《传感器技术》实验指导书(2015.10.8)
传感器技术实验指导书

实验一差动式传感器综合性实验一、实验目的1、了解差动技术在传感器中的应用2、掌握最佳线性度的求解方法二、实验内容1、观察下列三种差动式传感器的结构:(1)差动变压器传感器;(2)差动霍尔式传感器;(3)差动变面积电容式传感器;对观察结果进行描述并说明差动工作原理。
2、观察差动螺旋管式电感传感器差动性能;3、了解差动式传感器的性能特点;4、任选其中一种传感器进行位移测量实验,指出线性范围。
5、根据线性范围,进行最佳线性度计算,并与最小二乘线性度进行比较。
三、差动螺旋管式电感传感器差动性能演示差动螺旋管式电感传感器是由两个完全相同的单线圈螺管式自感传感器组成(1) 所需部件:利用差动变压器的衔铁和两个次级线圈构成差动螺旋管式电感传感器。
演示使用音频振荡器、测量电路电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头等部件。
(2) 演示步骤<1>按下图接线,将两个次级线圈分别接入示波器的两个通道。
注:此图表明,单线圈的电源电压由初级线圈的电源电压耦合产生观察两个单线圈螺管式自感传感器的输出端口波形。
两波形是否同相?当衔铁处于中间位置时,两波形的幅值是否相等?<2>上、下移动衔铁,观察两端口波形的幅值是否发生变化。
<3>将次级线圈接入电桥的相邻两臂(构成差动式传感器,示波器的一个通道显示其输出值)。
上、下移动衔铁观察传感器输出,输出值是否在“+”、“0”、“-”之间变化(过零翻转)。
<4>讨论观察结果。
四、实验报告1、写出综合传感器实验仪上应用差动技术的传感器名称及结构特点,并画出结构示意图。
2、说明上述各种传感器的差动工作原理。
3、根据所选传感器的位移测量实验完成下列内容:(1) 原始数据记录。
(2) 最小二乘法线性度求解。
(3) 最佳线性度求解。
(4) 二个线性度值的比较分析。
附件一:差动螺旋管式电感传感器位移测量(1)差动变压器二个次级线圈组成差动状态,音频振荡器LV 端做为恒流源供电,差动放大器增益适度。
传感器技术 实验指导书

传感器技术实训指导书目录实验一 K型热电偶测温实验 (3)实验二扩散硅压阻式压力传感器的压力测量实验 (6)实验三光敏电阻基本特性实验 (6)实验四霍尔传感器位移特性实验 (10)实验五电容传感器动态特性测量 (12)实验六湿敏、气敏传感器的测量 (14)实验七霍尔式转速传感器测速实验 (16)实验八光电转速传感器测速实验 (17)实验九差动变压器的振动测量 (18)实验十应变式传感器特性实验........................ 错误!未定义书签。
实验十一光纤传感器位移特性实验 (20)实验一 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。
三、实验原理:热电偶传感器的工作原理热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图1-1(a),即回路中存在电动势,该电动势被称为热电势。
图1-1(a)图1-1(b)两种不同导体或半导体的组合被称为热电偶。
当回路断开时,在断开处a,b之间便有一电动势E T,其极性和量值与回路中的热电势一致,见图1-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。
实验表明,当E T较小时,热电势E T与温度差(T-T0)成正比,即E T=S AB(T-T0)(1)S AB为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。
热电偶的基本定律:(1)均质导体定律由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。
(2)中间导体定律用两种金属导体A,B组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势E AB(T,T0),而这些导体材料和热电偶导体A,B的材料往往并不相同。
传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。
11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。
图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
传感器技术实验指导书

