天津市红桥区2019年精品中考数学复习试题(3)及答案

合集下载

天津市红桥区2019-2020学年第三次中考模拟考试数学试卷含解析

天津市红桥区2019-2020学年第三次中考模拟考试数学试卷含解析

天津市红桥区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=25 AB,连接OE交BC于F,则BF的长为( )A.23 B.34 C.56 D.12.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )A.(3,2) B.(4,1) C.(4,3) D.(4,23)3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )A.60° B.50° C.40° D.30°4.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A.512B.1213C.513D.13125.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=22.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个6.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )A. B. C. D.7.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE 的长是( )A.5 B.6 C.7 D.88.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数( )A.40° B.50° C.60° D.90°9.如图,在平行四边形ABCD中,都不一定 成立的是( )①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④10.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个12.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y 的最大值是( ) A .0 B .3 C .﹣3D .﹣7 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明把一副含45°,30°的直角三角板如图摆放,其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠α+∠β等于_____.14.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.15.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为______. 16.若﹣4x a y+x 2y b =﹣3x 2y ,则a+b =_____. 17.在中,,,点分别是边的中点,则的周长是__________. 18.方程21x -=1的解是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20.(6分)已知关于x的一元二次方程x 2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.21.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 2 3 10 …日销售量(n件) 198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天) 1≤x<50 50≤x≤90销售价格(元/件) x+60 100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.22.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?23.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?24.(10分)计算:33.14 3.1412cos452π⎛⎫-+÷+-⎪⎝⎭o ()()12009211-+-+-.25.(10分)先化简,后求值:22321113x x xx x-++⋅---,其中21x=+.26.(12分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)27.(12分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=12AD=12×3=32,∴△EFB∽△EOM,∴BF BEOM EM=,∵AB=5,BE=25AB,∴BE=2,BM=52,∴EM=52+2=92,∴23922BF=,∴BF=23,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2.D【解析】【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到OD′=22AD OA'- =23,于是得到结论.【详解】解:∵AD′=AD=4,AO=12AB=1, ∴OD′=22AD OA '-=23,∵C′D′=4,C′D′∥AB , ∴C′(4,23), 故选:D . 【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键. 3.C 【解析】试题分析:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°50°=40°=40°,∵AB ∥CD ,∴∠2=∠D=40°.故选C .考点:平行线的性质. 4.A 【解析】试题解析:∵一个斜坡长130m ,坡顶离水平地面的距离为50m ,∴这个斜坡的水平距离为:2213050-=10m , ∴这个斜坡的坡度为:50:10=5:1. 故选A .点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1:m 的形式. 5.A 【解析】 【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可; ②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出AE BC=AF CF,由AE=12AD=12BC ,推出AF CF=12,即CF=2AF ;③正确.只要证明DM 垂直平分CF ,即可证明;④正确.设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有 b a =2ab,即b=2a ,可得tan ∠CAD=CD AD =2b a =22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB. ∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 ba =2ab,即b=2a,∴tan∠CAD=CDAD=2ba=22.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.6.C【解析】【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形; 7.B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=12AB=7在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+(7 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键 8.B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB⊥BC,∴∠ABC=90°,∵点B在直线b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°3=180°--∠1-90°1-90°=50°=50°,∵a∥b,∴∠2=∠3=50°3=50°. .故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键. 9.D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.10.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B. 12.B【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y 随x 的增大而减小, ∴在0≤x≤5范围内,x=0时,函数值最大﹣2×2×0+3=30+3=3, 故选B .【点睛】本题考查了一次函数y=kx+b 的图象的性质:①k >0,y 随x 的增大而增大;②k <0,y 随x 的增大而减小.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.210° 【解析】 【分析】根据三角形内角和定理得到∠B =45°,∠E =60°,根据三角形的外角的性质计算即可. 【详解】 解:如图:∵∠C =∠F =90°,∠A =45°,∠D =30°, ∴∠B =45°,∠E =60°, ∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B =∠A+∠B+∠2+∠3=90°90°+120°+120°=210°, 故答案为:210°. 【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键. 14.51.710⨯ 【解析】解:将170000用科学记数法表示为:1.7×1.7×11.故答案为1.7×1.7×11. 15.105000300034000x y x y +=⎧⎨+=⎩【解析】试题解析:根据题意得:105000300034000.x y x y +=⎧⎨+=⎩故答案为10 5000300034000.x yx y+=⎧⎨+=⎩16.1【解析】【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.17.【解析】【分析】首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可. 【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,∵点D、E、F分别是边AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.18.x=3【解析】去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2.7米【解析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·DE="AE" ·tantan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.20.(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围. 试题解析:(1)根据题意得△=(-6)2-1(2m +1)≥0, 解得m≤1;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1, 而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3, 而m≤1,所以m 的范围为3≤m≤1.21.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y 元,则当1≤x <50时,y=﹣2x 2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n 与x 成一次函数,∴设n=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +=⎧⎨+=⎩, 解得:2200k b =-⎧⎨=⎩,所以n 关于x 的一次函数表达式为n=-2x+200; 当x=10时,n=-2×n=-2×10+200=110+200=1. (2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为:221604000150120120005090y x x x y x x ⎧=-++≤⎨=-+≤≤⎩(<)()当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200, ∵-2<0,∴当x=40时,y 有最大值,最大值是7200; 当50≤x≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述:当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.22. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个. 【解析】 【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个), 补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.23.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查. (2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%. (3)全校学生人数:400÷(1﹣30%﹣24%﹣26%) =400÷=400÷20% 20% =2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小. 24.π 【解析】 【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可 【详解】原式()3.14 3.141π=--+÷()2121221-⨯++--213.14 3.142121π+=-+-+--2211π=-++-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 25.21x -,2【解析】分析:先把分值分母因式分解后约分,再进行通分得到原式=21x -,然后把x 的值代入计算即可.详解:原式=311x x x -+-()()•213x x ()+-﹣1=11x x +-﹣11x x -- =21x - 当x=2+1时,原式=2211+-=2.点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 26.答案见解析 【解析】 【分析】连接OP ,作线段OP 的垂直平分线MN 交OP 于点K ,以点K 为圆心OK 为半径作⊙K 交⊙O 于点A ,A′,作直线PA ,PA′,直线PA ,PA′即为所求. 【详解】解:连接OP ,作线段OP 的垂直平分线MN 交OP 于点K ,以点K 为圆心OK 为半径作⊙K 交⊙O 于点A ,A′,作直线PA ,PA′, 直线PA ,PA′即为所求.【点睛】本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题. 27.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元. 【解析】 【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%; (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+=解得:1y =1.1,2y =2.1, ∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。

天津市红桥区2019届中考数学复习《》专题练习含答案

天津市红桥区2019届中考数学复习《》专题练习含答案

天津市红桥区普通中学2019届初三数学中考复习 统计与概率 专题复习练习一、选择题1.下列调查适合做抽样调查的是( D )A .对某小区的卫生死角进行调查B .审核书稿中的错别字C .对八名同学的身高情况进行调查D .对中学生目前的睡眠情况进行调查2.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件为必然事件的是( B ) A .骰子向上的一面点数为奇数 B .骰子向上的一面点数小于7 C .骰子向上的一面点数是4 D .骰子向上的一面点数大于6 3.数据4,8,4,6,3的众数和平均数分别是( D ) A .5,4 B .8,5 C .6,5 D .4,54.一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( A ) A .3,3,0.4 B .2,3,2 C .3,2,0.4 D .3,3,25.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是( C ) A.12 B.14 C.13 D.166.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( A ) A.13 B.23 C.16 D.197.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( C ) A.13 B.16 C.19 D.1128.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( B )A.13B.12C.34D.239.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率是( D ) A.34 B.14 C.13 D.1210.某校九年级数学兴趣小组的同学调查了若干名家长对 “初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人; (2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°; (3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110.其中正确的结论个数为( A )A .4B .3C .2D .1二、填空题11.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数是__17岁__12.要从甲、乙两名运动员中选出一名参加“2019里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s 2),乙的方差为0.008(s 2),则这10次测试成绩比较稳定的是__乙__运动员.(填“甲”或“乙”)13.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__92%__.14.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图),从中任选一根,能钉成三角形相框的概率是 __25__.15.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为__14__.16.在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P(x ,y)落在直线y =-x +5上的概率是__14__.17.一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球__28__个.18.小军的期末总评成绩由平时、期中、期末成绩按权重比2∶3∶5组成,若小军平时考试得90分,期中考试得75分,要使他的总评成绩不低于85分,则小军的期末考试成绩x 不低于__89__分.三、解答题19.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差s 甲2,s 乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选__乙__参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选__甲__参赛更合适.解:(1)x 乙=8环 (2)s 甲2大20.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.解:这个游戏对双方是公平的.列表(略),由表可知一共有6种情况,积大于2的有3种,∴P(积大于2)=36=12,∴这个游戏对双方是公平的21.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m 的值为__2__;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.解:(2)列表(略),由表可知总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率=412=1322.某学校为了增强学生体质,决定开设以下体育课外活动项目:A 篮球、B 乒乓球、C 跳绳、D 踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有__200__人; (2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).解:(2)C 项目对应人数为200-20-80-40=60(人),补图略(3)列表略,由表可知共有12种等可能的情况,恰好选中乙、丙两位同学的有2种,∴P(选中甲、乙)=212=1623.“六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两份不完整的统计图: 请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补充条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童?解:(1)∵2÷12.5%=16,∴该校有16个班级;8名的班级有16-(1+2+6+2)=5(个),补图略(2)∵x =1×6+2×7+5×8+6×10+2×1216=9,∴该校平均每班有9名留守儿童;留守儿童人数的众数是10名(3)∵60×9=540,∴估计该镇小学生中共有540名留守儿童24.件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?解:(1)P(抽到的是不合格品)=14(2)画树状图(略),共有12种等可能情况,其中抽到的都是合格品的情况有6种,∴P(抽到的都是合格品)=612=12(3)由题意得3+x4+x=0.95,解得x =1625.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题: (1)填空:m =__4__,n =__1__; (2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在__B__组; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.解:(2)补图略 (4)120×4+3+120=48(人),估计一天行走步数不少于7500步的人数是48人2019-2020学年数学中考模拟试卷一、选择题1.下列运算正确的是( ) A.236a a a ⋅=B.336a a a +=C.22a a -=-D.326()a a -=2.下列计算正确的是( ) A .b 2•b 3=b 6 B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 33.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或254.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如果a :b =3:2,且b 是a 、c 的比例中项,那么b :c 等于( ) A .4:3B .3:4C .2:3D .3:26.下列运算正确的是( ) A .236a a a ⋅= B .22423a a a += C .236(2)2a a -=-D .422()a a a ÷-=7.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5B .4C .7D .148.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC 的面积为( )A .1B .2C .4D .89.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A.200米B.米C.D.1001)米10.下列计算正确的是()A.a+2a=3a2B.3a﹣2a=aC.a2•a3=a6D.6a2÷2a2=3a211.如图,若等边△ABC的内切圆⊙0的半径是2,则△ABC的面积是()A.B.C.D.12.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.二、填空题13.如图,在▱ABCD中,AD>CD,按下列步骤作图:①分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交点分别为点F,G;②过点F,G作直线FG,交AD于点E.如果△CDE的周长为8,那么▱ABCD的周长是_____.14.如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为.15.如图,已知A(0,-4)、B(3,-4),C为第四象限内一点且∠AOC=70°,若∠CAB=20°,则∠OCA=______.16.若对x恒成立,则n=______.17.已知反比例函数y=的图象经过点(2,﹣1),则k=_____.18.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C等次的扇形所对的圆心角的度数为________度三、解答题19.如图,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.(保留作图痕迹)①作∠MAC的平分线AN;②作AC的中点O,连结BO,并延长BO交AN于点D,连结CD;(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.20.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=34,求线段AB的长.21.如图,已知二次函数y=﹣x2+2x+3的图象与x轴相交于点A,B,与y轴相交于点C,连接AC,BC.该函数在第一象限内的图象上是否存在一点D,使得CB平分∠ACD?若存在,求点D的坐标,若不存在,说明理由.22.为丰富学生的课余生活,陶冶学生的情趣和爱好,某小学开展了学生社团活动。

