大学物理(许瑞珍_贾谊明) 第13章答案
《物理学基本教程》课后答案 第十三章 电磁感应

第十三章 电磁感应13-1 地球表面的磁感应强度约为5105-⨯T,若将一个电阻Ω5.0,半径为20cm 的金属圆环翻转︒180,则流过该圆环截面的电荷量的最大值为多少?若将该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多少 (中子星表面的磁感应强度为810T)?分析 由(13-4)式可知,金属环在翻转中要获得流穿过环截面的感应电量的最大值,应将翻转前金属环面的法线方向置于地磁场方向,则通过环面的磁通量有最大值,翻转后磁通量为最大负值,这样翻转才有最大的磁通量改变,才能产生最大的感应电量.解 在地球表面, 最大感应电荷量为RBSR R q 221)(1121==-=ΦΦΦ 5251051.2C 5.02.014.31052--⨯=⨯⨯⨯⨯= C在中子星表面, 最大感应电荷量为RBS R R q 221)(1121==-=ΦΦΦ81002.5⨯= C 13-2半径分别为R 和r 的金属圆环共轴放置,且R >>r ,在大圆环中有恒定电流,而小圆环则以恒定速度沿轴线方向运动,问当小圆环运动到什么位置时,其内部的感应电流为最大?分析 本题中载流大圆环半径远大于小圆环的半径,小圆环所围面积内的磁场可视为均匀,其中各点的磁感应强度均近似等于位于大圆环轴线上的小圆环圆心处的值.在真空中恒定电流的磁场一章(11-10)式给出,载流圆环轴线上某点的磁感应强度B 是该点到圆环圆心距离x 的函数,小圆环沿轴线远离大圆环运动时,所围面积的磁通量减小,小圆环中将产生感生电动势和感应电流.应用极值条件可以求出感应电流为最大时小圆环的位置.解 如图13-2所示,小圆环所围面积内的磁感应强度近似等于其圆心处的值,由(11-10)式得2/3222)(2x R IR B +=μ 小圆环以恒定的速度t xd d =v 运动到轴线上x 处,圆环中的感生电动势为 2/5222202/3222202/322220i )(3d d )(2d d )(2d d d d d d x R xI R r tx x R r IR x x R r IR t BS t t +=⋅⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=-=-=2v πμπμπμΦE 圆环中感生电动势最大时感应电流也为最大值.令0d d i=xE ,得 02)(25)()(d d 227222/5222522=+-+=+--x x R x R x R x x解得2R x ±=,并取2Rx =.计算可得22i 2d d Rx x =E < 0,故小圆环运动到轴线上2R 处时,环中感应电流最大.13-3 一立方体在坐标系中的位置如图13-3所示,它的一边长为1m ,磁感应强度为0.2T 的均匀磁场沿y 轴方向,导体A 、C 和D 沿图中所示的方向以0.5m/s 的速度运动,试求每一导体内的感应电动势.分析 与用法拉第电磁感应定律比较,本题用动生电动势的定义式⎰⋅⨯=Li d )(l B v E 计算较简便.从该定义式可以看出,i E 的计算涉及到三个矢量的矢量积和标量积,因此必须先确定)(B ⨯v 的方向,以及导体棒上线元d l 的方向.解 对于导体A ,因)//(B v ,则0=⨯B v , E i = 0对于导体C ,因v 与B 夹角为 45,且 //)(B ⨯v d l ,则⎰⋅︒=⋅⨯=ll B 0i 45sin d )(v l B v E V 1007.7V 1222.05.02-⨯=⨯⨯⨯= 对于导体D ,因B v ⊥,)(B ⨯v 方向与l d 夹角为︒45,︒⋅=⋅⨯=⎰45cos 2d )(20i l B lv l B v E V 1.0V 22122.05.0=⨯⨯⨯⨯= 13-4 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框以速度v 垂直于导体运动,如图13-4所示.