惯性导航的发展与应用
惯性导航的发展带给我们的启示和意义

惯性导航的发展带给我们的启示和
意义
“惯性导航技术是一种自主的、不对外辐射信号、不受外界干扰的导航系统,它以适宜的方式满足用户的导航需求。
随着在军用和商业等领域导航需求的增长, 惯性导航技术不断拓展新的应用领域。
其范围已由原来的舰艇、船舶、航空飞行器、陆地车辆等,扩展到航天飞机、星际探测、制导武器、大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道等方面,甚至在机器人、摄像机、儿童玩具中也被广泛应用。
未来惯性导航技术也会进一步的发展,主要是为了满足广大群众的实际需求。
在未来,惯性导航技术会继续在GNSS信号盲区或是更加复杂的环境中使用,为广大群众提供更加可靠、持续的定位服务。
同时,该导航技术也会在民用市场得到应用,而在这一领域的应用会使惯性导航
技术呈现出低成本、小型化的发展模式,例如在汽车中应用惯性导系统。
另外,相关的工作人员也可以利用新工艺和新材料来优化陀螺仪和加速度计,使惯性导航系统的性能可以不断提升。
惯性导航

一、惯性导航技术的发展历史
图1.5 惯导技术发展历史
二、惯性传感器的最新发展现状
2.1陀螺仪 定义:传统意义上的陀螺仪是安装在框架中绕回转体的对 称轴高速旋转的物体。现在习惯上把能够完成陀螺功能的 装置统称为陀螺。 分类:按陀螺转子主轴所具有的进动自由度数目可分为二 自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠 轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力 调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高 速旋转体物理特性工作的转子式陀螺,和利用其他物理原 理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光 纤陀螺等。
四、惯性技术的应用
通过使用智能手机中的加速度传感器来测量行走的步长和 步数,方向传感器测量行走的角度。在用户行走的路径上布设 NFC标签,触碰NFC标签来对用户当前所在的位置进行校正 ,将这三种传感器结合起来,形成了基于多传感器的导航定位 流程图。
4.2
NFC+惯导系图统结构图
五、惯性导航发展趋势
几种姿态结算是重点
三、惯导系统的分类
Bortz 和 Jordon 最早提出了等效旋转矢量概念用于陀 螺输出不可交换误差的修正, 从而在理论上解决了不可交换 误差的补偿问题, 其后的研究就主要集中在旋转矢量的求解 上 ,根据在相同姿态更新周期内 ,对陀螺角增量等间隔采样 数的不同 、有双子样算法、 三子样算法等 。为减少计算量 Gilmore 提出了等效旋转矢量双回路迭代算法Miller 讨论 了在纯锥运动环境下等效旋转矢量的三子样优化算法, 此后 ,在 Miller 理论的基础上 Jang G. Lee 和 Yong J.Yoon 对等效旋转矢量的四子样优化算法进行了研究。 Y.F.Jiang 对利用陀螺的角增量及前一更新周期采样值的算法进行了研究 , 研究结果表明, 采样阶数越高,更新速率越快 ,姿态更新 算法的误差就越小。 Musoff 提出了圆锥补偿算法的优化指 标, 分析了圆锥补偿后的算法误差与补偿周期幂次 r 的关系 。 这些理论研究奠定了姿态更新算法的经典理论基础 。
二、惯导系统的发展历史及发展趋势

目录1.惯性导航系统的概念 (2)2.惯导系统的发展历史及发展趋势 (3)惯性导航系统的发展 (3)我国的惯性导航系统 (5)捷联惯导系统现状及发展趋势 (6)3.惯性导航系统的组成 (10)4、惯性导航系统的工作原理 (14)5、惯性导航系统的功能 (18)6、惯性导航系统的服务模式与应用模式 (20)7、惯性导航系统当前的应用情况 (21)8、惯性导航系统的特点 (23)系统的主要优点 (23)系统的主要缺点 (24)9、惯性导航系统给我们的启示 (24)惯性导航系统一、 惯性导航系统的概念什么是惯性导航或惯性制导呢?惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。