【中考专题】天津市红桥区 2019年中考数学 二次函数 专题复习(含答案)

【中考专题】天津市红桥区 2019年中考数学 二次函数 专题复习(含答案)

2019年中考数学二次函数专题复习一、选择题1.已知二次函数y=-(x-h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为-5,则h的值为()A.3-6或1+6B.3-6或3+6C.3+6或1-6D.1-6或1+62.设a、b是常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下图中四个图象之一,则a的值为()A.6或﹣1B.﹣6或1C.6D.﹣13.已知抛物线y=﹣与直线y=x交于点A,点B,则AB的长为()A.3B.6C.3D.24.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y2+y1的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d5.已知关于x的一元二次方程x2-5x+p=0(p是常数)的一个实数根是1,则二次函数y=x2-5x+p的图像与x轴的交点坐标为( )A.(1,0),(-1,0)B.(1,0),(-6,0)C.(1,0),(5,0)D.(1,0) ,(4,0)6.抛物线y=3x2+2x﹣1向上平移4个单位长度后的函数解析式为().A.y=3x2+2x﹣5 B.y=3x2+2x﹣4C.y=3x2+2x+3 D.y=3x2+2x+47.二次函数与y=kx2-8x+8的图像与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠08.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()二、填空题9.如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②;③当x=0时,y2-y1=6;④AB+AC=10;⑤,其中正确结论的个数是:.10.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,1与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为.11.如图所示,已知二次函数y=ax2+bx+c的图象经过(-1,0)和(0,-1)两点,则化简代数式错误!未找到引用源。