当线框AB 边与导线的距离为d 时,试用如下两种方法求出此时线框内的感应电动势,并标明其方向.(1)用动生电动势定义式;(2)用法拉第电磁感应定律.分析 这是一道很典型的求动生电动势题.注意以下几点:长直导线的磁场具有轴对称性,因而矩形框沿垂直于轴线方向运动时,框内将产生动生电动势;线框内的感应电动势大小与运动中矩形框的位置有关;可以用动生电动势定义式和法拉第定律求解;用法拉第定律需先求穿过闭合回路的磁通量. 在线框平面内凡与长直导线距离相等处B 大小相等方向相同,而在垂直长直导线方向B 大小不等,于是计算穿过矩形框的磁通量时,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.解1 用动生电动势的定义式计算 对于AD 和BC 边,因)(B ⨯v 方向与l d 方向垂直,电动势为零.取AB 边上线元l d 方向从A 到B ,CD 边上线元l d 方向从C 到D ,动生电动势分别为d Ibl d I ABbAB πμππμ2d cos 2d )(000v v-=⋅=⋅⨯=⎰⎰l B v E )(2d )(2d )(000a d Ibl a d ICDbCD +=+=⋅⨯=⎰⎰πμπμv vl B v E)(2)11(200a d d I d a d b I ABCDA +-=-+=πμπμvab v E 其中负号表明电动势的方向为ADCBA .解2 用法拉第定律计算如图13-4所示,以长直导线为坐标原点取x 轴向右.t 时刻AB 边距长直导线为x . 在框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过矩形框的磁通量为xax Ib x x Ib ax x+==⎰+ln2d 200πμπμΦ )(2d d ln d d 2d d 00i a x x aIb t x x a x x Ib t +=⋅⎪⎭⎫ ⎝⎛+-=-=πμπμΦv E 当d x =时矩形框上的电动势为0)(20i >+=a d d aIb πμv E即矩形框电动势i E 的方向为ADCBA .也可以用楞次定律判定框内电动势的方向为ADCBA 方向.13-5 一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于L 处的轴O 以匀角速度ω沿反时针方向旋转,磁场方向如图13-5所示,磁感强度为B ,求导体棒内的感应电动势,并指出哪一端电势较高.分析 导体棒在磁场中转动,导体棒切割磁感线,棒中产生感应电动势.如果转轴位于2L 处,棒两端电势相等,与转轴间有电势差.假如用铜盘代替导体棒,盘心与盘边缘便有一定的电势差,分别用导线从盘心和盘边缘接出,就构成一个直流发电机.解 在棒上取线元l d 沿CD 方向,则导体棒内的感应电动势为⎰⎰⋅⨯+⋅⨯=+O CDOOD CO l B l B d )(d )(v v E E⎰⎰+=3320d cos d lll Bl l Bl πωω6)32(2)3(2222L B L B L B ωωω-=-= 即棒内感应电动势大小为62L B ω,方向从D 指向C .CD 两端间的电势差为261L B V V ODCO C D ω-=+=-E E 表明C 点电势较高.13-6 如图13-6,一半径为R 的半圆形导线,保持与一载流长直导线共面,且直径CD 与长直电流垂直,C 端到直电流的距离为d .当半圆导线以匀速度v 平行于长直电流向上运动时,求半圆导线中的感应电动势大小,那一端电势较高?设cm 0.10=d ;.A 0.2;s m 0.2;m 0.15===I R v分析 连接直径CD ,与半圆弧导线构成闭合回路CDOC ,设回路顺时针绕行.由于回路匀速地平行长直导线运动,磁通量没有变化,回路中感应电动势为零,则沿回路绕行方向半圆弧导线与直线上的感应电动势大小相等,方向相反.因直径CD 上的感应电动势计算简单,可由此确定半圆弧导线上的感应电动势.解 如图13-6,在直径CD 上距长直导线为x 处取线元x d ,方向从D C →,CD 上的动生电动势为1.04.0ln 2d 2d )(04.01.00πμπμI x x I CD CD v v ==⋅⨯=⎰⎰x B v E 0V 1011.1V 4ln 22210467<⨯-=⨯⨯⨯⨯=--ππ故C 点电势高.