、视频等领域中有着广泛的应用。

Matlab作为一款功能强大的科学计算软件,提供了丰富的信号处理工具箱,方便用户进行信号处理的研究和应用。

本文将介绍Matlab中的信号处理方法以及一些示例分析。

一、时域分析1.基本信号生成:Matlab可以方便地生成各种基本信号,如正弦信号、方波信号、脉冲信号等。

利用Matlab编写的生成函数,可以通过输入参数来灵活生成所需的信号。

2.时域图像绘制:利用Matlab的图像绘制函数,可以将信号在时域上进行可视化表示。

通过绘制的时域图像,我们可以对信号的幅值、波形等特征进行直观的观察和分析。

3.时域运算:利用Matlab的向量化运算,我们可以对信号进行各种时域运算,如加法、减法、乘法、除法等。

这些操作对于研究信号的变换和传输过程具有重要的意义。

二、频域分析1.快速傅里叶变换(FFT):Matlab提供了方便的FFT函数,可以对信号进行频域分析,得到信号在频域上的表示。

通过FFT变换后的结果,我们可以得到信号的功率谱密度、频谱等信息。

2.频谱图绘制:Matlab中的频谱图绘制函数可以将信号的频谱绘制成直观的图像,帮助我们更好地理解信号的频率特征。

通过频谱图的分析,可以发现信号中的主要频率成分以及噪声等信息。

3.滤波操作:通过在频域上对信号进行滤波操作,可以实现信号的去噪、降噪等目的。

Matlab中提供了丰富的滤波函数和滤波器设计工具,方便用户进行信号滤波处理。

三、小波分析1.小波变换:小波变换是一种非平稳信号分析的有效方法。

Matlab中有多种小波变换函数,可以对信号进行小波变换,并得到信号在时频域上的表示。

小波变换可以更好地捕捉信号的瞬时特征,对于研究非平稳信号非常有用。

2.小波包分解:Matlab提供了小波包分解函数,可以将信号进行小波包变换,并得到信号在不同频带的分解系数。

MATLAB信号处理分析方法详解

MATLAB信号处理分析方法详解

MATLAB信号处理分析方法详解第一章:信号与系统基础知识信号与系统是信号处理的基础,本章将介绍信号和系统的基本概念。

首先讲解离散信号和连续信号的区别,然后介绍离散系统和连续系统的特点。

接下来,讨论信号的时域和频域分析方法,如傅里叶级数分析和傅里叶变换。

最后介绍MATLAB中的信号生成函数和相关函数。

第二章:MATLAB中的滤波器设计与实现滤波器在信号处理中起到重要的作用,本章将详细介绍MATLAB中的滤波器设计与实现方法。

首先介绍滤波器的基本概念和分类,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

然后介绍MATLAB中的滤波器设计工具,包括fir1函数和fir2函数等。

接下来,讲解MATLAB中滤波器的实现方法,包括直接法、级联法和并联法。

最后,通过实例演示该方法的具体应用。

第三章:时频分析方法时频分析方法是用来描述信号在时间和频率上的变化特性的重要工具,本章将详细介绍MATLAB中的时频分析方法。

首先介绍短时傅里叶变换(Short-Time Fourier Transform,STFT)和连续小波变换(Continuous Wavelet Transform,CWT)等常用时频分析方法的原理和特点。