2019年天津市红桥区中考数学模拟试卷(3月份)-解析版

2019年天津市红桥区中考数学模拟试卷(3月份)-解析版

2019年天津市红桥区中考数学模拟试卷(3月份)一、选择题(本大题共12小题,共36.0分)1.sin30°的值等于()A. 12B. √33C. √32D. √32.下列图形中,可以看作是中心对称图形的是()A. B.C. D.3.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A. B. C. D.4.如图,掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,小伟掷一次骰子,观察向上的一面的点数,下列属必然事件的是()A. 出现的点数是7B. 出现的点数为奇数C. 出现的点数是2D. 出现的点数大于05.下列命题中正确的是()A. 若两个多边形相似,则对应边的比相等B. 若两个多边形相似,则对应角的比等于对应边的比C. 若两个多边形的对应角相等,则这两个多边形相似D. 若两个多边形的对应边的比相等,则这两个多边形相似6.在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A. 1:2B. 1:3C. 2:3D. 2:57.从0、1、2、−3四个数中,随机抽取两个数相乘,积是负数的概率为()A. 16B. 13C. 12D. 238.关于x的一元二次方程x2+√mx+n=0(m≠0)有两个相等的实数根,则nm的值为()A. 4B. −4C. 14D. −149.已知一个正六边形的边心距为√3,则它的外接圆的面积为()A. πB. 3πC. 4πD. 12π10.若点A(x1,3)、B(x2,−1)、C(x3,1)在反比例函数y=6x的图象上,则x1、x2、x3的大小关系是()A. x1<x2<x3B. x3<x2<x1C. x2<x3<x1D. x2<x1<x311.如图,⊙O的半径为2,点A的坐标为(2,2√3),直线AB为⊙O的切线,B为切点.则B点的坐标为()A. (−√32,8 5 )B. (−√3,1)C. (−45,9 5 )D. (−1,√3)12.已知抛物线y=ax2+bx+c(a>0)经过A(−1,1)、B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c>2;③0<m<12;④n≤1,则所有正确结论的个数为()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.不透明的袋子中装有8个球,其中有3个红球,2个黑球,3个黄球,这些球除颜色外无其它差别,从袋子中随机取出1个球,则它是黄球的概率为______.14.已知反比例函数y=kx(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为______.15.二次函数y=−x2−2x+3的最大值是______.16.如图,AB为斜靠在墙壁AC上的长梯,梯脚B距墙1.5m,梯上一点D距墙1.2m,BD长0.5m,则梯长AB为______m.17.如图,在扇形OAB中,∠AOB=90°,点C是AB⏜上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为______.18.如图,在Rt△ABC中,AB=AC,D、E是斜边AC上两点,且∠DAE=45°,若BE=4,CD=3,则AB的长为______.三、计算题(本大题共1小题,共8.0分)19.解方程:x−√2x+1=1.四、解答题(本大题共6小题,共58.0分)20.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若tanA=3,b=8,求a和c;4(2)若tanA=2,c=2√5,求b和sin B.21.如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠OCD=90°,点D在第一象限,OC=6,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.22.已知AB是⊙O的直径,弦CD与AB相交于点E,过点C作⊙O的切线,与BA的延长线交于点P,∠BPC=42°.(1)如图①,连接OD,若D为弧AB的中点,求∠ODC的大小;(2)如图②,连接BD,若DE=DB,求∠PBD的大小.23.小明上学途中要经过A、B两地,由于A、B两地之间有一池塘,所以需要走路线AC、CB.如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC、CB的长(结果保留小数点后一位,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2取1.414).24.在平面直角坐标系中,O为原点,点A(−6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC与A′B′的交点D的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P为线段BC′的中点,求AP长的取值范围(直接写出结果即可).25.已知抛物线y=ax2−2ax−2(a≠0).(1)当抛物线经过点P(4,6)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当−1≤x≤5时,抛物线的最高点为M,最低点为N,,求点M和点N的坐标;点M的纵坐标为112(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x2≥3时,均有y1≥y2,求t的取值范围.答案和解析1.【答案】A,【解析】解:sin30°=12故选:A.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.2.【答案】B【解析】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.根据中心对称图形的概念求解.此题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题主要考查了简单组合体的三视图,解题的关键是掌握主视图是从正面看到的平面图形.4.【答案】D【解析】解:A.出现的点数是7是不可能事件;B.出现的点数为奇数是随机事件;C.出现的点数是2是随机事件;D.出现的点数大于0是必然事件;故选:D.根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】A【解析】解:A、若两个多边形相似,则对应边的比相等,是真命题;B、若两个多边形相似,则对应角的比不等于对应边的比,是假命题;C、若两个多边形的对应角相等,这两个多边形不一定相似,是假命题;D、两个多边形的对应边的比相等,则这两个多边形不一定相似,是假命题;故选:A.根据相似多边形的性质与判定解答即可.本题考查了命题与定理的知识,解题的关键是了解相似多边形的性质与判定,难度不大.6.【答案】A【解析】【分析】此题主要考查相似三角形的判定与性质,平行四边形的性质等知识点.根据四边形ABCD是平行四边形,求证△AEF∽△CBF,然后利用其对应边成比例即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴△AEF∽△CBF,∴AEBC =AFCF,∵点E为AD的中点,∴AEBC =AFCF=12,故选A.7.【答案】B12种等可能结果,其中积是负数的有4种结果,所以积是负数的概率为412=13,故选:B.列表得出所有等可能结果,从中找到积为负数的结果数,根据概率公式计算可得.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.【答案】C【解析】解:∵关于x的一元二次方程x2+√mx+n=0(m≠0)有两个相等的实数根,∴△=(√m)2−4n=0,解得:m=4n,∴nm =14,故选:C.本题考查了根的判别式,能根据根的判别式的内容求出m=4n是解此题的关键.根据根的判别式得出△=0,求出m=4n,代入求出即可.9.【答案】C【解析】 【分析】本题考查了正多边形与圆的关系:把一个圆分成n(n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正确理解正多边形的有关概念是解题的关键.如图,六边形ABCDEF 为正六边形,作OH ⊥AB 于H ,连接OA ,利用正六边形的性质得到OA 为正六边形ABCDEF 的外接圆的半径,OH 为正六边形ABCDEF 的边心距,即OH =√3,然后利用含30°直角三角形的性质及勾股定理求出OA ,即可得到它的外接圆的面积. 【解答】 解:如图,六边形ABCDEF 为正六边形,作OH ⊥AB 于H ,连接OA ,则OA 为正六边形ABCDEF 的外接圆的半径,OH 为正六边形ABCDEF 的边心距,即OH =√3,∵∠OAB =12×120°=60°,,AH =12OA ,∴OA 2=OH 2+AH 2,OA 2=OH 2+(12OA)2OA =2或−2(舍去), ∴OA =2,∴它的外接圆的面积=π⋅22=4π. 故选:C .10.【答案】D【解析】解:∵点A(x 1,3)、B(x 2,−1)、C(x 3,1)在反比例函数y =6x 的图象上, 又∵y >0时,x >0,y <0时,x <0, 即x 1>0,x 3>0,x 2<0,当x >0时,y 随x 的增大而减小, ∴x 1<x 3,综上可知:x 2<x 1<x 3, 故选:D .根据反比例函数的性质,结合“点A(x 1,3)、B(x 2,−1)、C(x 3,1)在反比例函数y =6x 的图象上”,根据各个点纵坐标的正负,即可判断横坐标的正负,当x >0时,根据反比例函数y=6x的增减性,即可判断两个正数横坐标的大小,综上,可得到答案.本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和反比例函数的增减性是解题的关键.11.【答案】D【解析】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2√3),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2√3),∴OA=√22+(2√3)2=4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=12,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°−∠AOB−∠AOC=60°,∴OD=1,BD=√3,即B点的坐标为(−1,√3).故选D.先利用切线AC求出OC=2=12OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.12.【答案】B【解析】解:∵抛物线过点A(−1,1),B(2,4),∴{a−b+c=14a+2b+c=4,∴b=−a+1,c=−2a+2.∵a>0,∴b<1,c<2,∴结论①正确,②错误;∵抛物线的顶点坐标为(m,n),∴m=−b2a =−−a+12a=12−12a,∴m<12,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(−1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①④.故选:B.根据点A、B的坐标,利用待定系数法即可求出b=−a+1、c=−2a+2,结合a>0,可得出b<1、c<2,即结论①正确②错误;由抛物线顶点的横坐标m=−b2a,可得出m=12−12a,即m<12,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(−1,1),可得出n≤1,结论④正确.综上即可得出结论.本题考查了二次函数图象与系数的关系以及待定系数法求二次函数解析式,逐一分析四条结论的正误是解题的关键.13.【答案】38【解析】解:∵不透明的袋子中装有8个球,其中有3个红球,2个黑球,3个黄球,∴从袋子中随机取出1个球,则它是黄球的概率为38;故答案为:38.用黄球的个数除以总球的个数即可得出取出黄球的概率.此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】1【解析】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.反比例函数y=kx(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.【答案】4【解析】【分析】本题主要考查二次函数的最值,解题的关键是熟练掌握二次函数的图象和性质.将抛物线解析式配方成顶点式后,利用二次函数的性质即可得.【解答】解:∵y=−x2−2x+3=y=−(x2+2x+1−1)+3=−(x+1)2+4,∴当x=−1时,y取得最大值4,故答案为:4.16.【答案】2.5【解析】解:∵DE⊥AC,BC⊥AC,∴DE//BC,∴△ADE∽△ABC,∴ABAD =BCDE,即:ABAB−0.5=1.51.2,∴AB=2.5m.故答案为:2.5.易得DE//BC,那么可得△ADE∽△ABC,利用对应边成比例可得AB的长.本题考查相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例.17.【答案】π2【解析】解:连接AB,∵OD⊥BC,OE⊥AC,∴D、E分别为BC、AC的中点,∴DE为△ABC的中位线,∴AB=2DE=2.又∵在△OAB中,∠AOB=90°,OA=OB,∴OA=OB=√22AB=√2,∴扇形OAB的面积为:90π×(√2)2360=π2.故答案是:π2.连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC 的中点,即ED为三角形ABC的中位线,即可求出AB的长.利用勾股定理、OA=OB,且∠AOB=90°,可以求得该扇形的半径.此题考查了垂径定理,勾股定理,扇形面积的计算以及三角形的中位线定理,熟练掌握定理是解本题的关键.18.【答案】6√2【解析】解:如图过B作BC的垂线,垂足为B,并截取BF=CD,连接FE,AF.∵∠FBE=90°,FB=3,BE=4∴在Rt△FBE中FE2=FB2+BE2=32+42=52∴FE=5又∵AB=AC,∠BAC=90°∴Rt△ABC是等腰直角三角形∴∠ABC=∠ACB=45°∴∠FBA=∠FBC−∠ABC=90°−45°=45°∴在△AFB与△ADC中{BF=CD∠ABF=∠ACD AB=AC∴△AFB≌△ADC(SAS)∴∠2=∠3,AF=AD又∵∠1+∠EAD+∠2=90°∴∠1+∠2=45°∴∠FAE=∠1+∠3=45°∴∠FAE=∠DAE∴在△AFE与△ADE中{AF=AD∠FAE=∠DAE AE=AE∴△△AFE≌△ADE(SAS)∴FE=DE=5∴BC=BE+ED+DC=4+5+3=12又∵在Rt△ABC中AB=cos∠ABC⋅BC即AB=cos45°×12=√22⋅12=6√2题目中有长度等于3和长度等于4的线段,那么通过点B作边BC的垂线截取BF=DC= 3,即可构造出两直角边分别为3和4,斜边为5的直角三角形,连接AF易证明△AFB≌△ADC,连接FE易证明△AFE≌△ADE,从而求得DE=BF=5,进而求得BC的长,再根据△ABC是等腰直角三角形,利用其斜边与直角边的边比关系易求得AB的长.该题考察了全等三角形证明的基本方法和构造三角形找到对应角和对应边是突破点以及等腰直角三角形直角边和斜边的特性.19.【答案】解:移项得:√2x+1=x−1,两边平方得:2x+1=(x−1)2,x2−4x=0,解得:x1=0,x2=4,经检验x=0不是原方程的解,x=4是原方程的解,即原方程的解是x=4.【解析】先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.20.【答案】解:(1)由tanA=34,b=8得到:ab=a8=34,a=6.根据勾股定理得到:c=√a2+b2=√82+62=10.(2)由tanA=ab=2得到:a=2b.由勾股定理得到:c 2=a 2+b 2,即(2√5)2=5b 2,b =2.所以sinB =b c =2√5=√55.【解析】本题考查了锐角三角函数定义和勾股定理,利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.(1)利用锐角三角形函数的定义求得a ,然后结合勾股定理求得c .(2)由锐角三角函数的定义和勾股定理求得b ,然后再由锐角三角形函数的定义来求sin B .21.【答案】解:(1)∵∠OCD =90°,点D 在第一象限,OC =6,DC =4, ∴D(6,4),∵OD 的中点为点A ,∴A(3,2);设反比例函数解析式为y =k x ,那么k =3×2=6,∴该反比例函数的解析式为y =6x ;(2)在y =6x 中,当x =6时,y =1,则点B(6,1),设直线AB 解析式为y =mx +n ,则{3m +n =26m +n =1, 解得{m =−13n =3, ∴直线AB 解析式为y =−13x +3.【解析】(1)先求出点A 的坐标,再利用待定系数法求解可得;(2)先求出点B 的坐标,再利用待定系数法求解可得.本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求一次函数和反比例函数解析式及中点坐标公式.22.【答案】解:(1)如图①,连接OC ,∵过点C 作⊙O 的切线,与BA 的延长线交于点P , ∴OC ⊥PC , ∵∠BPC =42°,∴∠COP =90°−42°=48°,∵D 为弧AB 的中点, ∴OD ⊥AB ,∴∠COD =90°+48°=138°,∵OC =OD ,∴∠ODC =∠OCD =12(180°−138°)=21°;(2)如图②,连接AC ,OC ,∵DE =DB ,∴∠DBE=∠DEB=x,∵∠ACE=∠DBE=x,∠CEA=∠DEB=x,∴∠CAE=180°−2x,∵OA=OC,∴∠OCA=∠CAE=180°−2x,∴∠AOC=180°−(∠OCA+∠CAE)=4x−180°=48°,解得x=57°,∴∠PBD=57°.【解析】(1)连接OC,由切线条件可得OC⊥PC,因为∠BPC=42°,得∠COP=48°,因为D为弧AB的中点,所以OD⊥AB,可得∠COD=138°,因为OC=OD,得∠ODC=∠OCD,进而得出∠ODC的度数;(2)连接AC,OC,因为DE=DB,可设∠DBE=∠DEB=x,因为∠ACE=∠DBE=x,∠CEA=∠DEB=x,可得∠CAE=180°−2x,因为OA=OC,可得∠OCA=∠CAE,进而得出∠AOC=4x−180°=48°,解方程可得出∠PBD的度数.本题考查圆的切线的性质,圆的基本性质,等腰三角形性质,第(2)问通过设未知数建立方程是解题的关键.23.【答案】解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°=CDAD=1,CD=AD,sinA=sin45°=CDAC =√22,AC=√2CD.在Rt△BCD中,tanB=tan37°=CDBD ≈0.75,BD=CD0.75;sinB=sin37°=CDBC ≈0.60,CB=CD0.60.∵AD+BD=AB=63,∴CD+CD0.75=63,解得CD≈27,AC=√2CD≈1.414×27=38.178≈38.2,CB=CD0.60≈270.60=45.0,答:AC的长约为38.2m,CB的长约等于45.0m【解析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=√2CD,CB=CD0.60,可得答案.本题考查了解直角三角形的应用,利用线段的和差得出关于CD的方程是解题关键.24.【答案】解:(1)∵A(−6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=6√2,OA′=OA=6,∠OBC=45°,∴A′B=6√2−6,∴BD=(6√2−6)×√2=12−6√2,∴CD=6−(12−6√2)=6√2−6,∴BC与A′B′的交点D的坐标为(6−6√2,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°−∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=3√3,B′N=C′M=3,∴点B′的坐标为(3√3−3,3+3√3);(3)如图③,连接OB,AC相交于点K,则K是OB的中点,∵P为线段BC′的中点,OC′=3,∴PK=12∴P在以K为圆心,3为半径的圆上运动,∵AK=3√2,∴AP最大值为3√2+3,AP的最小值为3√2−3,∴AP长的取值范围为3√2−3≤AP≤3√2+3.【解析】(1)当α=45°时,延长OA′经过点B,在Rt△BA′D中,∠OBC=45°,A′B=6√2−6,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=3√3,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P的轨迹.25.【答案】解:(1)因为P(4,6)在二次函数y=ax2−2ax−2图象上,∴6=16a−8a−2,解得a=1,当抛物线经过点P(4,6)时,抛物线的解析式为:y=x2−2x−2=(x−1)2−3,∴抛物线的顶点坐标为(1,−3);=1,(2)∵该二次函数的图象开口向上,对称轴为直线x=−−2a2a∴当1≤x≤5时,y随x的增大而增大,∴当x =5时,y 取的值最大112,即M(5,112).把M(5,112)代入y =ax 2−2ax −2,解得a =12,∴该二次函数的表达式为y =12x 2−x −2,当x =1时,y =−52,∴N(1,−52);(3)当a >0时,种情况不存在,当a <0时,该函数的图象开口向下,对称轴为直线x =1,∵t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2,点A(x 1,y 1)B(x 2,y 2)在该函数图象上, ∴{t +1≤3t ≥1−(3−1), ∴−1≤t ≤2.故t 的取值范围−1≤t ≤2.【解析】本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)抛物线经过点P(4,−6),代入抛物线即可求出顶点坐标;(2)根据图象的开口和增减性,可以求出抛物线的解析式.即可求出点M ,点N 的横坐标;(3)根据二次函数的开口的情况进行分类讨论即可.。