半圆弧导线上感应电动势与直径CD 上的大小相等为V 1011.16-⨯.13-7如图13-7(a),在通有电流的无限长直导线附近,有一直角三角形线圈ABC 与其共面,并以速度v 垂直于导线运动,求当线圈的A 点距导线为d 时,线圈中的感应电动势的大小及方向.已知θ=∠=ACB b AB ,.分析 本题与13-4题相似.要注意的是AC 边与v 有一夹角,BA 边上l d 方向与)(B v ⨯方向垂直,0=AB E .解1 用动生电动势的定义如图13-7(a),取ACBA 为回路绕行方向.对于AC 段,)(B v ⨯方向竖直向上,平行长直导线,在AC 上与A 相距为l 处取线元l d ,方向C A →,动生电动势为⎰⋅+=CAAC l l d Id cos )sin (20θθπμvE⎰+=θθπθμsin 0sin d 2cos b l d l I v db d I +⋅=ln cot 20θπμv方向C A →.对于CB 段,)(B v ⨯方向竖直向上,得θπμοcot )(2b b d ICB⋅+⋅-=v E方向C B →.对于BA 段,)(B v ⨯方向与l d 垂直,则0=BA E .所以直角三角形线框上电动势大小为)(ln cot 20i bd bd b d I BA CB AC +-+⋅=++=θπμv E E E E 因b d bd b d +>+ln,则0i >E ,表明感应电动势方向为ACBA .解2 用法拉第定律如图13-7(b),在距直导线x 处取宽为x d 的面元x t x S d cot )(d θv -=,面元法线方向垂直纸面向里.设t 时刻A 点距离长直导线t v ,面元处磁感强度方向垂直纸面向里 ,大小为xIB x πμ20=穿过直角三角形的磁通量为⎰+-=b t t x x t I v v v d )1(cot 20θπμΦ)ln (cot 20tbt t b I v v v +-=θπμ当d t =v 时,应用法拉第电磁感应定律,直角三角形中的感应电动势为)(ln cot 2d d 0i bd bd b d I tdt +-+=-==θπμΦv v E >0 电动势的方向为ACBA .13-8 如图13-8,在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度为l ab =,导轨一端由一电阻相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速度为0v 运动时,求(1)金属杆能够移动的距离;(2)在此过程中电阻R 所放的焦耳热.分析 金属杆以0v 的初速度在磁场中向右运动,金属杆与导轨组成的回路中有感应电流,因而金属杆受到向左的安培力作用.在安培力作用下杆的运动速度渐慢,最后为0.速度的变化使安培力为变力.于是本题不能简单地用匀加速直线运动公式aS 22-=v -计算,而应从牛顿第二定律出发建立运动方程后求解.根据能量守恒定律,在此过程中杆的初动能全部转化电阻所发出的焦耳热.解 (1)取向右为x 正向,当杆的速度为v ,金属杆ba 上的感应电动势为⎰=⋅⨯=abBl v l B d )(v E感应电流为 RBl R I v==E 方向沿b 到a .在金属杆ba 上取电流元I l d 方向从b 到a ,I B l ⊥d ,安培力B l F ⨯=d d I ,所以作用于杆的安培力沿x 轴的负方向.Rl B B l I F F ab x v22 d -=⋅-==⎰负号表示F 与v 反向.