《传感器技术》实验指导书权义萍南京工业大学自动化学院目录实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3)实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验四压电式传感器振动实验 (11)实验五直流激励时霍尔式传感器位移特性实验 (13)实验六电涡流传感器综合实验 (15)实验七光纤传感器的位移特性实验 (18)实验一金属箔式应变片单臂、半桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
《传感器实验指导书》word版

THSCCG-1型传感器技术实训装置简介一、概述“THSCCG-1型传感器技术实训装置”是根据《中华人民共和国教育行业标准-电工电子类实训基地仪器设备配备标准》,教育部“振兴21世纪职业教育课程改革和教材建设规划”要求,按照职业教育的教学和实训要求研发的产品。
适合高职院校、职业学校的仪器仪表、自动控制、电子技术与机电技术等专业的实训教学。
二、设备构成实训装置主要由实训台、三源板、传感器和变送模块组成。
1. 实训台部分1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、四组直流稳压电源:±15V、+5V、±2~±10V、2~24V可调、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。
2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C,控制精度±1 o C。
转动源:2~24V直流电源驱动,转速可调在0~4500 rpm。
振动源:振动频率1Hz—30Hz(可调)。
3. 传感器及变送模块部分传感器包含金属应变传感器,差动变压器传感器,磁电传感器,Pt100温度传感器,K型热电偶,光电开关,霍尔开关。
变送模块包括电桥、电压放大器、差动放大器、电荷放大器、低通滤波器、相敏检波器、移相器、温度检测与调理等共五个模块。
本实训台,作为教学实训仪器,传感器基本上都采用工业应用的传感器,以便学生有直观的认识,变送模块上附有变送器的原理框图,测量连接线用定制的接触电阻极小的迭插式联机插头连接。
三、实训内容本装置的实训项目共34项,包括基本技能实训项目25项,应用型实训项目9项。
涉及压力、振动、位移、温度、转速等常见物理量的检测。
通过这些实训项目,使学生能够更全面的学习和掌握信号传感、信号处理、信号转换、的整个过程。
实验一应变式传感器特性实验一、实验目的:了解金属箔式应变片的应变效应,掌握单臂电桥的接线方法和用途。
在此基础上了解半桥、全桥的工作原理和接线方法。
传感器技术实验指导书共26页word资料

目录使用说明实验内容(各型传感器实验仪按需选用)实验一箔式应变片性能——单臂电桥实验二箔式应变片三种桥路性能比较实验三箔式应变片的温度效应实验四应变电路的温度补偿实验五半导体应变片的性能实验六半导体应变片直流半桥测试系统实验七箔式应变片与半导体应变片性能比较实验八移相器试验实验九相敏检波器试验实验十箔式应变片组成的交流全桥实验十一激励频率对交流全桥的影响实验十二交流全桥的应用——振幅检测实验十三交流全桥组成的电子秤//实验十四差动变压器性能实验十五差动变压器零残电压的补偿实验十六差动变压器的标定实验十七差动变压器的振动测量实验十八差动螺管式电感传感器位移测量实验十九差动螺管式电感传感器振幅测量实验二十激励频率对电感传感器的影响实验二十一热电式传感器——热电偶实验二十二热敏式温度传感器测温实验实验二十三P—N 温度传感器实验二十四光纤位移传感器——位移测量实验二十五光纤传感器——转速测量实验二十六光电传感器的应用——光电转速测试实验二十七霍尔式传感器的支流激励特性实验二十八霍尔式传感器的交流激励特性实验二十九霍尔式传感器的应用——振幅测量实验三十霍尔式传感器的应用——电子秤实验三十一电涡流式传感器的静态标定实验三十二被测材料对电涡流传感器的特性的影响实验三十三电涡流式传感器的振幅测量实验三十四电涡流传感器的称重实验实验三十五电涡流传感器电机测速试验实验三十六磁电式传感器实验三十七压电加速度传感器实验三十八电容式传感器特性实验三十九力平衡式传感器实验四十双平行梁的动态特性——正弦稳态相应实验四十一微机检测与转换——数据采集处理使用说明CSY系列传感器系列实验仪是用于检测仪表类课程教学实验的多功能教学仪器。