天津市红桥区2019届中考复习《反比例函数的图象》专题训练含答案

天津市红桥区2019届中考复习《反比例函数的图象》专题训练含答案

天津市红桥区普通中学2019届初三数学中考复习 反比例函数的图象及其性质专题训练一、选择题1.若y =(a +1)xa 2-2是反比例函数,则a 的取值为( A )A .1B .-1C .±1D .任意实数2.若反比例函数y =kx(k≠0)的图象经过P(-2,3),则该函数的图象不经过的点是( D )A .(3,-2)B .(1,-6)C .(-1,6)D .(-1,-6)3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x 图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( D )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 2D .x 2<x 3<x 14.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数y =kx 的图象经过点B ,则k 的值是( C )A .1B .2 C. 3 D .2 35.已知一次函数y 1=kx +b(k <0)与反比例函数y 2=mx (m≠0)的图象相交于A ,B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( A )A .x <-1或0<x <3B .-1<x <0或0<x <3C .-1<x <0或x >3D .0<x <3二、填空题6.已知一次函数y =ax +b 与反比例函数y =kx 的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为__y =x -2__.7.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x 的图象交于A ,B 两点,则四边形MAOB 的面积为__10__.8.如图,过原点O 的直线与反比例函数y 1,y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点,若函数y 1=1x ,则y 2与x 的函数表达式是__y 2=4x__.9.如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y =kx (k≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD.若△OCD∽△ACO,则直线OA 的解析式为__y =2x__.三、解答题10.如图,在直角坐标系xOy 中,直线y =mx 与双曲线y =nx 相交于A(-1,a),B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m ,n 的值;(2)求直线AC 的解析式.解:(1)∵直线y =mx 与双曲线y =nx 相交于A(-1,a),B 两点,∴B 点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(-1,2),将A(-1,2)代入y =mx ,y =nx,得m =-2,n =-2(2)设直线AC 的解析式为y =kx +b ,∵y =kx +b 经过点A(-1,2),C(1,0)∴⎩⎪⎨⎪⎧-k +b =2,k +b =0,解得k =-1,b =1,∴直线AC 的解析式为y =-x +111.如图,在平面直角坐标系xOy 中,一次函数y 1=ax +b(a ,b 为常数,且a≠0)与反比例函数y 2=mx (m为常数,且m≠0)的图象交于点A(-2,1),B(1,n). (1)求反比例函数和一次函数的解析式; (2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当y 1<y 2<0时,自变量x 的取值范围.解:(1)由题意,点A(-2,1)在反比例函数y 2=m x 的图象上,∴1=m-2,m =-2.∴反比例函数解析式为y 2=-2x .又点B(1,n)也在反比例函数y 2=-2x 的图象上,∴n =-21=-2.∵点A ,B 在一次函数y 1=ax +b的图象上,∴⎩⎪⎨⎪⎧1=-2a +b ,-2=a +b. 解得⎩⎪⎨⎪⎧a =-1,b =-1. ∴一次函数解析式为y 1=-x -1(2)设线段AB 交y 轴于点C ,∴OC =1.分别过点A ,B 作AE ,BF 垂直于y 轴于点E ,F.∴S △AOB =S △AOC +S △BOC =12OC·AE+12OC·BF=12×1×2+12×1×1=32(3)当y 1<y 2<0时,x >112.已知反比例函数y =1-2mx(m 为常数)的图象在第一、三象限.(1)求m 的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD 的顶点D ,点A ,B 的坐标分别为(0,3),(-2,0). ①求出函数解析式;②设点P 是该反比例函数图象上的一点,若OD =OP ,则P 点的坐标为____;若以D ,O ,P 为顶点的三角形是等腰三角形,则满足条件的点P 的个数为____个.解:(1)根据题意得1-2m >0,解得m <12(2)①∵四边形ABOD 为平行四边形,∴AD ∥OB ,AD =OB =2,而A 点坐标为(0,3),∴D 点坐标为(2,3),∴1-2m =2×3=6,∴反比例函数解析式为y =6x;②∵反比例函数y =6x 的图象关于原点中心对称,∴当点P 与点D 关于原点对称,则OD =OP ,此时P 点坐标为(-2,-3),∵反比例函数y =6x 的图象关于直线y =x 对称,∴点P 与点D(2,3)关于直线y =x 对称时满足OP =OD ,此时P 点坐标为(3,2),点(3,2)关于原点的对称点也满足OP =OD ,此时P 点坐标为(-3,-2),综上所述,P 点的坐标为(-2,-3),(3,2),(-3,-2);由于以D ,O ,P 为顶点的三角形是等腰三角形,则以D 点为圆心,DO 为半径画弧交反比例函数图象于点P 1,P 2,则点P 1,P 2满足条件;以O 点为圆心,OD 为半径画弧交反比例函数图象于点P 3,P 4,则点P 3,P 4也满足条件,如图,∴满足条件的点P 的个数为4个13.如图,已知反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C. (1)写出反比例函数解析式; (2)求证:△ACB∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式.解:(1)∵y=k x 过(1,4)点,∴k =4,即反比例函数的解析式为y =4x (2)∵B(m,n),A(1,4)在y =4x 的图象上,∴AC =4-n ,BC =m -1,ON =n ,OM =1,∴AC ON =4-n n =4n -1,而B(m ,n)在y =4x 上,∴4n=m ,∴AC ON =m -1,而BC OM =m -11,∴AC ON =BCOM.又∵∠ACB=∠NOM=90°,∴△ACB ∽△NOM (3)∵△ACB 与△NOM 的相似比为2,∴m -1=2,∴m =3,∴B 点坐标为(3,43).设AB 所在直线的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧43=3k +b ,4=k +b ,∴k =-43,b =163,∴所求解析式为y =-43x +1632019-2020学年数学中考模拟试卷一、选择题1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠2x 的取值范围在数轴上表示正确的是( )A .B .C .D .3.如图,四边形ABCD 内接于⊙O ,连接,OA OC .若OA CB ∥,70BCO ∠=︒.则∠ABC 的度数为( )A.110ºB.120ºC.125ºD.135º4.如图,在平面直角坐标系中,Rt △AOB 的边OA 在y 轴上,OB 在x 轴上,反比例函数y =kx(k≠0)与斜边AB 交于点C 、D ,连接OD ,若AC :CD =2:3,S △OBD =72,则k 的值为( )A .4B .5C .6D .75.实数在数轴上对应点的位置如图所示,则正确的结论是( )A. B. C. D.6.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出( )A.50元B.100元C.150元D.200元7.计算(2sin60°+1)+(﹣0.125)2006×82006的结果是()A B C +2 D.08.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤329.下面由7个完全相同的小正方体组成的几何体的左视图是( )A.B.C.D.10.如图,点A、B、C、D都在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠ADC的度数为()A.30°B.45°C.60°D.90°11.如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为()A B .C .D .12.如图,将一副三角板叠放在一起,使顶点A 在另一直角三角形的斜边DE 上,斜边BC 与直角边EF 在一直线上,则图中∠EAC 的度数为( )A .60°B .75°C .65°D .55°二、填空题13.数轴上的两个数﹣3与a ,并且a >﹣3,它们之间的距离可以表示为_____.14.如图,AC 、BD 相交于点O ,A D ∠=∠,请补充一个条件,使AOB ≌DOC △,你补充的条件是__________.(填出一个即可)15.比较大小:16.如图,在ABC ∠中,90A ∠=,点,D E 分别在,AC BC 边上,3BD CD DE ==,且1452C CDE ∠+∠=,若6AD =,则BC 的长是__________.17.已知关于x 的二次函数y=ax 2+2ax+a-3在-2≤x≤2时的函数值始终是负的,则常数a 的取值范围是____. 18.如图,点A 、B 、C 、D 、E 在⊙O 上,AE 的度数为40°,则∠B+∠D 的度数是_____.三、解答题19.如图,小明在M 处用高1.5米(DM=1.5米)的测角仪测得学校旗杆AB 的顶端B 的仰角为32°,再向旗杆方向前进9米到F 处,又测得旗杆顶端B 的仰角为64°,请求出旗杆AB 的高度(sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,结果保留整数).20.已知关于x 的不等式组1m-2x x-1,25x 23(x-1).⎧<⎪⎨⎪+<⎩(1)当m=-11时,求不等式组的解集;(2)当m 取何值时,该不等式组无解?21.已知二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点. (1)求k 的取值范围;(2)方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2,且方程x 12+x 22+15=6x 1x 2,求k 的值,并写出y =x 2﹣(k+1)x+14k 2+1的代数解析式.22.一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25. (1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.23.如图,∠A=∠B=30°,P 为AB 中点,线段MV 绕点P 旋转,且M 为射线AC 上(不与点d 重合)的任意一点,且N 为射线BD 上(不与点B 重合)的一点,设∠BPN=α.(1)求证:△APM ≌△BPN ; (2)当MN=2BN 时,求α的度数;(3)若AB=4,60°≤α≤90°,直接写出△BPN 的外心运动路线的长度。