应用牛顿第二定律,得mRl B m F t v v 22d d -== x mRl B t mR l B d d d 2222-=-=v v 设杆的移动距离为d ,由上式分离变量两边积分,有⎰⎰-=022d d v v dx mRl B得 d mRl B 220-=-v 即杆可移动的最大距离为 220l B mR d v =(2)由焦耳热公式, 电阻R 上释放的焦耳热为⎰⎰==t R Rl B t R I Q d d 22222v (1) 又 v v mRl B t 22d d -= 分离变量两边积分,t 时刻有⎰⎰-=t t mR l B 022d d vv 0vv t mRl B 22e0-=v v (2)(2)式代入(1)式,且当∞→t 时0→v ,得⎰⎰∞-=-==222022222221d ed 22v v v m t R l B t R R l B Q t mRl B 即杆从开始运动到停止,其间电阻所放的焦耳热在量值上等于2021v m .13-9磁场沿x 方向,磁感强度大小为T )6(y -,在yOz 平面内有一矩形线框,在0=t 时刻的位置如图13-9所示,求在以下几种情况下,线框中的感应电动势与t 的函数关系:(1)线框以速度m 2=v 的速度平行于y 轴匀速运动;(2)线框从静止开始,以2s m 2=a 的加速度平行于y 轴运动;(3)线框在yOz 平面内平行于z 轴重复以上两种运动.分析 磁场沿x 轴方向,矩形线框沿y 轴运动,所以DC 、BA 边上的电动势为0. 磁感强度是y 的函数,AD 边上的各点B 相等,BC 边上的各点B 相等.此题可以用动生电动势定义式和法拉第定律两种方法求解.不过,对此类既有感生又有动生电动势的题,一般来说先求磁通量,再用法拉第定律求解较易.解1 (1))(B v ⨯的方向为z 轴负向,DC 、BA 边的感应电动势为0,设AD 边感应电动势为1E ,BC 边的为2E ,方向分别为从D 到A 、从C 到B ,矩形框的总电动势为)]6()6[()(212121i y y l B B l ---=-=-=v v E E E lb v =2.0V 2.05.02=⨯⨯=V 方向为逆时针方向.(2) 矩形框作加速运动时,框上的动生电动势为lb y y l B B l v v v =---=-=-=)]6()6[()(212121i E E E其中 at =v 故 2.0i ==a t l bE t 解2 (1)以下均取逆时针方向为回路绕行方向,若0i >E ,则其沿回路绕行方向,反之亦然.穿过矩形框的磁通量为)2(26)2(26d )6(d b t lblb b y lb lb y l y by y +-=+-=-=⋅=⎰⎰+v s B Φ 其中y=vt .矩形框中的电动势为2.0d d i ==-=bl tv ΦE V (2)取回路逆时针绕行,矩形框作加速运动时穿过框的磁通量为⎰⎰++-=-=⋅=by yb y lblb y l y )2(26d )6(d s B Φ其中 2202121at at t y =+=v即 22622lb labt lb --=Φ 矩形框上的电动势为 t l a b t t2.0d d i ==-=ΦE (3)线框沿z 轴方向运动时,Φ不变,则i E 均为0.13-10 如图13-10所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回路.两电流方向相反,若有电流A t I )12(+=,求线圈中的感应电动势的大小和方向.分析 在本题中,应用法拉第电磁感应定律求感应电动势有两条途径:分别求出两个直电流在框上产生的感应电动势,再进行叠加;或者,先求出两直电流的合磁感强度,再求磁通量,应用法拉第定律.载流长直导线磁场是不均匀的,欲求磁通量,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.因两直电流方向相反,靠近线框的直电流在框上电动势大一些,它的贡献决定了线框上电动势的方向. 解 框内任一点磁感应强度为)(22120021d d x Ix I B B B -+-=-=πμπμ取逆时针方向为回路绕行方向,如图13-10,在线框上取面元d S ,且d S =h d x ,穿过框的磁通量为x d d x x Ih S B ld d d )11(2d 12011-+-==⎰⎰+πμΦ其中12+=t I .