然后介绍MATLAB中相应的函数和工具箱,如spectrogram函数和cwt函数。

接下来,通过实例演示这些方法在信号处理中的应用。

第四章:谱分析方法谱分析是用来研究信号频谱特性的方法,本章将详细介绍MATLAB中的谱分析方法。

首先介绍基于傅里叶变换的频谱分析方法,如功率谱密度估计和相关函数估计。

然后介绍MATLAB中相关的函数,如pwelch函数和cpsd函数。

接下来,介绍基于自相关函数的自谱估计和互谱估计方法。

最后,通过实例演示这些方法在信号处理中的应用。

第五章:数字滤波器设计与实现数字滤波器是数字信号处理中常用的工具,本章将详细介绍MATLAB中的数字滤波器设计与实现方法。

首先介绍数字滤波器的基本概念和分类,包括IIR滤波器和FIR滤波器。

matlab信号分析

matlab信号分析

一、用MatLab完成三种不同信号的产生、合成或分解,时域波形分析(峰值,峰峰值,有效值,平均t=linspace(0,5*pi,65000); %在从0到2*pi取15000个点y1=20*sin(2*pi*t); %任给一正弦信号subplot(3,1,1);plot(t,y1);axis ([0 2*pi -25 25]); %画时域波形图max1=max(y1) %峰值vpp1=max(y1)-min(y1) %峰峰值avg1=mean(y1) %平均值rms1=norm(y1)/sqrt(length(y1)) %均方根值(有效值)title('正弦波')y2=20*square(2*pi*t,50); %任给一方波信号subplot(3,1,2);plot(t,y2);axis ([0 2*pi -25 25]); %画时域波形图max2=max(y2) %峰值vpp2=max(y2)-min(y2) %峰峰值avg2=mean(y2) %平均值rms2=norm(y2)/sqrt(length(y2)) %均方根值(有效值)title('方波')y3=20*sawtooth(t,0.5); %任给一三角波信号subplot(3,1,3);plot(t,y3);axis ([0 5*pi -25 25]); %画时域波形图max3=max(y3) %峰值vpp3=max(y3)-min(y3) %峰峰值avg3=mean(y3) %平均值rms3=norm(y3)/sqrt(length(y3)); %均方根值(有效值)title('三角波')figuref1=4*cos(t)/(pi*pi);f2=4*cos(3*t)/(pi*pi*9);f3=4*cos(5*t)/(pi*pi*25);f4=4*cos(7*t)/(pi*pi*49);f=0.5*(-sawtooth(t,0.5)+1); %三角波的分解subplot(5,1,1),plot(t,f);title('三角波') %画三角波subplot(5,1,2),plot(t,f1);title('三角波的基波') %画基波subplot(5,1,3),plot(t,f2);title('三角波三次谐波') %画三次谐波subplot(5,1,4),plot(t,f3);title('三角波五次谐波') %画五次谐波subplot(5,1,5),plot(t,f4);title('三角波七次谐波') %画七次谐波legend('三角波的分解')figuref=0.5*(-sawtooth(t,0.5)+1); %三角波的合成f1=0.5+4*cos(t)/(pi*pi);f2=0.5+4*cos(t)/(pi*pi)+4*cos(3*t)/(pi*pi*9);f3=0.5+4*cos(t)/(pi*pi)+4*cos(3*t)/(pi*pi*9)+4*cos(5*t)/(pi*pi*25);f4=0.5+4*cos(t)/(pi*pi)+4*cos(3*t)/(pi*pi*9)+4*cos(5*t)/(pi*pi*25)+4*co s(7*t)/(pi*pi*49);subplot(2,2,1),plot(t,f1);title('三角波基波')subplot(2,2,2),plot(t,f2);title('三角波基波+三次谐波')subplot(2,2,3),plot(t,f3);title('三角波+三次谐波+五次谐波')subplot(2,2,4),plot(t,f4);title('三角波+三次谐波+五次谐波+七次谐波')legend('三角波的合成')值,均方根值等)二、用MatLab进行三种不同信号频谱分析(可选择功率谱,幅频相频谱,实频虚频)和相关分析(可选择自相关,互相关)Fs=5120; % 设定采样频率dt=1.0/Fs;N=1024; %采样点数T=dt*N; %设置常量t=linspace(0,T,N); %在从0到T取N个点y=50*sin(2*pi*50*t); %任给一正弦信号subplot(3,3,1);plot(t,y);title('50sin(2*pi*50*t)的时域波形图'); %画时域波形图subplot(3,3,2);yy=fft(y,N); %对信号进行快速傅里叶变换P=2*abs(yy)/Nf=linspace(0,Fs,N); %取幅值的频率plot(f,P);xlabel('频率(Hz)');ylabel('幅值');title('50sin(2*pi*50*t)的幅值谱'); %画幅值谱axis([0 500 0 55])subplot(3,3,3);anglex=angle(yy)*180/pi; %求幅角plot(f,anglex);xlabel('频率(Hz)');ylabel('相位(度)')title('50sin(2*pi*50*t)的相位谱'); %画相位谱axis([0 100 -200 200])subplot(3,3,4);plot(f,real(yy));xlabel('频率(Hz)');ylabel('实部'); %画实部谱title('50sin(2*pi*50*t)的实部谱');axis([0 500 -500 500])subplot(3,3,5);plot(f,imag(yy));xlabel('频率(Hz)');ylabel('虚部'); %画虚部谱title('50sin(2*pi*50*t)的虚部谱');axis([0 500 -30000 5000])subplot(3,3,6);plot(f,P.