天津市红桥区2019-2020学年中考中招适应性测试卷数学试题(3)含解析

天津市红桥区2019-2020学年中考中招适应性测试卷数学试题(3)含解析

天津市红桥区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE 等于( )A .40°B .70°C .60°D .50°2.已知抛物线2(2)2(0)y ax a x a =+-->的图像与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①当0a >的条件下,无论a 取何值,点A 是一个定点;②当0a >的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于2-;④若AB AC =,则152a +=.其中正确的结论有( )个. A .1个B .2个C .3个D .4个 3.下列计算正确的是( )A .a+a=2aB .b 3•b 3=2b 3C .a 3÷a=a 3D .(a 5)2=a 74.下列运算正确的是( )A .x 3+x 3=2x 6B .x 6÷x 2=x 3C .(﹣3x 3)2=2x 6D .x 2•x ﹣3=x ﹣15.如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 长为( )A .7B .72C .82D .96.如图,在△ABC 中,EF ∥BC ,AB=3AE ,若S 四边形BCFE =16,则S △ABC =( )A .16B .18C .20D .247.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )A .28×109B .2.8×108C .2.8×109D .2.8×10108.若一组数据2,3,4,5,x 的平均数与中位数相等,则实数x 的值不可能是( )A .6B .3.5C .2.5D .19.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③23AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .110.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A .6.75×103吨B .67.5×103吨C .6.75×104吨D .6.75×105吨11.如图是由四个相同的小正方体堆成的物体,它的正视图是( )A .B .C .D .12.下列各数3.1415926,227-,39,π,16,5中,无理数有( ) A .2个 B .3个C .4个D .5个 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣12的绝对值是_____. 14.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.15.已知a+b=4,a-b=3,则a 2-b 2=____________.16.方程组538389x y x y -=⎧⎨+=⎩的解一定是方程_____与_____的公共解. 17.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷ ⎪⎝⎭的值是______. 18.计算:()235y y ÷=____________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,DE 交AC 于点E ,且∠A =∠ADE .(1)求证:DE 是⊙O 的切线;(2)若AD =16,DE =10,求BC 的长.20.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y ﹣x)﹣1x 1,其中x =3+1,y =3﹣1.21.(6分)如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, 2 ≈1.41, 3 ≈1.73)22.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?24.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.(10分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值26.(12分)如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为P (2,9),与x 轴交于点A ,B ,与y 轴交于点C (0,5).(Ⅰ)求二次函数的解析式及点A ,B 的坐标;(Ⅱ)设点Q 在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q 的坐标;(Ⅲ)若点M 在抛物线上,点N 在抛物线的对称轴上,使得以A ,C ,M ,N 为顶点的四边形是平行四边形,且AC 为其一边,求点M ,N 的坐标.27.(12分)综合与实践:概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n ],''AB C S ∆:ABC S ∆= .问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n ]得到△AB′C′,使点 B ,C ,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC 作变换 得到△AB′C′,则四边形 ABB′C′为正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.C【解析】【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【详解】①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,∴△=(1-a)1+8a=(a+1)1>0,∴a≠-1.∴该抛物线的对称轴为:x=21122aa a-=-,无法判定的正负.故②不一定正确;③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;④∵A(1,0),B(-2a,0),C(0,-1),∴当AB=AC=,解得:a=12+,故④正确. 综上所述,正确的结论有3个.故选C .【点睛】考查了二次函数与x 轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = -2b a,对称轴与抛物线唯一的交点为抛物线的顶点P ;特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0);(1).抛物线有一个顶点P ,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-2b a=0,〔即b=0〕时,P 在y 轴上;当Δ= b1-4ac=0时,P 在x 轴上;(3).二次项系数a 决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b 和二次项系数a 共同决定对称轴的位置;当a 与b 同号时(即ab>0),对称轴在y 轴左;当a 与b 异号时(即ab<0),对称轴在y 轴右;(5).常数项c 决定抛物线与y 轴交点;抛物线与y 轴交于(0,c );(6).抛物线与x 轴交点个数 Δ= b1-4ac>0时,抛物线与x 轴有1个交点;Δ= b1-4ac=0时,抛物线与x 轴有1个交点;Δ= b1-4ac<0时,抛物线与x 轴没有交点.X 的取值是虚数(x= -b±√b1-4ac 乘上虚数i ,整个式子除以1a );当a>0时,函数在x= -b/1a 处取得最小值f(-b/1a)=〔4ac-b1〕/4a ;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac -b1/4a}相反不变;当b=0时,抛物线的对称轴是y 轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).3.A【解析】【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.4.D分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.5.B【解析】【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=72.【详解】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=故选B.6.B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴1 169xx=+,解得:x=2,∴S△ABC=18,故选B.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.7.D【解析】【分析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.8.C【解析】【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.9.C【解析】【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,BD CD CBDE BD BE==,即121DE BE==∴DE=5,BE=5,在△GAB和△DBC中,DBE DCBAD BCGAB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAB≌△DBC(ASA) ∴AG=DB=1,BG=CD∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴12AG AF GFCB CF BF===,且有AB=BC,故①正确,∵GBAC=∴AF=AB,故③正确,GF=3,FE=BG﹣GF﹣BE=15,故②错误,S △ABC =12AB•AC =2,S △BDF =12BF•D E =12×253×55=13,故④正确. 故选B . 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.10.C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C . 11.A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A .【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.12.B【解析】【分析】根据无理数的定义即可判定求解.【详解】在3.1415926,227-39π165 164=,3.1415926,227-是有理数, 39π53个, 故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12【解析】【分析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a 的点和表示b 的点的距离.【详解】 ﹣12的绝对值是|﹣12|=12【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.14【解析】【分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=2,DE= P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF DE = ,OF CM AM OE DE AE=,代入求出BF 和CM ,相加即可求出答案. 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA= 12OA=2,由勾股定理得:DE=,设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE , ∴,BF OF CM AM DE OE DE AE==,∵AM=PM= 12(OA-OP )= 12(4-2x )=2-x , 即2,2255x x -==, 解得:55BF x,CM 5x 22==- ∴BF+CM= 5.5【点睛】考核知识点:二次函数综合题.熟记性质,数形结合是关键.15.1.【解析】【分析】 【详解】a 2-b 2=(a+b )(a-b )=4×3=1. 故答案为:1.考点:平方差公式.16.5x ﹣3y=8 3x+8y=9【解析】【详解】方程组538389x y x y -=⎧⎨+=⎩的解一定是方程5x ﹣3y=8与3x+8y=9的公共解. 故答案为5x ﹣3y=8;3x+8y=9.17.1【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可.详解:2,y x y x x x ⎛⎫--÷ ⎪⎝⎭22,x y x y xx x ⎛⎫-=-÷ ⎪⎝⎭ ()(),x y x y x x x y+-=⋅- .x y =+10,x y Q +-= 1.x y ∴+=故答案为1.点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.18.y【解析】【分析】根据幂的乘方和同底数幂相除的法则即可解答.【详解】()23565y y y y y ÷=÷=【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)15.【解析】【分析】(1)先连接OD ,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE ,推出∠EDB=∠EBD ,∠ODB=∠OBD ,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt △ADC 中,DC=12,设BD=x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC中,BC 2=(x+16)2-202,可得x 2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD ,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB ,∴∠B=∠BDO ,∵∠ADE=∠A ,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.20.﹣2【解析】【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,当3,3﹣1时,原式=2×3)×31)=2×(3﹣2)=﹣2.【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键. 21.30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×33≈40×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2 ∴AB=AE+BE≈23.1+7.2=30.3米.22.(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4)1 4 .【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)180100%30%600⨯=,360°×(1-10%-30%-40%)=72°.(4)如图;(列表方法略,参照给分).P(C粽)=31 124=.答:他第二个吃到的恰好是C粽的概率是14.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.23.(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天【解析】【分析】(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.【详解】(1)设甲、乙两队合作完成这项工程需要x天根据题意得,,解得x=36,经检验x=36是分式方程的解,答:甲、乙两队合作完成这项工程需要36天,(2)设甲、乙需要合作y天,根据题意得,,解得y≤7答:甲、乙两队至多要合作7天.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.(1)122y x=+;(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB 的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1, 解得:x 1=-6,x 1=-1.∴点P 的坐标为(-6,0)或(-1,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB 的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S △ACP =32S △BOC ,得出|x+4|=1.25. (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解析】【分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元, 22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.26.(1)y=﹣x 2+4x+5,A (﹣1,0),B (5,0);(2)Q ;(3)M (1,8),N (2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,(舍弃),∴m=5或5∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC 可应用“一组对边平行且相等”得到平行四边形.27.(1)2n ;(2)60,2n θ=︒=;(3)45︒⎡⎣.【解析】【分析】(1)根据定义可知△ABC ∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形''ABB C 是矩形,得出90BAC '∠=︒,进而得出30AB B '∠=︒,根据30°直角三角形的性质即可得出答案;(3)根据四边形 ABB′C′为正方形,从而得出45CAC '∠=︒,再根据等腰直角三角形的性质即可得出答案.【详解】解:(1)∵△AB′C′的边长变为了△ABC 的n 倍,∴△ABC ∽△AB′C′, ∴2''AB C ABCS n S ∆∆=, 故答案为:2n .(2)四边形''ABB C 是矩形,∴90BAC '∠=︒.903060CAC BAC BAC θ''∴=∠=∠-∠=︒-︒=︒.在Rt ABB 'V 中,90,60ABB BAB ''︒∠=∠=︒, 30AB B '∴∠=︒.2AB n AB'∴==. 60,2n θ∴=︒=.(3)若四边形 ABB′C′为正方形,则AB AC '=,90BAC '∠=︒,∴45CAC '∠=︒,∴45θ=︒,又∵在△ABC 中,,∴A C C '=,∴2n =故答案为:45,2︒⎡⎤⎣⎦.【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n ]的意义是解题的关键.。

