《大学物理》第13章电磁感应电磁场练习题及答案

合集下载

《物理学基本教程》课后答案 第十三章 电磁感应

《物理学基本教程》课后答案 第十三章 电磁感应

第十三章 电磁感应13-1 地球表面的磁感应强度约为5105-⨯T,若将一个电阻Ω5.0,半径为20cm 的金属圆环翻转︒180,则流过该圆环截面的电荷量的最大值为多少?若将该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多少 (中子星表面的磁感应强度为810T)?分析 由(13-4)式可知,金属环在翻转中要获得流穿过环截面的感应电量的最大值,应将翻转前金属环面的法线方向置于地磁场方向,则通过环面的磁通量有最大值,翻转后磁通量为最大负值,这样翻转才有最大的磁通量改变,才能产生最大的感应电量.解 在地球表面, 最大感应电荷量为RBSR R q 221)(1121==-=ΦΦΦ 5251051.2C 5.02.014.31052--⨯=⨯⨯⨯⨯= C在中子星表面, 最大感应电荷量为RBS R R q 221)(1121==-=ΦΦΦ81002.5⨯= C 13-2半径分别为R 和r 的金属圆环共轴放置,且R >>r ,在大圆环中有恒定电流,而小圆环则以恒定速度沿轴线方向运动,问当小圆环运动到什么位置时,其内部的感应电流为最大?分析 本题中载流大圆环半径远大于小圆环的半径,小圆环所围面积内的磁场可视为均匀,其中各点的磁感应强度均近似等于位于大圆环轴线上的小圆环圆心处的值.在真空中恒定电流的磁场一章(11-10)式给出,载流圆环轴线上某点的磁感应强度B 是该点到圆环圆心距离x 的函数,小圆环沿轴线远离大圆环运动时,所围面积的磁通量减小,小圆环中将产生感生电动势和感应电流.应用极值条件可以求出感应电流为最大时小圆环的位置.解 如图13-2所示,小圆环所围面积内的磁感应强度近似等于其圆心处的值,由(11-10)式得2/3222)(2x R IR B +=μ 小圆环以恒定的速度t xd d =v 运动到轴线上x 处,圆环中的感生电动势为 2/5222202/3222202/322220i )(3d d )(2d d )(2d d d d d d x R xI R r tx x R r IR x x R r IR t BS t t +=⋅⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=-=-=2v πμπμπμΦE 圆环中感生电动势最大时感应电流也为最大值.令0d d i=xE ,得 02)(25)()(d d 227222/5222522=+-+=+--x x R x R x R x x解得2R x ±=,并取2Rx =.计算可得22i 2d d Rx x =E < 0,故小圆环运动到轴线上2R 处时,环中感应电流最大.13-3 一立方体在坐标系中的位置如图13-3所示,它的一边长为1m ,磁感应强度为0.2T 的均匀磁场沿y 轴方向,导体A 、C 和D 沿图中所示的方向以0.5m/s 的速度运动,试求每一导体内的感应电动势.分析 与用法拉第电磁感应定律比较,本题用动生电动势的定义式⎰⋅⨯=Li d )(l B v E 计算较简便.从该定义式可以看出,i E 的计算涉及到三个矢量的矢量积和标量积,因此必须先确定)(B ⨯v 的方向,以及导体棒上线元d l 的方向.解 对于导体A ,因)//(B v ,则0=⨯B v , E i = 0对于导体C ,因v 与B 夹角为 45,且 //)(B ⨯v d l ,则⎰⋅︒=⋅⨯=ll B 0i 45sin d )(v l B v E V 1007.7V 1222.05.02-⨯=⨯⨯⨯= 对于导体D ,因B v ⊥,)(B ⨯v 方向与l d 夹角为︒45,︒⋅=⋅⨯=⎰45cos 2d )(20i l B lv l B v E V 1.0V 22122.05.0=⨯⨯⨯⨯= 13-4 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框以速度v 垂直于导体运动,如图13-4所示.当线框AB 边与导线的距离为d 时,试用如下两种方法求出此时线框内的感应电动势,并标明其方向.(1)用动生电动势定义式;(2)用法拉第电磁感应定律.分析 这是一道很典型的求动生电动势题.注意以下几点:长直导线的磁场具有轴对称性,因而矩形框沿垂直于轴线方向运动时,框内将产生动生电动势;线框内的感应电动势大小与运动中矩形框的位置有关;可以用动生电动势定义式和法拉第定律求解;用法拉第定律需先求穿过闭合回路的磁通量. 在线框平面内凡与长直导线距离相等处B 大小相等方向相同,而在垂直长直导线方向B 大小不等,于是计算穿过矩形框的磁通量时,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.解1 用动生电动势的定义式计算 对于AD 和BC 边,因)(B ⨯v 方向与l d 方向垂直,电动势为零.取AB 边上线元l d 方向从A 到B ,CD 边上线元l d 方向从C 到D ,动生电动势分别为d Ibl d I ABbAB πμππμ2d cos 2d )(000v v-=⋅=⋅⨯=⎰⎰l B v E )(2d )(2d )(000a d Ibl a d ICDbCD +=+=⋅⨯=⎰⎰πμπμv vl B v E)(2)11(200a d d I d a d b I ABCDA +-=-+=πμπμvab v E 其中负号表明电动势的方向为ADCBA .解2 用法拉第定律计算如图13-4所示,以长直导线为坐标原点取x 轴向右.t 时刻AB 边距长直导线为x . 在框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过矩形框的磁通量为xax Ib x x Ib ax x+==⎰+ln2d 200πμπμΦ )(2d d ln d d 2d d 00i a x x aIb t x x a x x Ib t +=⋅⎪⎭⎫ ⎝⎛+-=-=πμπμΦv E 当d x =时矩形框上的电动势为0)(20i >+=a d d aIb πμv E即矩形框电动势i E 的方向为ADCBA .也可以用楞次定律判定框内电动势的方向为ADCBA 方向.13-5 一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于L 处的轴O 以匀角速度ω沿反时针方向旋转,磁场方向如图13-5所示,磁感强度为B ,求导体棒内的感应电动势,并指出哪一端电势较高.分析 导体棒在磁场中转动,导体棒切割磁感线,棒中产生感应电动势.如果转轴位于2L 处,棒两端电势相等,与转轴间有电势差.假如用铜盘代替导体棒,盘心与盘边缘便有一定的电势差,分别用导线从盘心和盘边缘接出,就构成一个直流发电机.