其特点是集被检测、各种传感器、信号与激励、处理电路和显示器于一体,可以组成一个完整的测试系统。
通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。
通过这些实验,实验者可以对各种不同的传感器计测量电路原理组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。
传感器实验指导书(独家)
传感器技术实验指导书电子信息教研室2005年3月前言CSY2000/SET9000型系列传感器与检测(控制)技术实验台由主控台、测控对象、传感器、实验模板、数据采集卡及处理软件等五部分组成。
一、主控台部分:提供高稳定的±15V、+5V、±2V~±10V、+2V~+24V可调四种直流稳压电源,主控台面板上装有数显电压、频率、转速、压力表。
0.4KHz~10KHz可调音频信号源;1Hz~30Hz可调低频信号源;0~20kpa可调气压源;高精度温度控制仪表,电源故障报警指示,RS232计算机串行接口;浮球流量计;SET9000型还增加了数据采集控制器及测控系统接口。
二、测控对象有:振动台1Hz~30Hz(可调);旋转源0-2400转/分(可调);温度源<200℃(可调)。
SET9000型的上述三种对象均带手动/自动调节功能。
三、传感器: 1.电阻应变式传感器、2.扩散硅压力传感器、3.差动变压器、4.电容式传感器、5.霍尔式位移传感器、6.霍尔式转速传感器、7.磁电转速传感器、8.压电式传感器、9.电涡流位移传感器10.光纤位移传感器、11.光电转速传感器、12.集成温度传感器、13.K 型热电偶、14.E型热电偶、15.Pt100铂电阻、16.湿敏传感器、17敏传感器、18.热释电传感器、19.PSD位置传感器、20.扭矩传感器、21.超声测距感器、D电荷耦合器件、23.光栅位移传感器、24.远红外、25.光敏电阻、26.光敏二极管、27.光敏三极管、28.光电池、29.光电耦合器、30.T型热电偶、31.J型热电偶、32.红外夜视传感器、33.光纤温度、34.光纤压力等,其中18.-34.传感器为增强型配置所有。
四、实验模块部分:普通型有:应变式、压力、差动变压器、电容式、电涡流、光纤位移、温度、移相/相敏检波/滤波、气敏、湿敏。
增强型有:光纤温度、光纤压力、热释电、PSD、扭矩、超声波、CCD、光栅、红外夜视。
传感器技术实验指导书
实验四电涡流传感器位移特性实验一、实验目的:1、了解电涡流传感器测量位移的工作原理和特性。
2、了解不同的被测体材料对电涡流传感器性能的影响。
3、了解电涡流传感器位移特性与被测体的形状和尺寸有关。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图4-1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图4-2的等效电路。
图中R1、L1为传感器线圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
图4-1 电涡流传感器原理图图4-2 电涡流传感器等效电路图根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0 — 无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。
由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z、L、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
传感器技术实训指导书
传感器技术实训指导书系部:班级:学号:姓名:一、实训目的设计一个楼道光控照明灯系统。
当有光照强度大于等于400Lux 时,照明灯熄灭;当光照强度小于400Lux时,照明灯点亮。
根据应用条件选型一种光敏传感器,分析传感器测量电路的工作原理、分析CC2530硬件电路找到其与测量电路的接口、编写代码。
二、实训工具:电脑、实验箱(物联网无线传感器开发套件)。
三、纪律要求:(1)每天记录考勤,分签到和签退;(2)每天时时监督记录实训进度;四、考核要求:考核总分100分,分考勤、功能实现、实训报告。
三部分所占比例如下:(1)考勤(20%):共5次,旷课一次20分;迟到视迟到时间按5-20分计;早退视早退时间按5-20分计;请假一次5分;(2)功能实现(40%):视完成情况按0-100分计;(3)实训报告(50%):视完成情况按0-100分计;五、实训说明:(1)实训报告中的项目实训总结包括内容:1)实训项目题目、实训项目的实训要求;2)实训内容中问题的答案总结;3)项目源代码;4)本次实训的收获总结,不少于200字。