在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。
推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。
在运载体上安装加速度计,用它来敏感、测量运载体运动的加速度,经过计算(一次积分和二次积分),从而求得运动轨道(运载体运动的速度和距离),并且产生对运载体运动所需要的控制信号,控制运载体按要求弹道运动,称为惯性制导。
这就是说,惯性制导是对运载体进行测量和控制,使其沿预定的轨道运动。
作为一种自主式的导航方法,惯性导航是完全依靠载体上的设备自主地确定出载体的航向、位置、姿态、和速度等导航参数。
并不需要外界任何的光、电、磁参数。
因此,惯性导航系统具有隐蔽性好、全天候工作能力等独特优点。
对飞行器、舰船和地面移动载体(特别是用于军事目的)等尤为重要。
所以在近三十年来,在航空、航天、航海、交通和大地测量中惯性导航系统都得到了广泛的应用。
近今年来由于捷联技术在惯导系统中的应用为惯导系统在民用领域中的应用和发展开辟了更广阔的前景。
2023年惯性导航行业市场前景分析

2023年惯性导航行业市场前景分析惯性导航是一种先进的导航技术,用于确定物体的位置和方向。
它不依赖于任何外部信号源,而是通过测量和计算物体自身的加速度、速度和方向等参数来确定位置和方向,因此在航空、航天、军事、海洋等领域有着广泛的应用前景。
本文将从市场需求、技术发展、竞争格局和政策环境等方面分析惯性导航行业的市场前景。
一、市场需求惯性导航技术已经出现了很多年,但其前景仍然广泛。
因为它具有高精度、高可靠性、不受干扰、实时性强等特点,可以在各种环境下工作,是现代导航领域中不可或缺的一部分。
在航空、航天、军事和海洋等领域,需要高精度、高可靠性的导航设备来确保载体的安全和稳定。
惯性导航设备可以在没有其他导航设备的情况下,为航空器、飞行器等提供精确的位置、速度和方向信息,从而实现全球定位系统(GPS)等其他技术无法实现的功能。
二、技术发展随着惯性导航技术的逐步发展,其技术水平不断提高。
新型惯性导航设备已经达到超高精度(0.001度)和长时间稳定工作(数十年)的水平,这使得惯性导航设备可以在更广泛的领域内应用。
随着芯片制造技术的不断进步和微机电系统(MEMS)技术的发展,惯性导航设备的产量不断增加,价格也逐步降低,有望进一步推动惯性导航技术的应用。
三、竞争格局当前,惯性导航设备市场主要由少数几个国际大型公司垄断。
这些公司具有高技术、高专业性和多年的经验,因此能够提供高质量、高性能的产品和服务。
但是,一些小型企业也纷纷进入这个市场。
虽然这些公司缺乏大公司的资源和技术,但通过开发低成本、高性能的产品,他们也在市场上取得了不俗的成绩。
未来,市场上将出现越来越多的公司竞争,在价格、性能和服务方面将展开激烈的竞争。
四、政策环境在航空、航天、军事和海洋等领域,惯性导航在国家安全和国家利益中发挥着重要作用。
因此,在政策方面,政府会鼓励和支持国内厂商的技术研发和产业化,提高企业的创新能力和市场竞争力。
同时,政府也将加强惯性导航技术标准的制定和实施,促进行业标准的共同发展,提高行业整体水平。
惯性导航ppt课件

受任何干扰 、隐蔽性强 、输出信息量大 、输出信息实时性强
等优点 ,使其在军事领域和许多民用领域都得到了广泛的应
用 ,已被许多机种选为标准导航设备或必装导航设备 。
一、惯性导航技术的发展历史
图1.4 陀螺仪弹
惯性导航是一门涉及精密机械、计算机技术、微电子、光 学、自动控制、材料等多种学科和领域的综合技术。由于陀螺 仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的 先后、理论的建立和新型传感器制造技术的出现,将惯性技术 的发展划分为四代。
几种姿态结算是重点
三、惯导系统的分类