矩形框上的电动势为)ln (ln 22d d 11220i d l d d l d ht +-+=-=πμΦE )()(ln 12120l d d d l d h ++=πμ 因(l +d 2)d 1<d 2(l +d 1),得0i <E ,即i E沿顺时针方向. 13-11 如图13-11所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l d 表示绕行回路的正方向).如果磁感强度随时间的变化的规律为τ-t/0e B B =,其中B 0和τ为常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向.分析 本题用法拉第定律可方便求解.解 回路绕行方向为逆时针, 穿过圆线圈的磁通量为τππΦt B r B r -==e 022τττπτπΦ/02/02e e )1(d d t t B r B r t ---=-= 圆线圈上的电动势为ττπΦ/02ie d d t B r t -=-=E 方向沿回路正方向即逆时针方向.13-12 如图13-12所示,在与均匀磁场垂直的平面内有一折成α角的V 型导线框,其MN 边可以自由滑动,并保持与其它两边接触.今使ON MN ⊥,当t =0时,MN 由O 点出发,以匀速v 平行于ON 滑动,已知磁场随时间的变化规律为2)(2t t B =,求线框中的感应电动势与时间的关系.分析 导线在磁场中运动,磁感强度又随时间变化,因而线框中的电动势由动生电动势和感生电动势两部分组成,可以直接求出面积不断变化的回路MONM 任一时刻的磁通量,再应用法拉第电磁感应定律求解.也可以分别计算由于MN 边滑动产生的动生电动势和由于线框中磁感强度随时间变化引起磁通量变化产生的感生电动势.解1 取顺时针方向为回路绕行方向, t 时刻穿过V 型导线框的磁通量为B xl2=Φ 其中 t x v =,αtan x l =,22t B =,应用法拉第电磁感应定律,导线框上的感应电动势为)2(d d d d B xlt t -=-=ΦE ααt a n )t a n 4(d d 3242t t t v v -=-= 负号表明E 与回路绕行方向相反,即沿逆时针方向.解2 由于MN 边滑动产生的动生电动势为⎰==⋅⨯=MN t Bx ααtan 21tan d )(32v v l B v 动E 沿NM 方向.t 时刻回路面积xl S 21=,取逆时针方向为回路绕行方向,回路法向矢量n e 与B 相反,则())2(d d 2d d d d d d 2t t xl t B S BS t t ==--=-=Φ感E =αtan 2132t v总感应电动势为感动E E E +==αtan 32t v 沿逆时针方向.13-13 一导线弯成如图13-13的形状,在均匀磁场中绕轴O O '转动,角速度为1ω.若电路的总电阻为R ,当0=t 时从图示的位置开始转动.(1)当磁感强度B 为常量时;(2)当t B B 20sin ω=时,求导线中的感应电流和感应电动势.解 (1)B 为常量,t 时刻穿过线圈的磁通量为t l Bl 112cos ωΦ=,线圈上的感应电动势为t l Bl t1112i sin d d ωωΦ=-=E 线圈上的感应电流为t R l Bl R I 1112i i sin ωω==E(2)t B B 20sin ω=时,t 时刻穿过线圈的磁通量为t l l t B 11220cos sin ωωΦ⋅=线圈上的电动势为sin (d d 212211120i l l B tωωΦ=-=E线圈上的感应电流为)cos cos sin sin (212211120it t t t Rl l B R I i ωωωωωω-==E 13-14 均匀磁场B 被限制在如图13-14所示的圆柱型空间中, B 从0.5T 以0.1T/s 的速率减小,(1)确定涡旋电场电场线的形状和方向并示于图中;(2)求图中半径为r =10cm 的导体回路上各点的涡旋电场场强和回路中的感生电动势;(3)设回路的电阻为Ω2,求其中感应电流的大小;(4)回路中任意两点b a ,间的电势差为多大?