解 在棒上取线元l d 沿CD 方向,则导体棒内的感应电动势为⎰⎰⋅⨯+⋅⨯=+O CDOOD CO l B l B d )(d )(v v E E⎰⎰+=3320d cos d lll Bl l Bl πωω6)32(2)3(2222L B L B L B ωωω-=-= 即棒内感应电动势大小为62L B ω,方向从D 指向C .CD 两端间的电势差为261L B V V ODCO C D ω-=+=-E E 表明C 点电势较高.13-6 如图13-6,一半径为R 的半圆形导线,保持与一载流长直导线共面,且直径CD 与长直电流垂直,C 端到直电流的距离为d .当半圆导线以匀速度v 平行于长直电流向上运动时,求半圆导线中的感应电动势大小,那一端电势较高?设cm 0.10=d ;.A 0.2;s m 0.2;m 0.15===I R v分析 连接直径CD ,与半圆弧导线构成闭合回路CDOC ,设回路顺时针绕行.由于回路匀速地平行长直导线运动,磁通量没有变化,回路中感应电动势为零,则沿回路绕行方向半圆弧导线与直线上的感应电动势大小相等,方向相反.因直径CD 上的感应电动势计算简单,可由此确定半圆弧导线上的感应电动势.解 如图13-6,在直径CD 上距长直导线为x 处取线元x d ,方向从D C →,CD 上的动生电动势为1.04.0ln 2d 2d )(04.01.00πμπμI x x I CD CD v v ==⋅⨯=⎰⎰x B v E 0V 1011.1V 4ln 22210467<⨯-=⨯⨯⨯⨯=--ππ故C 点电势高.半圆弧导线上感应电动势与直径CD 上的大小相等为V 1011.16-⨯.13-7如图13-7(a),在通有电流的无限长直导线附近,有一直角三角形线圈ABC 与其共面,并以速度v 垂直于导线运动,求当线圈的A 点距导线为d 时,线圈中的感应电动势的大小及方向.已知θ=∠=ACB b AB ,.分析 本题与13-4题相似.要注意的是AC 边与v 有一夹角,BA 边上l d 方向与)(B v ⨯方向垂直,0=AB E .解1 用动生电动势的定义如图13-7(a),取ACBA 为回路绕行方向.对于AC 段,)(B v ⨯方向竖直向上,平行长直导线,在AC 上与A 相距为l 处取线元l d ,方向C A →,动生电动势为⎰⋅+=CAAC l l d Id cos )sin (20θθπμvE⎰+=θθπθμsin 0sin d 2cos b l d l I v db d I +⋅=ln cot 20θπμv方向C A →.对于CB 段,)(B v ⨯方向竖直向上,得θπμοcot )(2b b d ICB⋅+⋅-=v E方向C B →.对于BA 段,)(B v ⨯方向与l d 垂直,则0=BA E .所以直角三角形线框上电动势大小为)(ln cot 20i bd bd b d I BA CB AC +-+⋅=++=θπμv E E E E 因b d bd b d +>+ln,则0i >E ,表明感应电动势方向为ACBA .解2 用法拉第定律如图13-7(b),在距直导线x 处取宽为x d 的面元x t x S d cot )(d θv -=,面元法线方向垂直纸面向里.设t 时刻A 点距离长直导线t v ,面元处磁感强度方向垂直纸面向里 ,大小为xIB x πμ20=穿过直角三角形的磁通量为⎰+-=b t t x x t I v v v d )1(cot 20θπμΦ)ln (cot 20tbt t b I v v v +-=θπμ当d t =v 时,应用法拉第电磁感应定律,直角三角形中的感应电动势为)(ln cot 2d d 0i bd bd b d I tdt +-+=-==θπμΦv v E >0 电动势的方向为ACBA .13-8 如图13-8,在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度为l ab =,导轨一端由一电阻相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速度为0v 运动时,求(1)金属杆能够移动的距离;(2)在此过程中电阻R 所放的焦耳热.分析 金属杆以0v 的初速度在磁场中向右运动,金属杆与导轨组成的回路中有感应电流,因而金属杆受到向左的安培力作用.在安培力作用下杆的运动速度渐慢,最后为0.速度的变化使安培力为变力.于是本题不能简单地用匀加速直线运动公式aS 22-=v -计算,而应从牛顿第二定律出发建立运动方程后求解.根据能量守恒定律,在此过程中杆的初动能全部转化电阻所发出的焦耳热.解 (1)取向右为x 正向,当杆的速度为v ,金属杆ba 上的感应电动势为⎰=⋅⨯=abBl v l B d )(v E感应电流为 RBl R I v==E 方向沿b 到a .在金属杆ba 上取电流元I l d 方向从b 到a ,I B l ⊥d ,安培力B l F ⨯=d d I ,所以作用于杆的安培力沿x 轴的负方向.Rl B B l I F F ab x v22 d -=⋅-==⎰负号表示F 与v 反向.应用牛顿第二定律,得mRl B m F t v v 22d d -== x mRl B t mR l B d d d 2222-=-=v v 设杆的移动距离为d ,由上式分离变量两边积分,有⎰⎰-=022d d v v dx mRl B得 d mRl B 220-=-v 即杆可移动的最大距离为 220l B mR d v =(2)由焦耳热公式, 电阻R 上释放的焦耳热为⎰⎰==t R Rl B t R I Q d d 22222v (1) 又 v v mRl B t 22d d -= 分离变量两边积分,t 时刻有⎰⎰-=t t mR l B 022d d vv 0vv t mRl B 22e0-=v v (2)(2)式代入(1)式,且当∞→t 时0→v ,得⎰⎰∞-=-==222022222221d ed 22v v v m t R l B t R R l B Q t mRl B 即杆从开始运动到停止,其间电阻所放的焦耳热在量值上等于2021v m .13-9磁场沿x 方向,磁感强度大小为T )6(y -,在yOz 平面内有一矩形线框,在0=t 时刻的位置如图13-9所示,求在以下几种情况下,线框中的感应电动势与t 的函数关系:(1)线框以速度m 2=v 的速度平行于y 轴匀速运动;(2)线框从静止开始,以2s m 2=a 的加速度平行于y 轴运动;(3)线框在yOz 平面内平行于z 轴重复以上两种运动.分析 磁场沿x 轴方向,矩形线框沿y 轴运动,所以DC 、BA 边上的电动势为0. 磁感强度是y 的函数,AD 边上的各点B 相等,BC 边上的各点B 相等.此题可以用动生电动势定义式和法拉第定律两种方法求解.不过,对此类既有感生又有动生电动势的题,一般来说先求磁通量,再用法拉第定律求解较易.解1 (1))(B v ⨯的方向为z 轴负向,DC 、BA 边的感应电动势为0,设AD 边感应电动势为1E ,BC 边的为2E ,方向分别为从D 到A 、从C 到B ,矩形框的总电动势为)]6()6[()(212121i y y l B B l ---=-=-=v v E E E lb v =2.0V 2.05.02=⨯⨯=V 方向为逆时针方向.