Bortz 和 Jordon 最早提出了等效旋转矢量概念用于陀 螺输出不可交换误差的修正, 从而在理论上解决了不可交换 误差的补偿问题, 其后的研究就主要集中在旋转矢量的求解 上 ,根据在相同姿态更新周期内 ,对陀螺角增量等间隔采样 数的不同 、有双子样算法、 三子样算法等 。为减少计算量 Gilmore 提出了等效旋转矢量双回路迭代算法Miller 讨论 了在纯锥运动环境下等效旋转矢量的三子样优化算法, 此后 ,在 Miller 理论的基础上 Jang G. Lee 和 Yong J.Yoon 对等效旋转矢量的四子样优化算法进行了研究。 Y.F.Jiang 对利用陀螺的角增量及前一更新周期采样值的算法进行了研究 , 研究结果表明, 采样阶数越高,更新速率越快 ,姿态更新 算法的误差就越小。 Musoff 提出了圆锥补偿算法的优化指 标, 分析了圆锥补偿后的算法误差与补偿周期幂次 r 的关系 。 这些理论研究奠定了姿态更新算法的经典理论基础 。
一、惯性导航技术的发展历史
图1.5 惯导技术发展历史
二、惯性传感器的最新发展现状
2.1陀螺仪 定义:传统意义上的陀螺仪是安装在框架中绕回转体的对
惯性导航知识点

惯性导航知识点概述惯性导航是一种基于物理原理的导航技术,它利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。
这种导航方式不受外部环境的影响,因此在无法使用地面、天空或卫星信号进行导航的环境中具有很高的适用性。
本文将介绍惯性导航的原理、应用和未来发展方向。
一、惯性导航原理惯性导航基于牛顿第一定律,即物体在没有外力作用时将保持静止或匀速直线运动。
根据这个原理,惯性导航系统利用加速度计和陀螺仪来测量物体的加速度和角速度,并通过积分计算出位置和方向。
加速度计测量物体的加速度,而陀螺仪测量物体的角速度。
结合这两个测量值,我们可以获得物体的运动状态。
二、惯性导航应用惯性导航在许多领域中都有广泛的应用。
一方面,在航空航天领域,惯性导航被广泛用于飞机、导弹和航天器等的导航系统中。
因为这些系统需要长时间在没有卫星信号的空间中运作,而惯性导航正好可以提供稳定准确的导航信息。
另一方面,在汽车和船舶领域,惯性导航也可以用于提供车辆和船只的位置和方向信息。
三、惯性导航的优势和限制与其他导航技术相比,惯性导航具有一些独特的优势。
首先,惯性导航不受外部环境的干扰,能够在恶劣天气条件下工作。
其次,惯性导航系统具有较高的精度和更新速率,可以提供准确的导航信息。
然而,惯性导航也存在一些限制。
由于惯性传感器存在漂移问题,导航的误差会随时间累积,因此需要通过其他导航系统进行校正,如全球卫星定位系统(GPS)。
四、惯性导航的未来发展方向随着技术的不断发展,惯性导航正朝着更加精确和可靠的方向发展。
首先,研究人员正在努力改进惯性传感器的性能,减小测量误差和漂移问题,提高导航的精度。
其次,结合其他导航系统,如GPS和地图数据,可以进一步提高惯性导航的可靠性和准确性。
此外,随着人工智能技术的发展,惯性导航系统可能会与其他智能设备和系统进行集成,实现更多应用场景和功能。
总结惯性导航是一种基于物理原理的导航技术,利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。
惯性导航系统技术的研究与发展
惯性导航系统技术的研究与发展惯性导航系统(Inertial Navigation System, INS)是一种利用惯性导航传感器测量和集成飞行器运动信息的导航技术。
它以惯性测量单元(Inertial Measurement Unit, IMU)为核心,通过测量加速度和角速度等物理量,计算出飞行器的位置、速度和姿态等导航参数。
惯性导航系统技术的研究与发展具有重要意义,不仅可以应用于航空航天领域,还可以拓展到其他领域,例如汽车、船舶等。
惯性导航系统技术的研究与发展主要包括三个方面:传感器技术、运动解算算法和误差补偿方法。
首先,传感器技术是惯性导航系统的基础。
目前常用的惯性导航传感器包括陀螺仪和加速度计。
陀螺仪用于测量飞行器的角速度,而加速度计则用来测量飞行器的加速度。
传感器的性能对系统导航精度和可靠性具有重要影响。
因此,研究人员致力于开发高精度、低成本、小尺寸的惯性导航传感器。
传感器技术的创新可以提供更准确的输入数据,从而提高惯性导航系统的性能。
其次,运动解算算法是惯性导航系统的核心。
传感器测量得到的加速度和角速度需要通过运动解算算法计算出飞行器的姿态、速度和位置等导航信息。