天津市红桥区2019-2020学年中考数学考前模拟卷(3)含解析

天津市红桥区2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 2.在1、﹣1、3、﹣2这四个数中,最大的数是( )A .1B .﹣1C .3D .﹣23.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .194.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H,下列结论:①△AED ≌△DFB ;②S 四边形 BCDG =CG 2;③若AF=2DF ,则BG=6GF,其中正确的结论A .只有①②.B .只有①③.C .只有②③.D .①②③.5.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件6.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =( )A .141°B .144°C .147°D .150°7.下列二次根式,最简二次根式是( )A .B .C .D .8.已知圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定9.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 10.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根11.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A .1.35×106B .1.35×105C .13.5×104D .135×10312.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A .众数B .中位数C .平均数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=(x ﹣3)2+1的顶点坐标是____.14.如图,在矩形ABCD 中,AB=2,E 是BC 的中点,AE ⊥BD 于点F ,则CF 的长是_________.15.如图,菱形ABCD 的边8AB =,60B ∠=︒,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APDQ 沿直线PQ 折叠,A 的对应点为A ',当CA '的长度最小时,CQ 的长为__________.16.如图,点A 、B 、C 是⊙O 上的三点,且△AOB 是正三角形,则∠ACB 的度数是 。

天津红桥区2019年初三上年中考试数学试题及解析

天津红桥区2019年初三上年中考试数学试题及解析一、选择题〔本大题共12小题,每题3分,共36分〕1.以下图形中,是中心对称图形旳是2.将二次函数旳图象向左平移1个单位,那么平移后旳二次函数旳【解析】式为3.假设方程是关于x旳一元二次方程,那么m旳值为A、-1B、1C、5D、-1或14.x=1是方程旳一个根,那么方程旳另一个根是A、1B、-1C、2D、-25.关于x旳一元二次方程有两个不相等旳实数根,那么k旳取值范围是6.一件商品旳原价是118元,通过两次提价后旳价格为168元,假如每次提价旳百分率差不多上,依照题意,下面列出旳方程正确旳选项是x7.假设抛物线旳顶点在轴旳正半轴上,那么b旳值为A、0B、2C、-2D、-2或28.如图,△OAB是正三角形,绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,那么旋转角度是A、150°B、120°C、90°D、60°9.如图,在△ABC中,,假设BC=12,那么其外接圆O旳直径为A、12B、18C、20D、24第8题第9题10.如图,在Rt△ABC中,以点C为圆心,CA长为半径旳圆与AB交于点D,那么AD旳长为11.在同一坐标系中,一次函数与二次函数旳图象可能是A12.二次函数旳图象如下图,有以下结论:①;②。

其中,正确结论旳个数是A、1B、2C、3D、4【二】填空题〔本大题共6小题,每题3分,共18分〕〔13〕点与点B关于原点对称,那么点A旳坐标为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔14〕方程旳解为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔15〕抛物线旳顶点坐标为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔16〕假设抛物线为常数〕与轴没有公共点,那么实数m旳取值范围为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔17〕如图,点A,D在圆O上,BC是圆O旳直径,假设旳大小为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔度〕〔18〕一块草坪旳护栏是由50段形状相同旳抛物线组成,如图,为牢固期间,每段护栏需按间距加设不锈钢管做成旳立柱.为了计算所需不锈钢管立柱旳总长度,设计人员测得如下图旳数据,那么需要不锈钢管旳总长度为﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔米〕第17题第18题【三】解答题〔本大题共7小题,共66分,解承诺写出文字说明、演算步骤或推理过程〕〔19〕〔本小题总分值8分〕用适当旳方法解以下方程.〔20〕〔本小题总分值8分〕二次函数〔m为常数〕旳图像与y轴交于点.〔0,3〕〔Ⅰ〕求二次函数旳最大值及相应旳x值;〔Ⅱ〕在所给旳平面直角坐标系内,作出此二次函数旳图像,并依照图像,直截了当写出当时所对应旳自变量x旳取值范围.〔21〕〔本小题总分值10分〕关于x旳一元二次方程有两个不相等旳实数根〔Ⅰ〕求实数m旳取值范围;〔Ⅱ〕假设两个实数根旳平方和等于15,求实数m旳值.22、〔本小题总分值10分〕二次函数旳图象与y轴交于点(0,3),且通过点A(1,-8)和.2B(5,8)〔Ⅰ〕求二次函数旳【解析】式,并写出其图象旳顶点坐标;〔Ⅱ〕当时,求二次函数旳函数值y旳取值范围23、〔本小题总分值10分〕某超市购进一批单价为28元旳日用品,假如按每件40元旳价格销售,每月能卖200件,依照销售统计,每件日用品旳售价每降价1元,每月可多售出25件.〔Ⅰ〕写出该日用品每月旳销售利润y元与售价x元之间旳函数关系式;〔Ⅱ〕求出售价为多少元时,该日用品每月旳销售利润最大?最大利润是多少?24、〔本小题总分值10分〕在平面直角坐标系中,O为原点,点A(-4,0),点B(0,4),将△ABO)绕点O顺时针旋转,得,记旋转角为,直线相交于点.P〔Ⅰ〕如图①,当时,求证:AP⊥BP〔Ⅱ〕如图②,当时,求证:AP⊥BP〔Ⅲ〕求点P旳纵坐标旳最大值与最小值〔直截了当写出结果即可〕.25、〔本小题总分值10分〕抛物线与x轴交于A,B两点,与y轴交于C点,其顶点为D,且A(-1,0)〔Ⅰ〕求抛物线旳【解析】式和点D旳坐标;〔Ⅱ〕推断△ABC旳形状,并证明你旳结论〔Ⅲ〕点M是x轴上旳一个动点,当AM+DM取最小值时,求点M旳坐标.参考【答案】〔3〕∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,点P旳运动轨迹为以AB为直径旳圆,易得P 纵坐标最大值、最小值为下图所示:。