(2) 矩形框作加速运动时,框上的动生电动势为lb y y l B B l v v v =---=-=-=)]6()6[()(212121i E E E其中 at =v 故 2.0i ==a t l bE t 解2 (1)以下均取逆时针方向为回路绕行方向,若0i >E ,则其沿回路绕行方向,反之亦然.穿过矩形框的磁通量为)2(26)2(26d )6(d b t lblb b y lb lb y l y by y +-=+-=-=⋅=⎰⎰+v s B Φ 其中y=vt .矩形框中的电动势为2.0d d i ==-=bl tv ΦE V (2)取回路逆时针绕行,矩形框作加速运动时穿过框的磁通量为⎰⎰++-=-=⋅=by yb y lblb y l y )2(26d )6(d s B Φ其中 2202121at at t y =+=v即 22622lb labt lb --=Φ 矩形框上的电动势为 t l a b t t2.0d d i ==-=ΦE (3)线框沿z 轴方向运动时,Φ不变,则i E 均为0.13-10 如图13-10所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回路.两电流方向相反,若有电流A t I )12(+=,求线圈中的感应电动势的大小和方向.分析 在本题中,应用法拉第电磁感应定律求感应电动势有两条途径:分别求出两个直电流在框上产生的感应电动势,再进行叠加;或者,先求出两直电流的合磁感强度,再求磁通量,应用法拉第定律.载流长直导线磁场是不均匀的,欲求磁通量,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.因两直电流方向相反,靠近线框的直电流在框上电动势大一些,它的贡献决定了线框上电动势的方向. 解 框内任一点磁感应强度为)(22120021d d x Ix I B B B -+-=-=πμπμ取逆时针方向为回路绕行方向,如图13-10,在线框上取面元d S ,且d S =h d x ,穿过框的磁通量为x d d x x Ih S B ld d d )11(2d 12011-+-==⎰⎰+πμΦ其中12+=t I .矩形框上的电动势为)ln (ln 22d d 11220i d l d d l d ht +-+=-=πμΦE )()(ln 12120l d d d l d h ++=πμ 因(l +d 2)d 1<d 2(l +d 1),得0i <E ,即i E沿顺时针方向. 13-11 如图13-11所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l d 表示绕行回路的正方向).如果磁感强度随时间的变化的规律为τ-t/0e B B =,其中B 0和τ为常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向.分析 本题用法拉第定律可方便求解.解 回路绕行方向为逆时针, 穿过圆线圈的磁通量为τππΦt B r B r -==e 022τττπτπΦ/02/02e e )1(d d t t B r B r t ---=-= 圆线圈上的电动势为ττπΦ/02ie d d t B r t -=-=E 方向沿回路正方向即逆时针方向.13-12 如图13-12所示,在与均匀磁场垂直的平面内有一折成α角的V 型导线框,其MN 边可以自由滑动,并保持与其它两边接触.今使ON MN ⊥,当t =0时,MN 由O 点出发,以匀速v 平行于ON 滑动,已知磁场随时间的变化规律为2)(2t t B =,求线框中的感应电动势与时间的关系.分析 导线在磁场中运动,磁感强度又随时间变化,因而线框中的电动势由动生电动势和感生电动势两部分组成,可以直接求出面积不断变化的回路MONM 任一时刻的磁通量,再应用法拉第电磁感应定律求解.也可以分别计算由于MN 边滑动产生的动生电动势和由于线框中磁感强度随时间变化引起磁通量变化产生的感生电动势.解1 取顺时针方向为回路绕行方向, t 时刻穿过V 型导线框的磁通量为B xl2=Φ 其中 t x v =,αtan x l =,22t B =,应用法拉第电磁感应定律,导线框上的感应电动势为)2(d d d d B xlt t -=-=ΦE ααt a n )t a n 4(d d 3242t t t v v -=-= 负号表明E 与回路绕行方向相反,即沿逆时针方向.解2 由于MN 边滑动产生的动生电动势为⎰==⋅⨯=MN t Bx ααtan 21tan d )(32v v l B v 动E 沿NM 方向.t 时刻回路面积xl S 21=,取逆时针方向为回路绕行方向,回路法向矢量n e 与B 相反,则())2(d d 2d d d d d d 2t t xl t B S BS t t ==--=-=Φ感E =αtan 2132t v总感应电动势为感动E E E +==αtan 32t v 沿逆时针方向.13-13 一导线弯成如图13-13的形状,在均匀磁场中绕轴O O '转动,角速度为1ω.若电路的总电阻为R ,当0=t 时从图示的位置开始转动.(1)当磁感强度B 为常量时;(2)当t B B 20sin ω=时,求导线中的感应电流和感应电动势.解 (1)B 为常量,t 时刻穿过线圈的磁通量为t l Bl 112cos ωΦ=,线圈上的感应电动势为t l Bl t1112i sin d d ωωΦ=-=E 线圈上的感应电流为t R l Bl R I 1112i i sin ωω==E(2)t B B 20sin ω=时,t 时刻穿过线圈的磁通量为t l l t B 11220cos sin ωωΦ⋅=线圈上的电动势为sin (d d 212211120i l l B tωωΦ=-=E线圈上的感应电流为)cos cos sin sin (212211120it t t t Rl l B R I i ωωωωωω-==E 13-14 均匀磁场B 被限制在如图13-14所示的圆柱型空间中, B 从0.5T 以0.1T/s 的速率减小,(1)确定涡旋电场电场线的形状和方向并示于图中;(2)求图中半径为r =10cm 的导体回路上各点的涡旋电场场强和回路中的感生电动势;(3)设回路的电阻为Ω2,求其中感应电流的大小;(4)回路中任意两点b a ,间的电势差为多大?(5)如果在回路某点将其切断,两端稍微分开,问此时两端的电势差为多大?分析 例题413-讨论了这种在圆柱形空间中随时间改变的均匀磁场所产生的涡旋电场,可以直接利用其结果计算该涡旋电场中的电场强度的大小和方向.解 (1)由例题413-的讨论知,该圆柱形空间中随时间改变的均匀磁场产生涡旋电场,其电场线是圆心在轴线上的一系列同心圆,又因0d d <t B ,该涡旋电场中的电场强度涡E 为同心圆上沿顺时针绕行的切线方向,如图13-14所示.