常用的运动解算算法包括卡尔曼滤波器、扩展卡尔曼滤波器等。
这些算法基于动力学模型和测量方程,结合先验信息和测量数据,通过迭代计算得到最优的导航解算结果。
研究人员对于运动解算算法进行改进和优化,旨在提高系统的导航精度和鲁棒性。
最后,误差补偿方法是惯性导航系统中不可或缺的一环。
由于传感器本身存在误差和漂移,以及环境条件的变化,惯性导航系统的导航参数会随着时间累积误差而发生偏移。
为了解决这个问题,研究人员提出了各种误差补偿方法。
常见的方法包括零偏校准、温漂补偿、初始对准等。
这些方法能够减小传感器误差对系统导航性能的影响,延长系统的导航有效性。
总的来说,惯性导航系统技术的研究与发展对于提高导航精度、降低成本、提升可靠性具有重要意义。
随着人们对于导航需求的不断提高和技术的不断进步,惯性导航系统将会得到更广泛的应用。
惯性导航技术发展与应用论文
惯性导航技术发展与应用【摘要】阐述了惯性导航的基本原理,并通过简图来表示出原理的示意图。
举出了常见的导航系统.总结了世界范围内惯性导航的发展历程与发展趋势,其中重点介绍了国内导航的发展路程。
而后简洁叙述了惯性导航的应用。
【关键词】惯性导航;平台式惯性导航;捷联式惯性导航0.引言惯性导航系统利用惯性敏感元件在飞机、导弹、舰船、火箭载体内部测量载体相对惯性空间的线运动和角运动参数,在给定的运动初始条件下,根据牛顿运动定律,推算载体的瞬时速度和瞬时位置。
惯性导航涉及到控制技术、计算机技术、测试技术、精密机械工艺等多门应用技术学科,是现代高精尖技术的产物。
1.惯性导航的基本原理在这里我们假设船舶在海面的较小范围内航行,这样舰船的活动区域可近似看作是一平面,球面导航就可以化为平面导航。
我们再假设载体的初始坐标(□,λ)。
载体是匀速航行,且东向、北向的分速度分别是ve0、vn0。
我们沿着船舶平台的正东方和正北方各安装一个加速度计,从这两个速度计中的输出,可以根据载体沿正东方向和正北方向的加速度:ae和an,并与初始速度相加得到载体的东向与北向速度。
ve=ve+atvn=ve+at也可以用再北向与东向的加速度的一次积分再与初速度求和,得到东向与北向的瞬时速度。
根据ve、vn可得出载体位置坐标经纬度(□,λ)的变化率,再积分则得到经纬度的变化量,加上初始坐标即可的载体的瞬时位置:□=□+∫vn/rdtλ=λ+∫ve/r cos□dt在惯性导航系统发展的过程中,一直存在着两种发展方向,即平台式与捷联式。
平台式方案是将陀螺仪安装在由框架构成的稳定平台上,用陀螺仪敏感平台的角运动,通过平台稳定回路使平台保持指向向上的稳定,把加速度计也放在稳定平台上,其敏感轴的指向也是明确的,加速度的输出信息由导航计算机处理,可方便地提取载体的加速度,计算载体速度、位置以及平台的控制量。
捷联式惯性导航系统,导航加速度计和陀螺直接安装在载体上。
惯性导航的应用和发展论文
南京理工大学导航定位技术概论课论文作者: ___________________ 学号: __________________学院(系” ________________________________________专业: ___________________________________________题目:惯性导神农百草育航的发展与应用指导者:______________________________________2012年9 月论文摘要目次1引言 ................................................................... 2惯性导航系统原理 .......................................................2.1惯性导航定位系统中的基本关系.......................................2. 2平台式惯性导航定位系统 ............................................2. 3捷联式惯性导航定位系统 ............................................ 