5)功能实现图片(2)作品效果上交形式:1)实训报告以电子版形式上交。
2)实训报告严格按要求填写。
六、实训任务(一)根据现实使用要求,通过上网、图书馆、阅读期刊等方式,选型一种适用于楼道自动照明灯控制的光敏传感器。
光照度传感器的型号:参数数值参数数值最大电压亮电流最大功耗暗电流环境温度灵敏度响应时间价格(二)B160光照传感器测量电路工作原理分析(1)上图中电容器C2的作用是:保护,在进行电路分析时可以省略。
(2)图J2的10引脚ADC4与下图中ADC4标号一样,含义是:两个引脚连接起来(3)图中ADC4处电位为:高(4)光敏传感器输出的是电信号。
(三)CC2530的内部硬件电路的分析(1)当CC2530的LED1引脚为高电平时,LED灯D3点亮。
(2)光敏传感器采集的光照信号,最终输入到CC2530单片机的引脚上。
传感器技术实验指导书Word
传感器技术实验指导书淮阴工学院电子工程系THSRZ-1型传感器系统综合实验装置简介实验台主要由试验台部分、三源板部分、处理(模块)电路部分和数据采集通讯部分组成。
1. 实验台部分这部分设有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、直流稳压电源±15V、+5V、±2-±10V、2-24V可调四种、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。
2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C转动源:2~24V直流电源驱动,转速可调在0~4500 RPM(转/分)振动源:装有振动台1Hz—30Hz(可调)3. 处理(模块)电路部分包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、温度检测与调理、压力检测与调理等共十个模块。
4. 数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。
14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图等处理,能对数据进行分析、存盘、打印等处理,实现软件为硬件服务。
二、实验内容结合本装置的数据采集系统,不用外配示波器,可以完成大部分常用传感器的实验及应用。
实验一、 金属箔应变片的性能研究实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=K ε,式中ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l 为电阻丝长度相对变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《传感器技术》实验指导书福建农林大学计算机与信息学院电子信息工程系目录引言 (1)第一章传感器实验仪介绍 (2)第一节传感器实验仪台体简介 (2)第二节传感器参数性能说明 (2)第三节变换电路原理简介 (3)第四节其它部分简介 (4)第二章《传感器技术》实验仪实验指导 (6)实验一金属箔式应变片:单臂、半桥、全桥比较 (6)*实验一金属箔式应变片:单臂、半桥、全桥比较 (8)实验二差动变压器性能 (10)实验三差动变面积式电容传感的静态及动态特性 (12)实验四霍尔式传感器的直流激励静态位移特性 (14)引言传感器是机电一体化中各种设备和装置的“感觉器官”,它将各种各样形态各异的信息量转换成能够被直接检测的信号。
在当今信息社会的时代,如果没有传感器,现代科学技术将无法发展。
传感器在机电一体化系统乃至整个现代科学技术领域占有极其重要的地位。
为了适应这一时代发展的需要,全国各大中专院校及各类职业技术学校都相继将传感器教学纳入教学任务,作为电子、电器、测控以及工业自动化类专业的一门必修课。
ZY13Sens12BB型传感器技术实验仪是根据传感器的教学大纲,综合多所院校老师的教学意见开发的传感器系列实验系统。
主要用于各大、中专院校及职业院校开设的《传感器原理及技术》、《自动化检测技术》、《非电量电测技术》、《工业自动化仪表及控制》、《机械量电测》等课程的实验教学。