(2)利用例题413-的结果,r = 10cm 的回路上涡旋电场强度大小为V/m 005.0V/m 1.021.0d d 2=⨯==t B r E 涡内 回路上的感生电动势为V 1014.3V 1.01.014.3d d d d 322i -⨯=⨯⨯=-=-=tBr t B SπE 方向为顺时针方向.(3)回路中感应电流为 A 1057.1A 21014.333ii --⨯=⨯==R I E (4)根据一段含源电路的欧姆定律,弧⋂b a 上的电势差等于该段导线上电阻引起的电势差减去该圆弧上的感应电动势⋂abE ,即0)(2)(2 2)2(i ii i=-⋅=-=⋅-⋅=-=-⋂⋂⋂⋂⋂⋂E E E E E R Rr ab IR r ab abrab r R I IR V V ab ab b a ππππ(5)断开一个缺口cd 后回路不再闭合,因此回路中无电流,则cd 两点间电势差为V 1014.303i -⨯-=-=-E d c V V由于d c V V <,表明d 点电势高.13-15 在半径为R 的圆柱形空间中,存在着变化的均匀磁场)(t B ,有一长为l 的导体棒放在磁场中,如图13-15(a)所示,设磁场的变化率为t B d d ,(1)用感生电动势定义⎰⋅=ba l E d i 涡E 求棒中的感生电动势;(2)用法拉第电磁感应定律求棒中的感生电动势;(3)若导体棒在图示位置时有一个方向与棒垂直指向O 点、大小为v 的速度,再求棒上的感应电动势.分析 这是与上题特征相同的磁场.利用例题413-的结果,涡旋电场线是一系列同心圆,涡E 在圆的切线方向,所以用感生电动势定义计算时应注意ab 棒上各点的涡E 与l d 有一夹角.如果应用电磁感应法拉第定律计算,将ab 棒连接半径Oa ,Ob 构成闭合回路OabO ,考虑到沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势.当导体棒运动时,闭合回路OabO 中的磁通量随时间变化,求出任一时刻t 回路OabO 所围面积的磁通量,便可求解. 解 (1)如图13-15(b)所示,在ab 棒上取线元l d ,方向从b a →.该处涡E 在切线方向,大小为tBr d d 2,涡E 与l d 的夹角为θ,且rlR 22)2(cos -=θ,得ab 棒上感应电动势ab E 的方向从b a →,大小为⎰⎰=⋅=b abaab l tBr d cos d d 2d θl E 涡E 0)2(2d d d d d 2)2(02222>-=-=⎰l l R l t B l t B l R(2)连接Ob Oa ,成闭合回路OabO ,设回路逆时针绕行,穿过回路的磁通量为4222l R Bl --=Φ闭合回路OabO 上的感应电动势为42d d d d 22l R l t B t oabo-=-=ΦE因沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势,即42d d 22l R l t B oabo ab -==E E方向从b a →.(3) 如图13-15(c),经t 时间棒向着O 点移动t v ,连接Oa 、Ob 成闭合回路OabO ,设回路逆时针绕行.穿过回路的磁通量为t l R Bl v ---=4222Φ导体棒中的感应电动势为v v 2Bl t l R l t B t oaboab 21)4(2d d d d 2---=-==ΦE E若0>oabo E ,则ab E 从b a →;若0<oabo E ,则ab E 从a b →.13-16 如图13-16(a),均匀磁场被限制在半径为R 的圆柱形空间,磁感强度对时间的变化率0d d >t B ,在圆柱形空间外与磁场垂直的平面内有一导体AB .(1)计算AB 上的感应电动势;(2)B A 、两点间的电势差有多高?(3)在图中表示出B A 、两点的涡旋电场强度.分析 磁场局限在圆柱形空间内部,连接OB OA 、,计算穿过三角形OAB ∆的磁通量时,只需计算该三角形所包围的圆柱形空间内扇形面积的磁通量.解1 (1) 如图13-16(a),连接OB OA 、,穿过OAB ∆的磁通量与穿过扇形的磁通量相等为tBd b l a b R t dbl a b R B d d )arctan (arctan 21d d )arctan(arctan 212i 2-+-=-=-+⋅=ΦΦE(2) 0d d >tB,应用楞次定律判定电动势从B A →,所以B 点的电势高. tBd b l a b R U BA d d )arctan (arctan 212-+= (3)kB kA E E 、都在该点切线方向,且沿逆时针绕行的切线方向.解2 (1) 如图13-16(b),在AB 上取线元l d 方向从A 到B ,到圆心的距离为r ,据(13-7)式,有⎰⎰=⋅=BA BA l tB r R d cos d d 2d 2i θl E 涡E而θθcos d d r l =,AB 上的感生电动势为 )(21cos cos d d d 221202i 21θθθθθθθ+-=⋅-=⎰+R r t B r R E 其中d bl ab-==arctanarctan21θθ,得 tBd b l a b R d d )arctan (arctan 212i-+-=E 13-17截面为矩形的环形螺线管,平均半径为R ,截面边长为b 和c ,螺线管共有N 匝导线,管内充满磁导率为μ的均匀磁介质,如图13-17(a )所示,试求其自感系数.分析 螺绕环的磁感线是以对称中心为圆心的一系列同心圆,每条磁感线都要穿过矩形截面,于是求自感系数的问题归结为求穿过矩形截面的磁通量.由于沿螺绕环半径方向的磁场分布不均匀,需在矩形截面上取面元S d ,算出ϕd ,再积分得ϕ.解 如图13-17(b),在矩形截面上取面元r c S d d =,与螺绕环中心距离为r .由安培环路定理(11-15)式得S d 处的磁感应强度为rNIB πμ2=穿过螺绕环的磁通链为⎰⋅==sS N N d B ϕΦ22ln 2d 22222b a b a Ic N r r Ic N b a b a -+==⎰+-πμπμ 螺绕环的自感系数为22ln 22b a b a c N I L -+==πμΦ13-18 如图13-18, 两平行长直导线,其中心距离为d ,载有等大反向的电流(可以想象它们在相当远的地方汇成单一回路),每根导线的半径均为R ,如果不计导线内部磁通量的贡献,试求单位长度的自感系数.分析 两平行长直导线间的磁感应强度为两长直导线在该处磁感应强度之代数和.沿着以下思路解题:先求出两导线间的B ,再求两导线间的磁通量,再求自感系数.解 如图13-18,由磁场叠加原理,在两条导线间距左边一根为r 远(R r <)处磁感应强度为)11(20rd r I B -+=πμ取长为l 的一段导线,通过图中阴影部分的磁通量为⎰--+=R d Rr r d r Il d )11(20πμΦRR d Il -=ln 0πμ 长为l 的一段导线的自感系数为RRd l IL l -==ln 0πμΦ单位长导线的自感系数为RR d l L L l -==ln 0πμ 13-19 如图13-19,两圆形线圈共轴放置在一平面内,它们的半径分别为1R 和2R ,21R R >>,匝数分别为1N 和2N ,试求它们之间的互感系数.