天津市红桥区普通中学2019届初三数学中考复习实数专题练习题教师版含答案

天津市红桥区普通中学2019届初三数学中考复习 实数 专题练习题1.下列各数中,最小的数是( A )A .-3B .|-2|C .(-3)2D .2×1052.(下列说法正确的是( D )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是13.现在网购越来越多地成为人们的一种消费方式,在2019年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为( B )A .5.7×109B .5.7×1010C .5.7×1011D .57×1094.若a 与1互为相反数,则|a +1|等于( B )A .-1B .0C .1D .25.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:3,6,3,23,15; 32,21,26,33,30; …若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( C ) A .(5,2) B .(5,3) C .(6,2) D .(6,5)6.计算:|3-4|-(12)-2=.7.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为__12__.8.将实数5,π,0,-6由小到大用“<”号连起来,可表示为. 9.按照如图所示的操作步骤,若输入的值为3,则输出的值为__55__.10.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是__xy =z__. 11.计算:(1)327+|5-2|-(13)-2+(tan60°-1)0;解:原式=3+5-2-9+1=5-7(2) (-1)2019-9 +(3-π)0+|3-3|+(tan30°)-1.解:原式=-1-3+1+3-3+3=012.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少个黑色棋子?(2)第几个图形有2019个黑色棋子?请说明理由.解:(1)18个(2)设第n个图形中有2019颗黑色棋子,则有3+3n=2019,n=671,答:第671个图形中有2019颗黑色棋子13.已知数14的小数部分是b,求b4+12b3+37b2+6b-20的值.分析:因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这种涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法解:因为9<14<16,即3<14<4,所以14的整数部分为3.设14=3+b,两边平方得14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=25+5-20=1014.观察下列关于自然数的等式:(1)32-4×12=5 ①(2)52-4×22=9 ②(3)72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92-4×( 4 )2=( 17 );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解:(2)第n个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1=右边,∴第n个等式成立15.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.解:(1)四位“和谐数”:1221,1331,1111,6666;任意一个四位“和谐数”都能被11整数,理由如下:设任意四位“和谐数”形式为:abba(a,b为自然数),则a×103+b×102+b×10+a=1001a+110b ,∵1001a +110b11=91a +10b ,∴四位“和谐数”abba 能被11整除;∴任意四位“和谐数”都可以被11整除(2)设能被11整除的三位“和谐数”为:xyx ,则x·102+y·10+x =101x +10y ,101x +10y 11=9x +y+2x -y11,∵1≤x ≤4,101x +10y 能被11整除,∴2x -y =0,∴y =2x(1≤x≤4)2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元2.一个圆的内接正三角形的边长为( )AB.4 C.D.3.若关于x的不等式组27412x xx k++⎧⎨-⎩<<的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕AB上的点O顺时针旋转90°,得到△A′B′C′,连结BC′,若BC′∥A'B′,则OB的值为()A.52B.3 C.125D.535.如图,四边形ACBD是⊙O的内接四边形,AB是⊙O的直径,点E是DB延长线上的一点,且∠DCE=90°,DC与AB交于点G.当BA平分∠DBC时,BDDE的值为()A.12B.13C.D.6.如图,过轴正半轴上的任意一点,作轴的平行线,分别与反比例函数和的图象交于点和点,点是轴上一点,连接、,则的面积为()A.3B.4C.5D.67.下列四个命题中,错误的是( )A .所有的正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B .所有的正多边形是中心对称图形,正多边形的中心是它的对称中心C .所有的正多边形每一个外角都等于正多边形的中心角D .所有的正多边形每一个内角都与正多边形的中心角互补 8.如图,在ABC ∆中,90C ∠=︒,按以下步骤作图:①:以点B 为圆心,以小于BC 的长为半径画弧,分别交AB 、BC 于点E 、F ; ②:分别以点E 、F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ; ③:作射线BG ,交AC 边于点D , 若4BC =,5AB =,则ABD S ∆=( )A .3B .103 C .6 D .2039.若关于x 的方程223ax a x =-的解为x =1,则a 等于( ) A.0.5B.﹣0.5C.2D.﹣2.10.如图1,菱形ABCD 中,∠B =60°,动点P 以每秒1个单位的速度自点A 出发沿线段AB 运动到点B ,同时动点Q 以每秒2个单位的速度自点B 出发沿折线B ﹣C ﹣D 运动到点D .图2是点P 、Q 运动时,△BPQ 的面积S 随时间t 变化关系图象,则a 的值是( )A .2B .2.5C .3D .11.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n -D.n m -12.在整数范围内,有被除数=除数×商+余数,即a =bq+r(a≥b,且b≠0,0≤r<b),若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:a =11,b =2,则11=2×5+1此时q =5,r =1.在实数范围中,也有a =bq+r(a≥b 且b≠0,商q 为整数,余数r 满足:0≤r<b),若被除数是,除数是2,则q 与r 的和( )A .﹣4B .﹣6C .-4D .-2二、填空题13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A′处,当A′E⊥AC 时,A′B=___.14.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为______ 15.如图,AB ∥CD .EF ⊥AB 于E ,EF 交CD 于F ,已知∠1=58°12',则∠2=______.16.如图所示的网格是正方形网格,则∠AOB_____∠COD .(填“>”,“=”或“<”)17.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .18.函数y=1的自变量x的取值范围是_____三、解答题19.“腹有诗书气自华,阅读路伴我成长”,我区某校学生会以“每天阅读1小时”为问卷主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅末完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)把折线统计图(图1)补充完整;(2)该校共有学生1200名,请估算最喜爱科普类书籍的学生人数.20.如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别是E、F,DE=BF,求证:四边形ABCD是平行四边形.21.如图,已知AB为⊙O的直径,C为⊙O上一点,CE与⊙O切于点C,交AB的延长线于点E,过点A作AD⊥EC交EC的延长线于点D,交⊙O于点F,连接BC,CF.(1)求证:AC平分∠BAD;(2)若AD=6,∠BAF=60°,求四边形ABCF的面积.22.如图,在⊙O中,弦AC⊥BD于点E,连接AB,CD,BC(1)求证:∠AOB+∠COD=180°;(2)若AB=8,CD=6,求⊙O的直径.23.观察以下等式.第1个等式:111326-÷=()第2个等式:1412 312()-÷=第3个等式:195 14203 -÷=()第4个等式:1166 15304 -÷=()第5个等式:1257 16425 -÷=()……按照以上规律,解决下列问题.(1)写出第7个等式:______________;(2)写出你猜想的第n个等式(n为正整数),并证明.24.一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.25.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足关系.(直接写出结论)问题情境2如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F(1)如图4,若∠E=80°,求∠BFD的度数;(2)如图5中,∠ABM=13∠ABF,∠CDM=13∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M=.【参考答案】*** 一、选择题二、填空题1314.5 815.31°48′16.=17.18.x≥0三、解答题19.(1)见解析;(2)320人.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得总人数,根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(2)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)一共调查了45÷30%=150(名),艺术的人数:150×20%=30(名),其它的人数:150×10%=15(名);补全折线图如图:(2)最喜爱科普类书籍的学生人数为:40150×1200=320(人),答:估算最喜爱科普类书籍的学生有320人.【点睛】考查折线统计图, 用样本估计总体, 扇形统计图,是中考常考题型,难度一般.20.见解析【解析】【分析】根据DE=CF,求出DF=BE,再由AB∥CD,求出∠CDF=∠ABE,从而得到△CDF≌△ABE,CD=AB结合AB∥CD,最终得到结论.【详解】证明:∵DE=CF,∴DE+EF=BF+EF,DF=BE,∵AB∥CD,∴∠CDF=∠ABE,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△CDF和△ABE中,CDF ABEDF BECFD AEB∠=∠⎧⎪=⎨⎪∠=⎩,∴△CDF≌△ABE(ASA),∴CD=AB,又∵AB∥CD四边形ABCD是平行四边形.【点睛】考查了证明全等三角形的方法,并根据一组对边平行且相等,来证明四边形为平行四边形.21.(1)详见解析;(2)【解析】【分析】(1)连接OC,如图,根据切线的性质得OC⊥CD,则可判断∴OC∥AD得到∠1=∠2,加上∠2=∠3,从而得到∠1=∠3;(2)连接OF,如图,先证明△AOF、△OBC和△COF都为等边三角形,再利用含30度的直角三角形三边的关系得到,CD=2,所以CF=2DF=4,然后根据三角形面积公式计算S四边形ABCF.【详解】(1)证明:连接OC,如图,∵CE 与⊙O 切于点C ,∴OC ⊥CD ,而AD ⊥CD ,∴OC ∥AD ,∴∠1=∠2,∵OA=OC ,∴∠2=∠3,∴∠1=∠3,∴AC 平分∠BAD ;(2)解:连接OF ,如图,∵∠BAF=60°,∴△AOF 为等边三角形,∠1=∠3=60°,∴∠BOC=∠COF=60°,∴△OBC 和△COF 都为等边三角形,在Rt △ACD 中, 在Rt △CDF 中,∠FCD=90°-∠OCF=30°,∴CD=2, ∴CF=2DF=4,∴S 四边形ABCF =3S △OAF =3×12 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和等边三角形的判定与性质.22.(1)见解析;(2) 10【解析】【分析】(1)延长BO 交⊙O 于F ,连接DF ,AD ,结合已知可证明AC ∥DF ,继而得出AF CD ,从而可得∠COD =∠AOF ,由∠AOB+∠AOF =180°,即可证明∠AOB+∠COD =180°;(2)连接AF ,可推导得出AF =CD =6,继而根据勾股定理求出BF 的长即可得.【详解】(1)延长BO交⊙O 于F,连接DF,AD.∵BF是直径,∴∠BDF=90°,∴DF⊥BD,∵AC⊥BD,∴AC∥DF,∴∠CAD=∠ADF,∴AF CD=,∴∠COD=∠AOF,∵∠AOB+∠AOF=180°,∴∠AOB+∠COD=180°;(2)连接AF.由(1)可知:AF CD=,∴AF=CD=6,∵BF是直径,∴∠BAF=90°,∴BF=,∴⊙O的直径为10.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等知识,正确添加辅助线,熟练掌握和灵活应用相关知识是解题的关键.23.(1)149918727⎛⎫-÷=⎪⎝⎭;(2)21211(1)(2)n nn n n n+⎛⎫-÷=⎪+++⎝⎭【解析】【分析】(1)分析可得第n个等式:21211(1)(2)n nn n n n+⎛⎫-÷=⎪+++⎝⎭,根据规律可得;(2)根据分式的运算法则进行分析即可. 【详解】(1)由已知可得,第7个式子:149918727⎛⎫-÷= ⎪⎝⎭ (2)第n 个等式:21211(1)(2)n n n n n n +⎛⎫-÷= ⎪+++⎝⎭证明:因为,左边2(1)(2)1n n n n n ++=⋅+2n n +==右边 所以,等式成立.【点睛】考核知识点:用式子表示运算规律.掌握分式运算法则是关键.24.40%【解析】【分析】先设第次降价的百分率是x ,则第一次降价后的价格为500(1-x )元,第二次降价后的价格为500(1-2x ),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得:500(1﹣x )(1﹣2x )=240,解得x 1=0.2=20%,x 2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.25.问题情境1:∠B+∠BPD+∠D =360°,∠P =∠B+∠D ;(1)140°;(2)16∠E+∠M =60°(3)360m 2nM ︒︒-∠= 【解析】【分析】问题情境1:过点P 作PE ∥AB ,根据平行线的性质,得到∠B+∠BPE=180°,∠D+∠DPE=180°,进而得出:∠B+∠P+∠D=360°;问题情境2:过点P 作EP ∥AB ,再由平行线的性质即可得出结论;②,③根据①中的方法可得出结论;问题迁移:(1)如图4,根据角平分线定义得:∠EBF=12∠ABE ,∠EDF=12∠CDE ,由问题情境1得:∠ABE+∠E+∠CDE=360°,再根据四边形的内角和可得结论;(2)设∠ABM=x ,∠CDM=y ,则∠FBM=2x ,∠EBF=3x ,∠FDM=2y ,∠EDF=3y ,根据问题情境和四边形内角和得等式可得结论;(3)同(2)将3倍换为n 倍,同理可得结论.【详解】问题情境1:如图2,∠B+∠BPD+∠D=360°,理由是:过P作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠B+∠BPE=180°,∠D+∠DPE=180°,∴∠B+∠BPE+∠D+∠DPE=360°,即∠B+∠BPD+∠D=360°,故答案为:∠B+∠P+∠D=360°;问题情境2如图3,∠P=∠B+∠D,理由是:过点P作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠B=∠BPE,∠D=∠DPE,∴∠BPD=∠B+∠D,即∠P=∠B+∠D;故答案为:∠P=∠B+∠D;问题迁移:(1)如图4,∵BF、DF分别是∠ABE和∠CDE的平分线,∴∠EBF=12∠ABE,∠EDF=12∠CDE,由问题情境1得:∠ABE+∠E+∠CDE=360°,∵∠E=80°,∴∠ABE+∠CDE=280°,∴∠EBF+∠EDF=140°,∴∠BFD=360°﹣80°﹣140°=140°;(2)如图5,16∠E+∠M=60°,理由是:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由问题情境1得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,16∠E=60﹣x﹣y,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴16∠E+∠M=60°;(3)如图5,∵设∠ABM=x,∠CDM=y,则∠FBM=(n﹣1)x,∠EBF=nx,∠FDM=(n﹣1)y,∠EDF =ny,由问题情境1得:∠ABE+∠E+∠CDE=360°,∴2nx+2ny+∠E=360°,∴x+y=360m2n︒︒-,∵∠M+∠EBM+∠E+∠EDM=360°,∴2nx+2ny+∠E=∠M+(2n﹣1)x+(2n﹣1)y+∠E,∴∠M=360m2n︒︒-;故答案为:∠M=360m2n︒︒-.【点睛】本题主要考查了平行线的性质和角平分线、n等分线及四边形的内角和的运用,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算,解题时注意类比思想的运用.2019-2020学年数学中考模拟试卷一、选择题1.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )A.2B.4C.8D.162.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是( )A .∠1=50°,∠2=40°B .∠1=40°,∠2=50°C .∠1=30°,∠2=60°D .∠1=∠2=45°3.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量是2460000千克.用科学记数法表示是( )A.62.510⨯千克B.52.510⨯千克C.62.4610⨯千克D.52.4610⨯千克4.下列图形中,的是( )A. B.C. D.5.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 、D 在AB 的异侧,连结AD 、OD 、OC ,若∠AOC=70°,且AD ∥OC ,则∠AOD 的度数为( )A .35°B .40°C .60°D .70°6.合肥市统计局资料显示,2016年全市生产总值为6274.3亿元,2018年全市生产总值为7822.9亿元,假设2017年与2018年这两年的年平均增长率均为x ,则下列方程正确的是( )A.()6274.3127822.9x +=B.()26274.3127822.9x += C.()26274.317822.9x += D.()()6274.31127822.9x x ++= 7.在平面直角坐标系中,已知两点()75A ,,()43B ,,先将线段AB 向右平移1个单位,再向上平移1个单位,然后以原点O 为位似中心,将其缩小为原来的12,得到线段CD ,则点A 的对应点C 的坐标为( )A.()4,3B.()4,3或()4,3--C.()4,3--D.()3,2或()3,2-- 8.如图,平行四边形ABCD 的对角线AC 平分∠BAD ,若AC =12,BD =16,则对边之间的距离为( )A.125B.245C.485D.9659.如图,△ABC 中,下面说法正确的个数是( )个.①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°;②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°;③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12;④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A .1B .2C .3D .410.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )A .甲、乙两班的平均水平相同B .甲、乙两班竞赛成绩的众数相同C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多11.如图,在菱形ABCD 中,60ABC ∠=︒,E 为BC 边的中点,M 为对角线BD 上的一个动点。

