轴对称图形提高练习题

合集下载

画轴对称图形练习题

画轴对称图形练习题

画轴对称图形练习题轴对称图形是指在平面上存在一个轴,当图形沿该轴作对称变换时,图形与自身重合。

画轴对称图形是培养儿童对称思维和审美能力的重要训练内容。

今天,我们来练习一些画轴对称图形的练习题。

1. 画出以下几个字母的轴对称图形:A、B、C、D、E、F、G。

2. 画出以下几个数字的轴对称图形:0、1、2、3、4、5、6、7、8、9。

3. 画出以下几个几何形状的轴对称图形:正方形、长方形、圆形、三角形、椭圆、五边形。

4. 根据给定的轴对称图形,完成图形的绘制:a) 给定一个正方形,画出它的轴对称图形。

b) 给定一个三角形,画出它的轴对称图形。

c) 给定一个长方形,画出它的轴对称图形。

d) 给定一个圆形,画出它的轴对称图形。

5. 设计一个轴对称的图案,使用你喜欢的颜色和形状进行绘制。

可以尝试使用不同的几何形状和线条来创造出独特的图案。

通过以上的练习题,我们可以巩固轴对称图形的绘制技巧和观察力。

画轴对称图形不仅能够培养我们的审美能力,还有助于提升我们的创造力和想象力。

在绘制过程中,我们需要注意以下几点:首先,要明确轴对称图形的基本特征,即从一个点为中心,沿轴线进行对称变换后图像不变。

其次,要注意绘制对称轴,可以使用直尺或绘图工具来帮助我们找到中心轴线。

然后,要对称地绘制图形的各个部分,确保每个部分都与其对称位置保持一致。

最后,要仔细观察和检查绘制结果,确保图形的各部分符合对称关系,并且整体上看起来完美对称。

在进行绘制时,可以使用纸和铅笔进行草图,并使用彩色铅笔或绘图软件进行上色。

可以尝试不同的颜色和图案来增加绘图的趣味性和创造力。

通过不断的练习和探索,我们可以提高自己的轴对称图形绘制能力,在欣赏美丽图形的同时,也培养了自己的审美能力和想象力。

所以,在日常生活中,多多练习画轴对称图形,让我们的大脑得到锻炼,同时也提高我们的艺术水平和绘画技巧。

希望以上的练习题能够帮助大家提升对轴对称图形的理解和绘制能力。

不要忘记享受绘画的过程,并在每次创作中发挥自己的想象力!。

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。

本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。

1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。

找出图形的对称中心,并标出。

解答:首先,根据给定条件画出图形ABC。

由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。

以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。

连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。

2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。

证明:BO=OC。

解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。

首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。

其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。

同理,NEDK也是一个矩形。

由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。

再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。

又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。

所以BC/2=KN/2,即BC=KN。

由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。

综上所述,BO=OC。

3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。

在边AB和BC上分别取两个等分点D和I,并连接DI。

求证:DI垂直于FG。

解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。

首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

以下是一些轴对称图形的练习题及答案。

练习题1:判断下列图形是否为轴对称图形,并找出对称轴。

1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。

2. 等边三角形是轴对称图形,有3条对称轴。

3. 矩形是轴对称图形,有2条对称轴。

4. 等腰梯形是轴对称图形,有1条对称轴。

5. 五角星是轴对称图形,有5条对称轴。

练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。

请找出下列图形的对称轴数量。

1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。

2. 菱形有2条对称轴。

3. 正六边形有6条对称轴。

4. 半圆形有1条对称轴。

5. 等腰三角形有1条对称轴。

练习题3:在下列图形中,找出不是轴对称图形的图形。

1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。

练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。

根据这个定义,判断下列点是否在对称轴上。

1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。

2. 点B不在对称轴上。

3. 点C在对称轴上。

4. 点D不在对称轴上。

练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。

这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。

通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。

五年级轴对称练习题

五年级轴对称练习题

五年级轴对称练习题轴对称是数学中的一个重要概念,它在几何图形的对称性中起着重要作用。

在五年级学习数学时,轴对称是一个必须要掌握的内容。

本文将为你介绍一些五年级轴对称的练习题,帮助你巩固和提升对轴对称的理解和运用能力。

练习题一:判断图形是否有轴对称观察下面三个图形,判断它们是否有轴对称,并给出解释。

1.A B C D EA ■ ■B ■ ■C ■ ■D ■ ■E ■ ■2.F G H I JF ■G ■H ■I ■J ■3.K L M N OK ■L ■M ■N ■O ■练习题二:根据轴对称完成图形根据给出的轴对称线,完成相应的图形。