(大线圈中有电流时,小线圈所在处的磁场可看作是均匀的.)分析 题目给出条件21R R >>,2R 线圈与1R 线圈共轴,所以2R 线圈所在处的磁感应强度可视为均匀,且等于1R 线圈圆心处的磁感应强度. 解 因21R R >>,当大线圈中有电流1I 时,小线圈所在处各点的磁感应强度近似相等,且等于圆心处的磁感应强度,即1110212R N I B μ=穿过小线圈的磁通链为1221102212212R R N I N N πμϕΦ==互感系数为1222101212R R N N I M πμΦ==13-20 在如图13-20所示的电路中,线圈I 连线上有一长为l 的导线棒CD 可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈I 连线接触,导体棒的速度与棒垂直.设线圈I 和线圈Ⅱ的互感系数为M ,电阻为1R 和2R .分别就以下两种情况求通过线圈I 和线圈Ⅱ的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动.分析 CD 边运动,线圈I 中有感应电流. 由于互感,线圈I 中的电流变化将在线圈Ⅱ中产生感应电流.解(1)CD 匀速运动时,线圈I 中的感应电流是常量,为111R lB R I i v ==E 它在线圈Ⅱ中引起的磁通量的变化率为0 d d 21=tΦ 在线圈Ⅱ中引起的互感电动势021=E ,因此线圈Ⅱ中的感应电流为零.(2)CD 加速运动时, 线圈I 中的感应电流为11R BlatI =在线圈Ⅱ中引起的磁通量为at R BlMMI 1121==Φ在线圈Ⅱ中引起的互感电动势为12121 d d R BlMat -=-=ΦE因此线圈Ⅱ中的感应电流为212212R R BlMa R I -==E13-21 如图13-21所示的两个共轴圆形线圈,它们的间距为d ,半径为R 和r ,且r R >>,大线圈中有电流时,小线圈所在处的磁场可看作是均匀的,试求(1)大线圈中的电流t I I ωsin 0=时小线圈中的感应电动势;(2)两线圈的互感系数M ;(3)当小线圈偏转,使得两线圈平面法线的夹角分别为︒︒︒90 60 30、、时,再求M .解 (1)大线圈在小线圈处产生的磁感强度为2/3222021)(2d R R IB +=μ 大线圈电流产生的磁场穿过小线圈的磁通量为232222022121)(2d R r IR S B +==πμΦ大线圈电流变化, 在小线圈中产生的互感电动势为232222002121)(2cos d d d R t R r I t +-=-=ωωπμΦE (1) (2)两电流的互感电动势又可表示为 t MI tIM ωωcos d d 021-=-=E 将(1)式代入上式,得232222021)(2d d d R r R t I M +=-=πμE(3)两线圈平面法向夹角为 30时穿过小线圈的磁通量为2121212330cos ΦΦΦ==' 互感系数 2322220)(43d R r R M +='πμ 夹角为 60时,得 2121212160cos ΦΦΦ==' 2322220)(4d R r R M +='πμ夹角为 90时,得 021='Φ 0='M13-22 试求题13-10中二长直导线组成的回路与矩形框之间的互感系数. 分析 在本题中,显然求出长直导线在矩形框处的磁通量,然后求互感系数较容易.解 利用习题13-10的结果,两长直导线在矩形线圈处产生的磁通量为)ln (ln 222110d ld d l d Ih +-+=πμΦ 得互感系数为 )()(ln 2)ln (ln 22112022110l d d l d d h d ld d l d h IM ++=+-+==πμπμΦ13-23 两线圈的自感系数分别为1L 和2L ,它们的互感系数为M ,当两线圈串联时,试证它的等效自感系数为M L L L 221±+=,其中的正负号分别是对应图13-23中的两种连接情况.分析 两线圈串联后的等效自感系数,应该等于输入端与输出端间自感电动势与回路电流变化率之比.任一线圈两端的感应电动势应等于各自的自感电动势与另一线圈在其上产生的互感电动势的代数和.根据楞次定律,线路顺接如图13-23(a)时,互感电动势与自感电动势方向相同;反接如图13-23(b)时,互感电动势与自感电动势方向相反.假如再拓展考虑两线圈顺并联和反并联的情况.这时流经两线圈的电流分别为1I 和2I ,但互感系数M 不变,且并联后的总电动势12E E E ==.可解出顺并联时M L L M L L L 221221-+-+=,反并联时ML L M L L L 221221++-+=. 解 顺连接如图13-23(a ),设左边的线圈为(1),右边的线圈为(2).根据楞次定律,线圈(1)上的总电动势1E ,应为其上的自感电动势11E 与线圈(2)在线圈(1)上产生的互感电动势12E 之和,有)d d d d (112111tIM t I L +-=+=E E E 同理 )d d d d (221222tI M t I L +-=+=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121++-=+=E E E 两线圈串联顺接时的等效自感系数为M L L tI L 2d d 21++=-=E反连接如图13-23(b ),根据楞次定律,线圈(1)上的总电动势E 1 ,应为其上的自感电动势E 11与线圈(2)在线圈(1)上产生的互感电动势E 12之差,有)d d d d (112111tIM t I L --=-=E E E同理 )d d d d (221222tI M t I L --=-=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121-+-=+=E E E 两线圈串联反接时的等效自感系数为M L L tI L 2d d 21-+=-=E13-24 在一细线密绕螺线管内填满了某种磁导率为μ(常量)的均匀介质,若该介质的电阻率为ρ,在介质中存在感应电流的情况,由定义tI L d d E-=求该螺线管的自感系数.设螺线管半径为R 、长为l 、总匝数为N ,且R l >>,忽略边缘效应.分析 缠绕螺线管的传导电流I 变化时,传导电流要产生自感电动势1E .现螺线管内充满磁导率为μ的磁介质,变化的传导电流在介质中激发感应电流,变化的感应电流也要产生自感电动势2E .总的自感电动势为21E E E +=.由传导电流激发的螺线管内磁场,方向沿轴线,且分布均匀,所以由变化的传导电流激发的感应电流是以轴线为圆心的圆电流.考虑到介质有电阻,感应电流在介质的径向分布不均匀,因而感应电流产生的磁场方向沿轴线,为非均匀磁场,在计算感应电流产生的磁通量时要注意.。