3惯性导航技术的发展 .....................................................3.1惯性导航的发展历程.................................................3.2 惯性导航和其他筋络速通导航方式的组合4惯性导航技术的应用 .....................................................结束语................................................................参考文献..............................................................1引言惯性导航是一门综合了机电、光学、数学、力学、控制及计算机等学科的尖端技术,是现代科学技术发展到一定阶段的产物。
惯性导航技术的新进展及其发展趋势
惯性导航技术的新进展及其发展趋势惯性导航技术是一种利用惯性传感器(如加速度计和陀螺仪)来测量和跟踪设备位置、方向和速度的技术。
它被广泛应用于航空航天、汽车导航、无人机、船舶、军事设备等众多领域。
随着科技的不断发展和创新,惯性导航技术也在不断取得新的进展,同时也呈现出了一些新的发展趋势。
一、新进展1. 惯性导航芯片的发展目前,惯性导航技术的发展主要受制于惯性导航芯片的性能和精度。
近年来,随着微电子技术和纳米技术的发展,惯性导航芯片的性能得到了极大的提升,其精度和稳定性也得到了显著的改善。
新一代的惯性导航芯片不仅体积更小、功耗更低,而且精度更高,能够更好地适应各种环境和应用场景。
2. 多模态融合技术的应用随着传感器技术的进步,多模态融合技术在惯性导航领域的应用也日益广泛。
通过将惯性传感器与其他类型的传感器(如GPS、视觉传感器、激光雷达等)进行融合,可以有效弥补惯性传感器存在的漂移和累积误差问题,提高导航系统的精度和稳定性。
3. 数据处理算法的优化随着人工智能和大数据技术的不断发展,各种先进的数据处理算法也被应用到了惯性导航技术中。
基于深度学习的惯性导航数据处理算法能够更加准确地识别和修正传感器数据中的噪声和误差,从而提高了导航系统的性能和稳定性。
二、发展趋势1. 更高精度、更高稳定性随着航空航天、自动驾驶、无人机等领域对导航精度和稳定性的要求越来越高,惯性导航技术也将朝着更高精度、更高稳定性的方向发展。
未来的惯性导航系统将会更加精准地测量和跟踪位置、方向和速度,以满足各种复杂环境下的导航需求。
2. 多传感器融合多传感器融合技术是未来惯性导航技术发展的重要趋势之一。
通过融合惯性传感器和其他类型的传感器,可以有效地提高导航系统的精度和可靠性,实现全天候、全地形的导航和定位。
3. 智能化、自适应未来的惯性导航系统将更加智能化和自适应,能够根据实际环境和应用场景自动调整参数和算法,提高系统的适应性和鲁棒性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性导航的发展与应用
作者:林娟
来源:《报刊荟萃(下)》2017年第11期
摘要:惯性导航技术,主要通过陀螺仪和加速度计测量载体的角速率和加速度信息,经积分运算得到载体的速度和位置信息。
惯导有平台式惯导系统和捷联惯导系统。
本论文阐述了惯性导航的原理,惯性导航发展历程以及应用。
关键词:平台式惯导;捷联式惯导;组合导航;发展及应用
1惯性导航系统原理
1.1惯性导航定位系统中的基本关系
惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统该系统根据陀螺的输出建立起导航坐标系,根据加速度计输出解算出运载体的速度和位置。
导航解算的加速度信息必须是导航坐标系内的数学向量。
可通过两种途径实现这一要求。
一种途径是将加速度计安装在稳定平台上,稳定平台由陀螺控制,使平台始终跟踪要求的导航坐标系,这种系统就叫做平台式惯性导航系统。
另一种途径是将加速度计和陀螺都直接安装在运载体上,陀螺输出用来解算运载体相对导航坐标系的姿态变换矩阵,加速度计输出经姿态阵变换至导航坐标系内,这相当于建立起来数学平台,这种系统叫做捷联式惯性导航系统。
1.2平台式惯性导航定位系统