^2);xlabel('频率(Hz)');ylabel('功率'); %画功率谱title('50sin(2*pi*50*t)的功率谱');axis(*************])y1=50*cos(2*pi*50*t); %任给一同频率余弦信号subplot(3,3,7);plot(t,y1); %画时域波形图title('50*cos(2*pi*50*t)的时域波形图');subplot(3,3,8);s=xcorr(y); %正弦信号的自相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s);xlabel('频率(Hz)'); %画自相关函数图像title('正弦信号的自相关函数');subplot(3,3,9);s1=xcorr(y,y1); %正余弦信号的互相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s1);xlabel('频率(Hz)'); %画互相关函数图像title('正余弦信号的互相关函数');figurey2=50*sinc(2*pi*50*t); %任给一sinc函数信号subplot(4,2,1);plot(t,y2); %画时域波形图title('50sinc(2*pi*50*t)的时域波形图');axis([0 0.18 -20 50])subplot(4,2,2);Pyy=fft(y2,N); %对信号进行快速傅里叶变换P=abs(Pyy)/Nf=linspace(0,Fs,N); %取复数形式的幅值的频率plot(f,P); %画幅值谱xlabel('频率(Hz)');ylabel('幅值');title('50sinc(2*pi*50*t)的幅值谱');axis([0 500 0 1])anglex=angle(Pyy)*180/pi; %求幅角plot(f,anglex); %画相位谱xlabel('频率(Hz)');ylabel('相位(度)')title('50sinc(2*pi*50*t)的相位谱');axis([0 1000 -100 10])subplot(4,2,4);plot(f,real(Pyy));xlabel('频率(Hz)');ylabel('实部'); %画实部谱title('50sinc(2*pi*50*t)的实部谱');axis([0 500 -100 550])subplot(4,2,5);plot(f,imag(Pyy)); %画虚部谱xlabel('频率(Hz)');ylabel('虚部');title('50sin(2*pi*50*t)的虚部谱');axis([0 500 -700 100])subplot(4,2,6);plot(f,P.^2); %画功率谱xlabel('频率(Hz)');ylabel('功率');title('50sinc(2*pi*50*t)的功率谱');axis([0 500 0 1])subplot(4,2,7);s=xcorr(y2); %sinc信号的自相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s); %画自相关函数图像xlabel('频率(Hz)');title('sinc信号的自相关函数');subplot(4,2,8);s1=xcorr(y,y1); %sinc信号与余弦信号的自相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s1); %画互相关函数图像xlabel('频率(Hz)');title('sinc信号与余弦信号的自相关函数');figurey3=20*square(2*pi*50*t,50); %任给一方波信号subplot(4,2,1);plot(t,y3); %画时域波形图title('20*square(2*pi*50*t,50)的时域波形图');axis([0 0.1 -25 25])subplot(4,2,2);Pyy=fft(y3,N); %对信号进行快速傅里叶变换P=abs(Pyy)/N;f=linspace(0,Fs,N); %取幅值的频率plot(f,P); %画幅值谱xlabel('频率(Hz)');ylabel('幅值');title('20*square(2*pi*50*t,50)的幅值谱')axis([0 2000 -3 15])anglex=angle(Pyy)*180/3.14; %求幅角plot(f,anglex); %画相位谱xlabel('频率(Hz)');ylabel('相位(度)')title('20*square(2*pi*50*t,50)的相位谱');axis([0 2000 -200 200])subplot(4,2,4);plot(f,real(Pyy)); %画实部谱xlabel('频率(Hz)');ylabel('实部');title('20*square(2*pi*50*t,50)的实部谱');axis([0 2000 -400 500])subplot(4,2,5);plot(f,imag(Pyy)); %画虚部谱xlabel('频率(Hz)');ylabel('虚部');title('20*square(2*pi*50*t,50)的虚部谱');axis([0 2000 -15000 1000])subplot(4,2,6);plot(f,P.^2); %画功率谱xlabel('频率(Hz)');ylabel('功率');title('20*square(2*pi*50*t,50)的功率谱');axis([0 2000 -30 200])subplot(4,2,7);s=xcorr(y3); %方波信号的自相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s); %画自相关函数图像xlabel('频率(Hz)');title('方波信号的自相关函数');subplot(4,2,8);s1=xcorr(y,y3); %方波与正弦信号的互相关函数x1=linspace(0,2*T,2*N-1);plot(x1,s1);xlabel('频率(Hz)');title('方波与正弦信号的互相关函数'); %画互相关函数图像。