【免费下载】物理学基本教程课后答案 第十三章 电磁感应

【免费下载】物理学基本教程课后答案 第十三章 电磁感应

圆环中感生电动势最大时感应电流也为最大值.令 dEi 0 ,得 dx
解得 x


R 2
d
dx (R 2 x 2 )5 2
,并取 x
R 处时,环中感应电流最大. 2

R 2
x
13-3 一立方体在坐标系中的位置如图


d dt


dx dt
0 2

IR 2 r 2 (R2 x2 )3/
解 如图 13-2 所示,小圆环所围面积内的磁感应强度近似等于其圆心处的
值,由(11-10)式得
B 0
IR 2
2 (R2 x2 )3/2
小圆环以恒定的速度 v dx 运动到轴线上 x 处,圆环中的感生电动势为 dt
Ei

d dt
d dx

0 2
d BS dt
IR 2 r 2 (R2 x2 )3/2
第十三章 电磁感应
13-1
地球表面的磁感应强度约为 5105 T,若将一个电阻 0.5Ω ,半径为
20cm 的金属圆环翻转180 ,则流过该圆环截面的电荷量的最大值为多少?若将
该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多 少 (中子星表面的磁感应强度为 108 T)?
2 1V 7.07 102 V 2
2 1 2 V 0.1V 2
解 1 用动生电动势的定义式计算 对于 AD 和 BC 边,因 (v B) 方向与
dl 方向垂直,电动势为零.取 AB 边上线元 dl 方向从 A 到 B,CD 边上线元 dl 方向从 C
到 D,动生电动势分别为
EAB
x R
2

人教物理必修第三册第13章 电磁感应与电磁波初步有答案

人教物理必修第三册第13章 电磁感应与电磁波初步有答案

2019—2020新教材人教物理必修第三册第13章 电磁感应与电磁波初步有答案必修第三册第13章 电磁感应与电磁波初步1、电磁波与机械波具有的共同性质是( )A .都是横波B .都能传输能量C .都能在真空中传播D .都具有恒定的波速2、下列物理量属于标量的是( )A .速度B .加速度C .电流D .电场强度 3、下列关于磁现象的电本质的说法中,错误的是( )A .一切磁现象都源于电流或运动电荷B .静止的电荷也能产生磁场C .永磁体的磁场也可以归结为由运动电荷产生的D .在外磁场作用下物体内分子电流取向大致相同时物体就被磁化了4、关于电场强度和磁感应强度,下列说法正确的是( )A .由真空中点电荷的电场强度公式E =kQ r 2知,当r →0时,其电场强度趋近于无穷大B .电场强度的定义式E =F q 适用于任何电场C .由公式B =F Il 知,一小段通电导体在某处不受磁场力,说明此处一定无磁场D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向5、关于产生感应电流的条件,以下说法中正确的是( )A .闭合电路的导体在磁场中运动,闭合电路中就一定有感应电流产生B .闭合电路在磁场中做切割磁感线运动,闭合电路中一定有感应电流产生C .穿过闭合电路的磁通量为零的瞬间,闭合电路中一定没有感应电流产生D .只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生6、第一个用实验验证电磁波客观存在的科学家是( )A .法拉第B .奥斯特C.赫兹D.麦克斯韦7、黑体辐射电磁波的波长分布的影响因素是()A.温度B.材料C.表面状况D.以上都正确8、为了判断一根钢锯条是否有磁性,某同学用它的一端靠近一个能自由转动的小磁针,下列给出了几种可能产生的现象及相应的结论,其中正确的是() A.若小磁针的一端被推开,则锯条一定有磁性B.若小磁针的一端被吸引过来,则锯条一定有磁性C.若小磁针的一端被吸引过来,则锯条一定没有磁性D.若小磁针的一端被推开,不能确定锯条是否有磁性9、在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化10、能正确解释黑体辐射实验规律的是()A.能量的连续经典理论B.普朗克提出的能量量子化理论C.以上两种理论体系任何一种都能解释D.牛顿提出的能量微粒说11、如图所示,a、b是直线电流的磁场,c、d是环形电流的磁场,e、f是通电螺线管的磁场,试在各图中补画出电流方向或磁感线方向。

《大学物理》(8-13章)练习题

《大学物理》(8-13章)练习题

《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。

4 刚性双原子分子气体的自由度数目为()。

A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。

6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。

处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。

大学物理 磁场、电磁感应练习题

大学物理 磁场、电磁感应练习题

磁场、电磁感应练习题一、选择题1. 两条无限长平行直导线载有大小相等方向相反的电流I ,I 以tId d 的变化率增长。

一矩形线圈位于导线平面内(如图)则: (A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ]2. 四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为I ,这四条导线被纸面截得的断面,如图所示。

它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向如图所示。

则在图中正方形中心点O 的 磁感强度的大小为:(A)B=aπμ02I. (B)B=I aπμ220(C)B=0. (D)B=I aπμ0[ ]3.顺磁物质的磁导率:(A)比真空的磁导率略小。