ZY13Sens12BB型传感器技术实验仪采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,希望通过实验帮助广大学生加强对书本知识及实验原理的理解,并在实验进行的过程中通过信号的拾取、转换、分析,掌握作为一个科技工作者应具备的基本的操作技能与动手能力。
ZY13Sens12BB型传感器技术实验仪内含15种传感器,基本涵盖了高校教学大纲中要求掌握的所有传感器。
各单元部件及变换处理电路的多种组合可以进行几十种传感器的实验;在外配双线示波器的情况下可以进行多种动态演示实验。
实验编排的层次从易到难、从静态到动态、从验证型到应用型,力求做到通俗易懂,贴近人的认知过程。
学生在实验之前应对相应实验内容进行预习,实验完成后根据原始记录进一步加深对实验原理的理解,力求完成实验后对所有的传感器能有全面的认识!第一章传感器实验仪介绍第一节传感器实验仪台体简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。
一、传感器安装台部分装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小电机、电涡流传感器及支座、电涡流传感器引线插孔、霍尔传感器的四个方形磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动磁芯、电容传感器的动片组、磁电传感器的可动磁芯)及扩散硅压阻式压力传感器。
湿敏传感器及气敏传感器安装在表头面板上。
二、显示及激励源部分包括电机控制单元、主电源、直流稳压电源(±2V-±10V档位调节)、电压数字显示表、频率数字显示表、音频振荡器、低频振荡器、+15V不可调稳压电源。
三、实验主面板上传感器符号单元所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线。
四、处理电路单元由电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。
ZY13Sens12BB实验仪共有15种传感器,配上一台双线(双踪)通用示波器可做几十种实验。
第二节传感器参数性能说明双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器V O可做静态或动态测量。
(注:激振线圈Ⅰ控制振动双平衡梁,激振线圈Ⅱ控制振动盘。
做实验时注意正确接线。
)一、差动变压器量程:≥5mm 直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体。
二、电涡流位移传感器量程:≥1mm 直流电阻:1Ω-2Ω多股漆包线绕制的扁平线圈与金属涡流片组成。
三、霍尔式传感器量程:≥±2mm 直流电阻:激励源端口:500Ω-1.5KΩ输出端口:300Ω-500Ω日本JVC公司生产的线性半导体霍尔片,它置于方形磁钢构成的梯度磁场中。
四、热电偶直流电阻:10Ω左右 由两个铜一康铜热电偶串接而成,分度号为T,冷端温度为环境温度。
五、电容式传感器量程:≥±2mm 由两组定片和一组动片组成的差动变面积式电容。
六、热敏电阻半导体热敏电阻NTC:温度系数为负,25℃时为10KΩ。
七、光纤传感器由多模光纤、发射、接收电路组成的导光型传感器,线性范围≥2mm。
红外线发射、接收、直流电阻:500Ω-1.5kΩ 2×60股Y形、半圆分布。
八、压阻式压力传感器量程:10Kpa(差压) 供电:≤6V 直流电阻:V s+---V s- :350Ω-450Ω V o+---V o- :3KΩ-3.5KΩ;美国摩托罗拉公司生产的MPX型压阻式差压传感器,具有温度自补偿功能,先进的X型工作片(带温补)。
九、压电加速度计PZT-5双压电晶片和铜质量块构成。
谐振频率:≥10KHz,电荷灵敏度:q≥20pc/g。
十、应变式传感器箔式应变片阻值:350Ω、应变系数:2。
本实验仪共有六片应变片,做实验时从主面板单元符号引入。
十一、PN结温度传感器:利用半导体PN结良好的线性温度电压特性制成的测温传感器,能直接显示被测温度。
灵敏度:-2.1mV/℃。
十二、磁电式传感器0.21×1000 直流电阻:30Ω-40Ω由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s 十三、气敏传感器MQ3型对酒精敏感的气敏传感器;测量范围:50-2000ppm。
十四、湿敏电阻高分子薄膜电阻型:RH:几兆Ω-几千Ω响应时间:吸湿、脱湿时间小于10秒。