1. 轴对称线为竖线: |□ □ □ □ □□ □□ □□ □□ □ □ □ □2. 轴对称线为横线:_____□ □ □ □ □□ □□ □ □ □ □练习题三:图形的自带轴对称线观察下面的五个图形,找出其中自带轴对称线的图形,并给出解释。

1.P Q R S TP ■ ■Q ■ ■R ■ ■S ■ ■T ■ ■2.U V W X YU ■ ■V ■W ■X ■ ■Y ■3.Z AA BB CC DDZ ■ ■AA ■ ■BB ■ ■CC ■ ■DD ■练习题四:利用轴对称完成图形根据给出的图形和已知的轴对称线,完成相应部分的图形。

1.已知轴对称线为竖线: |□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □□ □ □2.已知轴对称线为横线:_____□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □以上是五年级轴对称的练习题,通过反复练习,你将能够更加熟练地识别和应用轴对称的概念。

希望这些练习题能够帮助你加深对轴对称的理解,并在数学学习中取得更好的成绩!。

三年级轴对称图形练习题

三年级轴对称图形练习题

三年级轴对称图形练习题
在数学学习中,轴对称图形是一个重要的概念,它不仅能够帮助我们提高观察和分析问题的能力,还能够培养我们的创造力和想象力。

为了巩固轴对称图形的概念和运用技巧,以下是一些三年级的轴对称图形练习题。

练习题一:
在下面的图形中,哪些是轴对称的?请把它们标出来。

(插入图形1)
练习题二:
找出下面图形的轴对称线,并画出来。

(插入图形2)
练习题三:
根据下面的图形,判断哪个图形能够沿着红色虚线折叠后重叠在自己身上。

(插入图形3)
练习题四:
参照下面的图形,画出该图形的轴对称图形,并标注出轴对称线。

(插入图形4)
练习题五:
判断下面的图形是否能够通过旋转180度重合在自己上方,并解释你的答案。

(插入图形5)
练习题六:
计算下面轴对称图形的个数,并用文字描述轴对称的位置和特点。

(插入图形6)
练习题七:
用你自己画的方式画一个轴对称图形,并写一段话描述你画的图形的特点和轴对称线的位置。

(插入图形7)
以上是一些三年级的轴对称图形练习题,希望能够帮助你更好地理解和掌握轴对称图形的概念和运用。

通过不断地练习和思考,相信你能够在数学学习中有所收获,培养出良好的数学思维能力。

加油!。

轴对称练习题及答案

轴对称练习题及答案

轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。

2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。

3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。

三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。

2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。

3. 已知点C(1,-1),求点C关于原点的对称点的坐标。

四、判断题1. 所有矩形都是轴对称图形。

()2. 所有等腰三角形都是轴对称图形。

()3. 所有等边三角形都是轴对称图形。

()4. 所有平行四边形都是轴对称图形。

()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。

2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。

3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。

答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。

下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。

练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。

练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。

练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。

答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。

因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。

练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。

对于任何点(x,y)在图形上,其对称点是(y,x)。

因此,图形的中心点是对称轴与原点的交点,即(0,0)。

练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。

由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。

通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。

华师大版数学七年级下册_《轴对称》拔高练习

华师大版数学七年级下册_《轴对称》拔高练习

《轴对称》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°2.(5分)下列图形为轴对称图形的是()A.B.C.D.3.(5分)下列图形是轴对称图形的是()A.B.C.D.4.(5分)下列交通标志中,是轴对称图形的是()A.B.C.D.5.(5分)下列四个汉字中,可以看作是轴对称图形的有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是.7.(5分)如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB 的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为,∠MPN=°.8.(5分)如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为.9.(5分)如图所示:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,△PMN的周长为15cm,P1P2=.10.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.12.(10分)如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;(2)在图中x轴上作出一点P,使P A+PB的值最小;并写出点P的坐标.13.(10分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B、C的坐标分别为(﹣5,1),(﹣4,5).(1)在图中画出相应的平面直角坐标系;(2)画出△ABC关于直线l对称的△A1B1C1,并标出点A1的坐标;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.14.(10分)在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若P A+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△P AB的面积,若存在,求出Q点坐标;若不存在,说明理由.15.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.《轴对称》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.2.(5分)下列图形为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(5分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(5分)下列交通标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形,注意轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(5分)下列四个汉字中,可以看作是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是:营,口,共2个.故选:B.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是5.【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.【点评】本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.7.