(B )比真空的比磁导率略大。

(C )远小于真空中的磁导率。

(D )远大于真空的磁导率。

[ ] 4.在均匀磁场中,有两个平面线圈,其面积A 1= 2A 2,通有电流I 1=2 I 2,它们所受的最大磁力矩之比M 1/M 2等于:(A )1. (B )2. (C )4. (D )1/4.5.在感生电场中电磁感应定律可写成 dt d l d E Lk Φ-=⋅→→⎰ ,式中→k E 为感生电场的电场强度。

此式表明:(A )闭合曲线L 上→k E 处处相等。

(B )感生电场是保守场。

(C )感生电场的电场线不是闭合曲线。

(D )在感生电场中不能像对静电场那样引入电势的概念。

[ ] 6. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,求在圆心O 点的磁感强度大小于: [ ] )11(4)()11(2)(0)(4)(2)(0000πμπμμπμ+-RIE RID C RIB RI A二、1图二、填空题1.两根长直导线通有电流I ,图示有三种环路,在每种情况下⎰⋅ll Bd 等于(对环路a ); (对环路b ); (对环路c );2 .一带电粒子平行磁场线射入匀强磁场,则它作 运动; 一带电粒子垂直磁场线射入匀强磁场,则它作 运动;一带电粒子与磁场线成任意角射入匀强磁场,则它作 运动。

大学物理课后习题答案13电磁感应习题

大学物理课后习题答案13电磁感应习题
结束 目录
(2) v = at
(3)
e =0.2t(V)
e
=0
0.2 (4) I = = =0.1 t (A) 2 R
e
结束 目录
13-5 在两平行导线的平面内,有一矩 形线圈,如图所示。如导线中电流I随时间 变化,试计算线圈中的感生电动势。
l2 I I d1
l1
d2
结束 目录
已知: I, I1, I2, d1, d2 。 求:ei 解: Φ =Φ 1 Φ 2 m I I1 d1+ I2 m I I1 d2+ I2 ln ln = 2 2 π π d1 d2 m I I1 d1+ I2 d2+ I2 ln ln = 2 π d1 d2 m I I1 ( d1+ I2 )d2 ln = 2 ( d2+ I2 )d1 π m I1 ( d1+ I2 )d2 d I d Φ ln ei = d t = 2 ( d2+ I2 )d1 d t π
结束 目录
已知:Φ = 6t2+7t+1(Wb) 求:e (t =2s) 解: Φ e= d = -(12 t +7) ×10-3 dt
t =2
× × × × × × × × × × × × × × × × × × ×
e = -(12×2+7)×10
=-3.1×10 (V)
-2
-3
× × ×

×
0 0 0 0
目录
2 dy 2 r m I π R 3 e dt 2y 4 y d 将 y=NR 及 v = 代入得到: dt 2 r m I π e = 32R2N 4 v
d Φ = dt =

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)
第 13 章 稳恒磁场
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R

(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,

《大学物理学》电磁感应部分练习题(马)

《大学物理学》电磁感应部分练习题(马)

《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。

关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。

【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。

【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。

【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。

【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》第13章电磁感应电磁场练习题及答案练习1一. 选择题1. 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略):( ) A. 把线圈的匝数增加到原来的两倍;B. 把线圈的面积增加到原来的两倍,而形状不变;C. 把线圈切割磁力线的两条边增长到原来的两倍;D. 把线圈的角速度增大到原来的两倍。

2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时: ( ) A. 铜环中有感应电动势,木环中无感应电动势; B. 铜环中感应电动势大,木环中感应电动势小; C. 铜环中感应电动势小,木环中感应电动势大; D. 两环中感应电动势相等。

3. 对于位移电流,下列说法中正确的是 ( ) A. 与电荷的定向运动有关; B. 揭示了变化的电场能激发磁场; C. 产生焦耳热; D. 与传导电流一样。

4. 一圆形线圈在均匀磁场中作下列运动时,会产生感应电流的情况是 ( ) A. 沿垂直磁场方向平移;B. 以直径为轴转动,轴跟磁场垂直;C. 沿平行磁场方向平移;D. 以直径为轴转动,轴跟磁场平行。

OB二. 填空题1.如图所示,在一长直导线L中通有电流I,ABCD为一矩形线圈,它与L皆在纸面内,且AD边与L平行:(1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为____________;(2) 矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中感应动势的方向为_________________________。

2.引起动生电动势的非静电力是力;引起感生电动势的非静电力是力。

3.∮H⃗∙dlL=I+I d表明磁场强度沿任一闭合回路的线积分等于通过以该回路为边界的任意曲面的;∮E⃗∙dll =−dΦdt的物理意义是变化的磁场产生。

4. 麦克斯韦方程组的积分形式是:(1) ;(2) ;(3) ;(4) 。

三. 计算题1. 如图所示,长直导线通以电流I=5A,在其右方放一长方形线圈,两者共面。

线圈长b= 0.06m,宽a=0.04m,线圈以速度大小为v=0.03m/s垂直于直线平移远离。

求d=0.05m时线圈中感应电动势的大小和方向。

(真空磁导率μ0=4π×10−7N∙A−2)。

2. 如图所示,AB和CD为两根金属棒,各长1m,电阻均为R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里。

当两根金属棒在导轨上以v1=4m/s和v2=2m/s的速度向左运动时,忽略导轨的电阻。

求:(1)在两棒中动生电动势的大小和方向;(2)回路中的感应电流。

3. 一圆形线圈A由50匝细线绕成,其面积为40cm2,放在另一个匝数等于100匝、半径为20cm 的圆形线圈B的中心,两线圈同轴,设线圈B中的电流在线圈A所在处激发的磁场可以看作是均匀的。

求:(1) 两线圈的互感;(2) 当线圈B中的电流以50A/s的变化率时,线圈A内的磁通量变化率;(3) 线圈A中的感生电动势。

练习2一. 选择题1. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以dI dt ⁄的变化率增长,一矩形线圈位于导线平面内(如图),则: ( ) A. 线圈中无感应电流;B. 线圈中感应电流为顺时针方向;C. 线圈中感应电流为逆时针方向;D. 线圈中感应电流方向不确定。

2. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 ( )A. 2abB|cosωt|;B. ωabB|sinωt|;C. 12ωabB|cosωt|;D. ωabB|cosωt|。

3. 面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流I ,线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为 ( ) A. Φ21=2Φ12; B. Φ21>Φ12; C. Φ21=Φ12; D. Φ21=12Φ12。

4. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为 ( )A. μ03I 28π2a 2; B. μ0I 28π2a 2; C. 2π2a 2μ02I 2; D. μ0I 28a 2。

二. 填空题1. 感生电场由所激发;感生电场的场强环流不为零,是电场;感生电场的电场线是的,是场。

2. 有两个具有共同直径AB的相互绝缘的圆形线圈,如图所示。

当两个线圈平面时互感系数最小,此时,它的磁场在另一个线圈中的磁通量;当两个线圈平面时,互感系数最大。

3.一线圈的自感系数为L=0.05mH,通过线圈的电流为I=0.8A,当电源切断后,电流在120μs内下降到零,线圈中自感电动势的平均值为εL=。

4.在麦克斯韦方程组中,(1) 表示变化的磁场一定伴随有电场的方程是:;(2) 表示磁感线是无头无尾的方程是:;(3) 表示电荷总伴随有电场的方程是:。

三. 计算题1. 如图所示,一长直导线中通有交流电流I=I0sinωt,式中I表示瞬时电流,I0是电流振幅,ω是角频率,I0和ω都是常量。

在长直导线旁平行放置一矩形线圈,线圈平面与直导线在同一平面内。

求:(1) 通过整个线圈所围面积的磁通量;(2) 任一瞬时线圈中的感应电动势表达式。

2. 矩形界面螺绕环(尺寸如图)上绕有N匝线圈。

若线圈中通有电流I,则通过螺绕环界面的磁通量Φ=μ0NIℎ。

2π(1) 求螺绕环内外直径之比D1;D2(2) 若ℎ=0.01m,N=100,求螺绕环的自感系数;(3) 若线圈通以交变电流i=I0cosωt,求环内感应电动势。

3. 载流长直导线中的电流以dI的变化率增长。

若有一边长为d的正方形线圈与两导线处于同一dt平面内,如图所示。

求线圈中的感应电动势。

答案练习1一. 选择题1~4. D D B B二. 填空题1. (1) 顺时针(ABCDA);逆时针(ADCBA)。

2.洛伦兹;感生电场。

3.全电流;涡旋电场。

4. (1)∮D⃗∙dSS =∑q0;(2)∮E⃗∙dlL=−∫ðB⃗ðt∙dSS;(3)∮B⃗ ∙dSS =0;(4)∮H⃗∙dlL=∫j0∙dSS+∫ðD⃗ðt∙dSS。

三. 计算题1. 解:根据动生电动势的表达式,可得AB段和CD段的电动势:∫(v×B⃗ )∙dl BA =∫(v×B⃗ )∙dlDC=0DA段的感应电动势,取正方向为D→Aε1=∫(v×B⃗ )∙dlAD =vBb=vbμ0I2πd方向D→ABC段的感应电动势,取正方向为B→Cε2=∫(v×B⃗ )∙dlCB =−vbμ0I2π(a+d)方向C→B线圈回路中的总感应电动势ε=ε1+ε2=vb μ0I2πd−vbμ0I2π(a+d)=1.6×10−8(V)它的方向为D→A→B→C→D。

2. 解:(1)AB段的电动势分别为:εAB=∫(v×B⃗ )∙dlBA=Blv1=8 (V) AB段的电动势是由A→BCD段电动势分别为:εCD=∫(v×B⃗ )∙dlDC=Blv2=4 (V) CD段的电动势是由C→D(2)整个电路中的电流为:I=εR=εAB−εCDR=0.5 (A)3. (1)线圈B在圆心处的产生的磁感应强度:B B=N bμ0I b2R线圈B产生的磁场在线圈A中的磁通量为:Ψa=N a B⃗ B∙S a=N a N bμ0I b2RS两线圈的互感为:M=ΨaI b =N a N bμ02RS=6.28×10−5 (H)(2)由第1问可知:线圈A中的磁通量为:Ψa=N a B⃗ B∙S a=N a N bμ0I b2RS 线圈A内的磁通量变化率:dΨa dt =N a N bμ0S2RdI bdt≈3.14×10−3 (Wb/s)(3) 线圈A中的感生电动势:ε=−dΨadt=−N a N bμ0S2RdI bdt≈−3.14×10−3 (V)练习2一. 选择题1~4 B D C B二. 填空题1. 变化的磁场;涡旋;闭合;无源。

2. 互相垂直;最小;相互平行。

3. 0.33(V)。

4. (1) ∮E⃗∙dlL =−∫ðB⃗ðt∙dSS;(2) ∮B⃗ ∙dSS=0;(3) ∮D⃗∙dSS=∑q0。

三. 计算题1. 解:(1)某一瞬时,距离长直导线为x处、宽为dx的窄条,有:磁B x=μ0I2πx ,则dΦ=B x cos0°ds=μ0I2πxlds在该瞬时t,通过整个线圈所围面积的磁通量为Φ=∫dΦS =μ0lI0sinωt2πlna+ba(2)线圈内的感应电动势为ε=−dΦdt=−μ0lI0ω2πlna+bacosωt2. (1)由安培环路定理可得,螺绕环中的磁感应强度为:B=Nμ0I 2πr距离环心r处,在螺绕环中选取长度为ℎ、宽度为dr的面元:ds=ℎdr螺绕环中的磁通量为:Φ=∫Bds=∫Nμ0I2πrℎdr D22D1 2=Nμ0Iℎ2πlnR2R1=Nμ0Iℎ2πlnD2D1由螺绕环界面的磁通量Φ=μ0NIℎ2π可知:ln D2D1=1,即,D1D2=1e(2) 螺绕环的自感系数为:L=ΨI=NΦI=μ0N2ℎ2π=2×10−5 (H)(3) 环内感应电动势为:ε=−L didt=μ0N2ℎ2πI0ωsinωt3. 解:在x处取长度为dx的面元,长直导线在x处产生的磁感应强度大小为:B=μ0I 2πx通过此面元的磁通量为:dΦ=B⃗ ∙dS=μ0I2πx∙d∙dx=μ0Id2πxdx通过正方形线圈的总磁通量为:Φ=∫dΦ=∫μ0Id2πxdx 2dd =μ0Id2πln2dd=μ0Id2πln2感生电动势大小为:ε=dΦdt=μ0dln22πdIdt方向为逆时针方向。

相关文档
最新文档