湿度系数:0.5RH%/℃测量范围:10%-95%工作温度:0℃-50℃第三节变换电路原理简介传感器实验仪共有九种变换电路,其实验插孔均从面板上引出,按实验指导搭建电路可完成所有的实验。
一、电桥用于组成应变电桥,提供组桥插座,标准电阻和交、直流调平衡网络。
二、差动放大器通频带0~10KHz。
可接成同相、反相、差动结构,增益为1-100倍直流放大器。
三、电容变换器由高频振荡,放大和双T电桥组成的处理电路。
四、电压放大器增益约为5倍;同相输入;通频带0~10KHz。
五、移相器允许最大输入电压10Vp-p;移相范围≥±20º(5KHz时)。
六、相敏检波器可检波电压频率0~10KHz;允许最大输入电压10Vp-p。
极性反转整形电路与电子开关构成的检波电路。
七、电荷放大器电容反馈型放大器,用于放大压电传感器的输出信号。
八、低通滤波器由50Hz陷波器和RC滤波器组成,转折频率35Hz左右。
九、涡流变换器输出电压≥|8|V(探头离开被测物)变频式调幅变换电路,传感器线圈是振荡电路中的电感元件。
十、光电变换座由红外发射、接收组成。
第四节其它部分简介一、二套显示仪表1、数字式电压表三位半数显,电压范围0-200mV、0—2V、0—20V。
2、数字式频率表五位数显,频率范围0.4KHz-10KHz、1HZ-30HZ。
二、二种振荡器1、音频振荡器0.4KHz—10KHz输出连续可调,Vp-p值20V输出连续可调,180、0°反相输出,Lv端最大功率输出电流0.5A。
2、低频振荡器1—30Hz输出连续可调,Vp-p值20V输出连续可调,最大输出电流0.5A。
三、二套悬臂梁、测微头双平行式悬臂梁二副(其中一副为应变梁,另一副装在内部与振动圆盘相连),梁端装有永久磁钢、激振线圈和可拆卸式螺旋测微头,可进行位移与振动实验。
四、电加热器二组电热丝组成,加热时可获得高于环境温度30℃左右的升温(注意加热时间不要超过2分钟)。
五、测速电机一组由可调的低噪声高速直流风扇组成,与光电、光纤、涡流传感器配合进行测速实验。
六、二组稳压电源直流+15V,主要提供温度实验时的加热电源,最大激励1.5A。
±2V—±10V分五档输出,最大输出电流1.5A。
提供直流激励源。
第二章 《传感器技术》实验仪实验指导实验一 金属箔式应变片:单臂、半桥、全桥比较一、实验目的1、验证单臂、半桥、全桥的性能及相互之间关系。
2、比较单臂、半桥、全桥输出时的灵敏度并得出相应的结论。
二、实验内容金属箔式应变片:单臂、半桥、全桥比较。
(用测微头实现)三、实验仪器直流稳压电源、差动放大器、电桥、电压表、测微头、双平行梁、应变片、主、副电源。
四、实验原理已知单臂、半桥和全桥电路的∑R 分别为R R ∆、2R R ∆、4RR∆。
根据戴维南定理可以得出单臂电桥的输出电压近似等于14O EKuU =,于是对应半桥和全桥的电压灵敏度分别为2EKu和EKu 。
由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。
五、实验注意事项1、直流稳压电源打到±2V 档,电压表打到2V 档,差动放大器增益打到最大。
2、在更换应变片时应将电源关闭。
3、在实验过程中如有发现电压表发生过载,应将电压量程扩大。
4、在本实验中只能将放大器接成差动形式,否则系统不能正常工作。
5、接全桥时请注意区别各片子的工作状态方向。
六、实验步骤1、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与电压表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使电压表显示为零,关闭主、副电源,拆去实验连线。
2、按图1接线,图中R4为应变片,r 及W1为调平衡网络。
3、调整测微头使测微头与双平行梁吸合,并使双平行梁处于水平位置(目测),然后将直流稳压电源打到±4V档,选择适当的放大增益。
调整电桥平衡电位器W1,使表头显示为零(需预热几分钟表头才能稳定下来)。
图14、旋转测微头,使梁移动,每隔0.5mm读一个数,将测得数值填入下表,然后关闭主、副电源。
受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使电压成,R2换成,)组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出。
接成一个直流全桥,调节测微头使梁到水平位置,调节电桥W1同样使电压表显示为零。
重复4过程将读出数据填入下表。
7、在同一坐标纸上描出X-V曲线,比较三种接法的灵敏度。