(5分)如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB 的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15,∠MPN=98°.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN =P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.∵∠AOB=41°,∴∠P2PP1=139°,∴∠P1+∠P2=41°,∴∠MPN=180°﹣41°﹣41°=98°,故答案为:15,98.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.8.(5分)如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为13.【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【解答】解:如图,连接BE,∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE,∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13,故答案为:13.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.9.(5分)如图所示:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,△PMN的周长为15cm,P1P2=15cm.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是15,∴P1P2=15.故答案为:15.【点评】本题考查了轴对称的性质,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.10.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN =P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.【分析】根据轴对称图形的概念求解可得.【解答】解:如图所示:【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称图形的概念.12.(10分)如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;(2)在图中x轴上作出一点P,使P A+PB的值最小;并写出点P的坐标.【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,点P即为所求,其坐标为(3,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.13.(10分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B、C的坐标分别为(﹣5,1),(﹣4,5).(1)在图中画出相应的平面直角坐标系;(2)画出△ABC关于直线l对称的△A1B1C1,并标出点A1的坐标;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是(﹣4﹣a,b).【分析】(1)根据点B和点C的坐标可得坐标系;(2)利用关于直线对称点的性质得出对应点位置进而得出答案;(3)根据直线l经过点(﹣2,0),点P(a,b)关于直线l的对称点为P1,则P与P1的横坐标的和除以2等于﹣2,纵坐标相等,进而得出答案.【解答】解:(1)如图所示:(2)如图所示,△A1B1C1即为所求;(3)点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(﹣4﹣a,b).故答案为:(﹣4﹣a,b).【点评】此题主要考查了轴对称变换以及对称图形的性质,正确得出对应点位置是解题关键.14.(10分)在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若P A+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△P AB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x 轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△P AB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△P AB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,P A+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC=4,BD=2∴S△P AB=S△P AA'+S△BAA'=设BQ与直线AA'(即直线x=2)的交点为E(如图4)∵S△QAB=S△P AB则S△QAB==2AE=12∴AE=6∴E的坐标为(2,8)或(2,﹣4)设直线BQ解析式为:y=ax+q或解得:或∴直线BQ:y=或y=∴Q点坐标为(0,19)或(0,﹣5)法二:∵S△QAB=S△P AB∴△QAB与△P AB以AB为底时,高相等即点Q到直线AB的距离=点P到直线AB的距离i)若点Q在直线AB下方,则PQ∥AB设直线PQ:y=x+c,把点P(﹣2,0)代入解得c=﹣5,y=﹣x﹣5即Q(0,﹣5)ii)若点Q在直线AB上方,∵直线y=﹣x﹣5向上平移12个单位得直线AB:y=﹣x+7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△P AB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.15.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;根据平面直角坐标系写出各点的坐标即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣×1×5﹣×3×3﹣×2×4=9.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4 ④
①② ③
A
B A
C B
D B
C A E
D 轴对称图形提高练习题
一、 教学目标
掌握利用轴对称图形的性质解决最短路线问题的方法;等腰三角形性质的活用
二、 教学重难点
重点:轴对称的实际应用、等腰三角形性质
难点:轴对称的应用、角平分线与垂直平分线的应用、等腰三角形相关计算与证明
三、 基础知识梳理
轴对称的性质可运用于实际问题中的最短路线问题、球的反弹、光线反射等,解决办法是作对称点;
等腰三角形所有的性质包括:等边对等角等角对等边、三线合一、轴对称性等,主要应用于求跟角平分线和中垂线结合的求解问题
四、 典型例题分析
题型一:角平分线及其中垂线的应用
例1. (1)三角形内一点到三角形的三个顶点的距离相等的点是三角形________的交点.
(2)三角形内一点到三角形的三边的距离相等的点是三角形________的交点. 例2. △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,且BD :CD =3:2,BC =15cm ,则点D
到AB 的距离是__________.
例3. 已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + AD 例4. 如图,BP 是△ABC 的外角平分线,点P 在∠BAC 的角平分线上.求证:CP 是△ABC 的外角平分线.
练习:
1. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,
使D 点落在BC 边上的F 点处,若∠BAF=60°,则∠DAE=
2. 如图,在△ABC 中,∠C=90°,AD 的平分∠BAC 交BC 于
D ,点D 到AB 的距离为7 cm ,CD= 3. 在△ABC 中,∠C=90°,D
E 是AB 的垂直平分线,∠A=40°,则∠CDB=,∠CBD=
4. 如图,在△ABC 中,∠C=90°,AB 的垂直平分线交BC 于D ,若∠B=20°,
则∠DAC= 5. 如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有
( ) E D
C B A
D B A
C
1题图 2题图 3题图 4题图
2 / 4
A.1处 B.2处 C.3处 D.4处
7. 如图,△ABC 中,∠BAC=110°,AB 的垂直平分线交BC 于点D,AC 的垂直平分线交BC 于点
E,BC=10cm.
(1) 求△ADE 的周长;(2)求∠DAE 的度数.