方位陀螺不施矩,水平陀螺控制指北方位惯导系统:平台坐标系各轴即陀螺和加速度计的敏感轴与地理坐标系各轴始终保持重合的平台式惯导系统。
自由方位惯导系统:平台始终保持水平,在极区仍存在导航计算溢出的问题,解决方法是采用格网坐标法。
2惯性导航技术的发展
2.1惯性导航技术的发展历程
惯性导航技术,作为一门高科技尖端技术,早在1687年,牛顿三大定律的建立成为了惯性导航的理论基础;到1852年,傅科提出了陀螺的定义、原理以及应用设想;再到1908年,安修茨研制造出了世界上第一台摆式陀螺罗经,以及1910年提出的舒勒调谐原理,这就属于第一代惯性技术,这一代技术奠定了整个惯性导航发展的基础。
于20世纪40年代火箭发展的初期,第二代惯性技术开始出现。
其主要研究内容从惯性仪表技术发展扩展到惯性导航系统的应用。
首先是惯性技术在德国V-2火箭上的第一次成功应用,但由于陀螺和加速度计精度很低,惯性系统设计又十分粗糙,又实现不了休拉调谐要求,加上控制系统十分原始,制导精度极低,在轰炸伦敦的过程中,有1/4的V-2火箭提前掉入大海。
到50年代中后期,0.5nmile/h的单自由度液浮陀螺平台惯导系统研发并应用成功。
接着1968年,漂移约为0.0050/h的G684型动压陀螺研制成功。
在70年代中期,第三代惯性技术出现了一些新型陀螺、加速度计和相应的惯性导航系统。
其研究目标是进一步提高INS的性能并通过多种技术途径来扩展和应用惯性技术。
这一阶段的主要陀螺包括:动力调谐陀螺、静电陀螺、环形激光陀螺、干涉式光纤陀螺等。
惯性导航技术发展依靠三方面科学技术发展的支持:新概念测量原理和新型惯性器件,先进制造工艺,计算机技术。
当前,属于惯性技术发展的第四代阶段,其目标是实现精度高、高可靠性、低成本、数字化、小型化、应用领域更加广泛的导航系统。
一方面,陀螺的精度不断提高,漂移量高达lO-6 o/h;另一方面,随着新型固态陀螺仪的逐渐成熟。
以及高速度、大容量的数字计算机技术的进步。
2.2惯性导航和其他导航方式的组合
惯性导航原理决定了单一的惯性导航系统存在导航误差,并且随时间而累积,导航精度将随时间而发散,所以惯性导航系统不能够单独长时间工作,必须定期校准,否则将出现重大偏差。
随着现代控制理论和微电子、计算机以及信息融合等学科的发展,在导航领域内,展开了以惯性导航系统为主的组合导航的多导航系统研究。
以惯性导航为中心的组合导航系统,这类组合导航系统多数用于定位精度极高的特种舰船,如导弹核潜艇,靶场测量船,石油助探船等。
惯性导航与测位系统设备或系统组成有天文/惯性、卫导/惯性、无线电/惯性等组合导航系统,惯导与测速设备组成的多普勒计程仪(或声纳)/惯性导航的组合导航系统,还有惯导/惯导组合导航系统。
这类系统一般都采用Kalman滤波技术的综合处理方法,用计算机进行复杂的计算。
解决随机误差源引起的导航定位误差随时间积累的问题,达到高精度要求。
3惯性导航技术的应用
惯性导航技术不断拓展到新的应用领域,其范周已经由原来的陆地车辆、船舶、舰艇、航空飞行器等扩展到了大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道、航天飞机、星际探测、制导武器等各个方面,尤其实在军事战争方面,海湾战争和伊拉克战争中,以军和美军就采用了GPS/INS[5]作为中段制导,红外成像、地形辅助、图像匹配作为末段制导的复合式制导方式的精确制导武器如,SLAM和“战斧”巡航导弹,联合直接攻击弹药(JDAM)等在战争中发挥强大的摧毁性作用。
在我们日常生活中的必备用品中,如:摄影机、儿童玩具中惯导技术也被广泛应用。
在惯性导航系统研究方面,价格低廉且体积小和高精度、高性能的惯性传感器,是未来一段时间内的发展方向,并将成为军事和民用领域内关注的焦点。
参考文献:
[1]秦永元.惯性导航[M].北京:科学出版社,2006.
[2]张爱军.惯性导航1[R].导航定位技术概论,2012.
[3]李俊博,朱涛,邹艳忠.陀螺稳定系统参数测试仪设计[J].计算机测量与控制,2011.
[4]袁赣南,周卫东,刘利强,王伟等.导航定位系统工程[M].黑龙江:哈尔滨工程大学出版社,2009.
作者简介:
林娟(1994.09—),女,汉族,湖南邵阳人,工作单位:国营长虹机械厂。