MATLAB信号频谱分析

MATLAB信号频谱分析

MATLAB信号频谱分析MATLAB是一种功能强大的数学软件,它不仅提供了丰富的数学工具箱和函数,还具备信号频谱分析的功能。

信号频谱分析是对信号进行频域分析,用以了解信号的频率特性和谱线分布,对信号处理和系统建模具有重要意义。

信号频谱分析主要有两个方面的内容,频谱估计和谱线展示。

频谱估计是通过数学方法估计信号的频谱特性,常用的方法包括傅里叶变换、快速傅里叶变换、功率谱密度估计等。

谱线展示是将信号的频谱特性可视化展示出来,常用的方法包括画出频谱图、频谱瀑布图等。

下面我们来详细介绍MATLAB中信号频谱分析的相关函数和方法。

1. 傅里叶变换(Fourier Transform):MATLAB中的fft函数可以对信号进行离散傅里叶变换(Discrete Fourier Transform),fft函数的使用方法为Y = fft(X)或者Y = fft(X,n),其中X为输入信号,n为傅里叶变换的点数,默认为X的长度。

傅里叶变换将信号从时域转换到频域,得到信号的复数频谱。

2. 快速傅里叶变换(Fast Fourier Transform, FFT):FFT是一种快速计算傅里叶变换的算法,MATLAB中的fft函数就是基于FFT算法实现的,具有高效和精确的特点。

对于长度为N的信号,FFT的计算复杂度为O(NlogN),而传统的DFT计算复杂度为O(N^2)。

3. 频谱瀑布图(Spectrogram):MATLAB中的spectrogram函数可以绘制信号的频谱瀑布图,用以展示信号的频谱变化随时间的变化情况。

spectrogram函数的使用方法为spectrogram(x,window,noverlap,nfft,fs),其中x为输入信号,window为窗函数,noverlap为重叠窗口数,nfft为傅里叶变换的点数,fs为信号的采样率。

4. 功率谱密度估计(Power Spectral Density Estimation):MATLAB中的pwelch函数可以对信号进行功率谱密度估计,得到信号在不同频率上的功率分布情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Example: Record and play back 5 seconds of 16-bit audio sampled at 11.025 kHz.
Fs = 11025; y = wavrecord(5*Fs, Fs, 'int16'); wavwrite(y, Fs, ‘d:\matlab.wav’); wavplay(y,fs); %播放录音 %读取录音文件
%存储录音
Lecture 4
Matlab语音分析
3.语音文件读出函数 wavread Read Microsoft WAVE (".wav") sound file. Y=wavread(FILE) reads a WAVE file specified by the string FILE, returning the sampled data in Y. The ".wav" extension is appended if no extension is given. 命令格式: [Y,FS,NBITS]=wavread(FILE) [...]=wavread(FILE,N) [...]=wavread(FILE,[N1 N2]) [Y,...]=wavread(...,FMT) SIZ=wavread(FILE,'size') [Y,FS,NBITS,OPTS]=wavread(...)
Dr WangZhengsheng - Lecture Notes 12
Supported data types for Y and the corresponding number of bits per sample used during playback in each format are as follows: Data Type bits/sample 'double' 16 'single' 16 'int16' 16 'uint8' 8
Dr WangZhengsheng - Lecture Notes
2
Lecture 4