题型二:轴对称性质的应用——最短路线问题 例5. 如图,EFGH 是一个长方形的弹子球台面,有黑白两球分别位于A 、B 两点的位置.
(1)试问:怎样撞击黑球A ,使黑球
A 先碰撞台边EF 反弹后再撞击白球
B ? (2)怎样撞击黑球A ,使黑球先碰撞台边GH 反弹后再击台边EF ,最后击白球B ?
例6. (1)在锐角∠AOB 内有一定点P ,试在OA 、OB 上确定两点C 、D ,使△PCD 的周长最短.
(2)在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程.
练习:
1. 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人
F
G E D C B A
3 / 4
E
D
C A
B H F A
B C R
P Q
从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)?
2. 如图,在直线CD 上有一动点P ,P 在CD 上从右往左运动的过程中,找出 (1) 点P 到A 、B 距离之和最小时的
位置;
(2) 点P 到A 、B 距离相等时的位置; (3) 点P 到A 、B 的距离之差最大时P
的位置。

题型三:等腰三角形的性质
例7. 一个等腰三角形的一个内角比另一个内角的2倍少︒30,求这个三角形的三个内角的度
数。

例8. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数
例9. 如图,已知:在ABC ∆中,AC AB =,CD BE =,︒=∠70B ,CF BD =。

求:EDF ∠的度数。

例10. 如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE≌△ACD; ②求证:CF=CH ;
③判断△CFH 的形状并说明理由. 例11. 如图,在△ABC 中, P 是的BC 边上一点,过点P 作BC 的垂线,交AB 于点Q ,交CA
的延长线于点R ,若AQ=AR ,则△ABC 是等腰三角形吗?请说明理由。

练习: 1. 等腰三角形的一个角为45°,则它的底角为 等腰三角形的一个角为96°,则它的底角为 2. 等腰三角形的两个内角之比是1∶2,那么这个等腰三角形的顶角度数为___________. 小

观测点 A
B D E
4 / 4 3. 等腰三角形的周长是2
5 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边
长为_____.
4. 如图, 中, ,试说明: .
5. 如图,已知:ABC ∆是等边三角形,分别在AC 、BC 边上取点E 、F ,使CF AE =,
BE 、AF 相交于点D .求证:︒=∠60BDF .。

相关文档
最新文档