天津市红桥区2019届中考数学复习《圆》专题综合训练题含答案

天津市红桥区普通中学2019届初三中考数学复习圆专题综合训练题1. 如果两个圆心角相等,那么( )A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对2. 若ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶13. 下列直线是圆的切线的是( )A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆的直径外端点的直线4.在半径为12的⊙O中,60°圆心角所对的弧长是( )A.6πB.4πC.2πD.π5. 圆的内接梯形一定是________梯形.6. 如图,已知直线EF经过⊙O上的点E,且OE=EF,若∠EOF=45°,则直线EF和⊙O的位置关系是________.7. 已知扇形的半径为3 cm,面积为3π cm2,则扇形的圆心角是________°,扇形的弧长是________cm.(结果保留π)8. 如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.9. 如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.10. 120°的圆心角所对的弧长是12π cm,则此弧所在的圆的半径是________.11.如图,在4×4的方格中(共有16个方格),每个小方格都是边长为1的正方形.O,A,B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)12.如图,矩形ABCD中,AB=1,AD=2,以AD的长为半径的⊙A交BC边于点E,则图中阴影部分的面积为________.13.如图,若BC ︵的度数为100°,则∠BOC=________,∠A =________.14.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹的∠2=60°,则∠1=________,∠B =________.15. 如图,四边形ABCD 内接于⊙O,则∠A+∠C=________,∠B +∠ADC=________;若∠B=80°,则∠ADC =________,∠CDE =________;16. 如图,四边形ABCD 内接于⊙O,∠AOC =100°,则∠D=________,∠B =________;17. 四边形ABCD 内接于⊙O,∠A ∶∠C =1∶3,则∠A =________;18. 如图,梯形ABCD 内接于⊙O,AD ∥BC ,∠B =75°,则∠C=________.19.如图,AB 和DE 是⊙O 的直径,弦AC∥DE,若弦BE =3,求弦CE 的长.20.如图,在⊙O 中,C ,D 是直径AB 上两点,且AC =BD ,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C ,D 分别为OA ,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?21. 如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:A ,B ,C ,D 四个点在以点O 为圆心的同一圆上.22. 圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少纸?(结果精确到0.1 cm 2)23. 已知扇形的圆心角为120°,面积为300π cm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?参考答案: 1—4 DBBB 5. 等腰 6. 相切7. 120 2π 8. 120° 9. 120° 10. 18 cm 11. .2π12. 2-12-14π13. 100° 50° 14. .120° 60°15. 180° 180° 100° 80° 16. 130° 50° 17. 45° 18. 75° 19. 320. (1)连接OM ,ON ,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出AM ︵=BN ︵; (2)成立.21. 证明OA =OB =OC =OD 即可.22. 解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582π, l =(582π)2+202≈22.03, S 纸帽侧=πrl ≈12×58×22.03=638.87(cm),638.87×20=12777.4(cm 2),所以,至少需要12777.4 cm 2的纸. 23. 解:(1)如图所示:∵300π=120πR2360,∴R=30,∴弧长l =120×π×30180=20π(cm),(2)如图所示: ∵20π=2πr , ∴r =10,R =30,AD=900-100=202,∴S轴截面=12×BC×AD=12×2×10×202=2002(cm2),因此,扇形的弧长是20π cm,卷成圆锥的轴截面是200 2 cm2.2019-2020学年数学中考模拟试卷一、选择题1.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.2.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.53.下面两幅图是由几个小正方形搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体的个数为()A.3个B.4个C.5个D.6个4.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=kx(x>0)的图象上,若∠C=60°,AB=2,则k的值为()A B C.1 D.25.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 是x 轴正半轴上一点,以AB 为边作等腰直角三角形ABC ,使BAC=90∠︒,点C 在第一象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年九年级数学中考复习试题
一、选择题:
1.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50000000000千克,这个数据用科学记数法表示为()
A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克
2.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()
A. B. C. D.
3.下列计算正确的是()
A. B. C. D.
4.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
5.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()
A.90°B.85°C.80°D.60°
6.若x2+mx+16是一个完全平方式,则m的取值是( )
A.8 B.-8 C.±8 D.±4
7.如图,已知矩形OABC,A(4,0),C(0,3),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()
8.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()
A.145°B.135°C.120°D.115°
9.下列图形中,既是轴对称图形,又是中心对称图形的是()
10.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()
A.51°B.56°C.68°D.78°
11.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()
A.中位数B.平均数C.加权平均数D.众数
12.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.
下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的个数是()
A.1个B.2个C.3个D.4个
二、填空题:
13.在数:4,5,6,-1中,是不等式x-2<3的解的有.
14..如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为(填一个即可)
15.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.
16.分解因式:ab3-ab= .
17.如图,若□ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,□ABCD的面积为cm2.
18.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于__________.
三、解答题:
19.解方程:
20.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.
(1)这个班有多少学生?
(2)这批图书共有多少本?
21.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).
请根据图中提供的信息,解答下列问题:
(1)这次活动中学生做家务时间的中位数所在的组是____________;
(2)补全频数分布直方图;
(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.
22.已知B港口位于A观测点的东北方向,且其到A观测点正北方向的距离BD的长为16千米,一艘货轮从B港口以48千米/时的速度沿如图所示的BC方向航行,15分后到达C处,现测得C处位于A 观测点北偏东75°方向,求此时货轮与A观测点之间的距离AC的长(精确大0.1千米)(参考数
据: 1.41, 1.73,≈2.24,≈2.45)
23.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
24.如图,已知正方形ABCD中,AE∥BD,BE=BD,BE交AD于F. 求证:DE=DF.
25.如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.(1)求证:PA是⊙O的切线;
(2)若AB=,BC=4,求AD的长.
26.在Rt△ABC中,∠ACB=90°,AC=2,BC=4.点D是线段BC上的一个动点.点D与点B、C不重合,过点D 作DE⊥BC交AB于点E,将△ABC沿着直线DE翻折,使点B落在直线BC上的F点.
(1)设∠BAC=α(如图①),求∠AEF的大小;(用含α的代数式表示)
(2)当点F与点C重合时(如图②),求线段DE的长度;
(3)设BD=x,△EDF与△ABC重叠部分的面积为S,试求出S与x之间函数关系式,并写出自变量x的取值范围.
参考答案
1.D
2.C
3.B
4.B.
5.A.
6.C;
7.A
8.B
9.C
10.A
11.D
12.B
13.答案为:4,-1;
14.答案为:AB=DC.
15.答案为:m=﹣3.
16.答案为:ab(b+1)(b-1).
17.答案为:40
18.答案为:
19.答案为:x=-4
20.解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45
(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.
21.解:(1)C组;
(2)图略.
(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x<2.5,所以小明的判断符合实际.
22.解:BC=48×=12,在Rt△ADB中,sin∠DAB=,∴AB==16,
如图,过点B作BH⊥AC,交AC的延长线于H,
在Rt△AHB中,∠BAH=∠DAC﹣∠DAB=75°﹣45°=30°,tan∠BAH==,∴AH=BH,
BH2+AH2=AB2,BH2+(BH)2=(16)2,∴BH=8,∴AH=8,
在Rt△BCH中,BH2+CH2=BC2,∴CH=4,∴AC=AH﹣CH=8﹣4≈15.7km,
答:此时货轮与A观测点之间的距离AC约为15.7km.
23.解:(1)第20天的总用水量为1000米3
(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)
∴解得∴y与x之间的函数关系式为:y=300x﹣5000.
(3)当y=7000时,由7000=300x﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3.
24.提示:先证∠DBE = 30°.
25.(1)证明:连接OA交BC于点E,由AB=AC可得OA⊥BC,
∵PA∥BC,∴∠PAO=∠BEO=90°.∵OA为⊙O的半径,∴PA为⊙O的切线.
(2)解:根据(1)可得CE=0.5,BC=2.Rt△ACE中,,∴tanC=.
∵BD是直径,∴∠BAD=90°,又∵∠D=∠C,∴tanD==,∴AD=.
26.解:(1)如图①,
在Rt△ABC中,∠ABC=90°﹣∠BAC=90°﹣α,
∵将△ABC沿着直线DE翻折,使点B落在直线BC上的F点,
∴∠EFB=∠EBF,∴∠AEF=∠EFB+∠EBF=2∠EBF=2(900﹣∠BAC)=1800﹣2α.
(2)如图②,,当点F与点C重合时,BD=CD时,
∵ED⊥BC,AC⊥BC,∴AC∥ED,∴AE=BE,∴DE=0.5AC==1.
(3)当点F与点C重合时,BD=CD==0.5BC==2.
①如图③,当点F在AC的右侧时,即0<x≤2时,重叠部分是△EDF.
∵AC∥ED,∴△ABC∽△EDB,∴,即,∴ED=,
∴S△EDF==0.5×ED×DF==0.5××x=x2,(0<x≤2).
②如图④,当点F在AC的左侧时,即2<x<4时,设EF与AC相交于点M,
则重叠部分是四边形EDCM.∴FC=FD﹣CD=x﹣(4﹣x)=2x﹣4
∵∠ACB=∠MCF=90°,∠EFB=∠EBF,∴△ABC∽△MFC,
∴,即,∴MC=x﹣2,
∴S四边形EDCF=S△EDF﹣S△EDF==0.5×x×﹣=0.5×(x﹣2)×(2x﹣4)
=﹣x2+4x﹣4,(2<x<4).综上,可得S=。

相关文档
最新文档