Matlab语音分析
1.语音录制函数 wavrecord Record sound using Windows audio input device. wavrecord will be removed in a future release. Use AUDIORECORDER instead. 命令格式: Y = wavrecord(N,FS,CH) records N audio samples at FS Hertz from CH number of input channels from the Windows WAVE audio device. Standard audio rates are 8000, 11025, 22050, and 44100 Hz. CH can be 1 or 2 (mono or stereo). Samples are returned in a matrix of size N-by-CH. If not specified, FS=11025 Hz, and CH=1.
Dr WangZhengsheng - Lecture Notes
6
Lecture 4
Matlab语音分析
NBITS Y's data type Y's Data range Output Format ------- ---------------- --------------------- ------------8 uint8 0 <= Y <= 255 uint8 16 int16 -32768 <= Y <= +32767 int16 24 int32 -2^23 <= Y <= 2^23-1 int32 If Y contains floating point data: NBITS Y's data type Y's Data range Output Format ------- ---------------- --------------------- ------------8 single or double -1.0 <= Y < +1.0 uint8 16 single or double -1.0 <= Y < +1.0 int16 24 single or double -1.0 <= Y < +1.0 int32 32 single or double -1.0 <= Y <= +1.0 single
Lecture 4
MATLAB信号分析 (Sound Analysis)
Dr WangZhengsheng - Lecture Notes
1
Lecture 4
基本要求
Matlab语音分析
(1)掌握语音文件的创建与控制,以及语音文件的基本操作; (2)熟练掌握录制语音基本的命令和控制; (3)初步掌握用傅里叶变换来表现信号的波形和频谱。 (4)掌握坐标轴的控制和图形标注命令及其用法。
Dr WangZhengsheng - Lecture Notes 9
Lecture 4
Matlab语音分析
FMT='native' #Bits MATLAB data type Data range ----- ------------------------- ------------------8 uint8 (unsigned integer) 0 <= Y <= 255 16 int16 (signed integer) -32768 <= Y <= +32767 24 int32 (signed integer) -2^23 <= Y <= 2^23-1 32 single (floating point) -1.0 <= Y <= +1.0 FMT='double' #Bits MATLAB data type Data range ----- ------------------------- ------------------N<32 double -1.0 <= Y < +1.0 N=32 double -1.0 <= Y <= +1.0 Note: Values in y might exceed -1.0 or +1.0 for the case of Dr samples - Lecture Notes 10 N=32 bit data WangZhengshengstored in the WAV file.
Dr WangZhengsheng - Lecture Notes 7
• Example: Record and play back 5 seconds of 16-bit audio sampled at 11.025 kHz.
Fs = 11025; y = wavrecord(5*Fs, Fs, 'int16'); wavwrite(y, Fs, ‘d:\matlab.wav’); wavplay(y,fs); %播放录音
%存储录音
Lecture 4
Matlab语音分析
5.傅里叶变换函数 fft Discrete Fourier transform. fft(X) is the discrete Fourier transform (DFT) of vector X. For matrices, the fft operation is applied to each column. For N-D arrays, the fft operation operates on the first non-singleton dimension. 命令格式: fft(X,N) is the N-point fft, padded with zeros if X has less than N points and truncated if it has more. fft(X,[],DIM) or fft(X,N,DIM) applies the fft operation across the dimension DIM.
Dr WangZhengsheng - Lecture Notes 3
Lecture 4
Matlab语音分析
Y=wavrecord(..., DTYPE) uses the data type specified by the string DTYPE to record the sound. The string values for DTYPE are listed in the following table along with corresponding bits per sample and acceptable data ranges for Y. DTYPE Bits/sample Y's Data range -------- ----------- --------------------'double' 16 -1.0 <= Y < +1.0 'single' 16 -1.0 <= Y < +1.0 'int16' 16 -32768 <= Y <= +32767 'uint8' 8 0 <= Y <= 255
Lecture 4
Matlab语音分析
4.语音文件播放函数 wavplay Play sound using Windows audio output device. wavplay will be removed in a future release. Use AUDIOPLAYER instead. 命令格式: wavplay(Y,FS) : sends the signal in vector Y with sample frequency of FS Hertz to the Windows WAVE audio device. Standard audio rates are 8000, 11025, 22050, and 44100 Hz. wavplay(Y) wavplay(...,'async') wavplay(...,'sync')
相关文档
最新文档