(5)如果在回路某点将其切断,两端稍微分开,问此时两端的电势差为多大?分析 例题413-讨论了这种在圆柱形空间中随时间改变的均匀磁场所产生的涡旋电场,可以直接利用其结果计算该涡旋电场中的电场强度的大小和方向.解 (1)由例题413-的讨论知,该圆柱形空间中随时间改变的均匀磁场产生涡旋电场,其电场线是圆心在轴线上的一系列同心圆,又因0d d <t B ,该涡旋电场中的电场强度涡E 为同心圆上沿顺时针绕行的切线方向,如图13-14所示.(2)利用例题413-的结果,r = 10cm 的回路上涡旋电场强度大小为V/m 005.0V/m 1.021.0d d 2=⨯==t B r E 涡内 回路上的感生电动势为V 1014.3V 1.01.014.3d d d d 322i -⨯=⨯⨯=-=-=tBr t B SπE 方向为顺时针方向.(3)回路中感应电流为 A 1057.1A 21014.333ii --⨯=⨯==R I E (4)根据一段含源电路的欧姆定律,弧⋂b a 上的电势差等于该段导线上电阻引起的电势差减去该圆弧上的感应电动势⋂abE ,即0)(2)(2 2)2(i ii i=-⋅=-=⋅-⋅=-=-⋂⋂⋂⋂⋂⋂E E E E E R Rr ab IR r ab abrab r R I IR V V ab ab b a ππππ(5)断开一个缺口cd 后回路不再闭合,因此回路中无电流,则cd 两点间电势差为V 1014.303i -⨯-=-=-E d c V V由于d c V V <,表明d 点电势高.13-15 在半径为R 的圆柱形空间中,存在着变化的均匀磁场)(t B ,有一长为l 的导体棒放在磁场中,如图13-15(a)所示,设磁场的变化率为t B d d ,(1)用感生电动势定义⎰⋅=ba l E d i 涡E 求棒中的感生电动势;(2)用法拉第电磁感应定律求棒中的感生电动势;(3)若导体棒在图示位置时有一个方向与棒垂直指向O 点、大小为v 的速度,再求棒上的感应电动势.分析 这是与上题特征相同的磁场.利用例题413-的结果,涡旋电场线是一系列同心圆,涡E 在圆的切线方向,所以用感生电动势定义计算时应注意ab 棒上各点的涡E 与l d 有一夹角.如果应用电磁感应法拉第定律计算,将ab 棒连接半径Oa ,Ob 构成闭合回路OabO ,考虑到沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势.当导体棒运动时,闭合回路OabO 中的磁通量随时间变化,求出任一时刻t 回路OabO 所围面积的磁通量,便可求解. 解 (1)如图13-15(b)所示,在ab 棒上取线元l d ,方向从b a →.该处涡E 在切线方向,大小为tBr d d 2,涡E 与l d 的夹角为θ,且rlR 22)2(cos -=θ,得ab 棒上感应电动势ab E 的方向从b a →,大小为⎰⎰=⋅=b abaab l tBr d cos d d 2d θl E 涡E 0)2(2d d d d d 2)2(02222>-=-=⎰l l R l t B l t B l R(2)连接Ob Oa ,成闭合回路OabO ,设回路逆时针绕行,穿过回路的磁通量为4222l R Bl --=Φ闭合回路OabO 上的感应电动势为42d d d d 22l R l t B t oabo-=-=ΦE因沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势,即42d d 22l R l t B oabo ab -==E E方向从b a →.(3) 如图13-15(c),经t 时间棒向着O 点移动t v ,连接Oa 、Ob 成闭合回路OabO ,设回路逆时针绕行.穿过回路的磁通量为t l R Bl v ---=4222Φ导体棒中的感应电动势为v v 2Bl t l R l t B t oaboab 21)4(2d d d d 2---=-==ΦE E若0>oabo E ,则ab E 从b a →;若0<oabo E ,则ab E 从a b →.13-16 如图13-16(a),均匀磁场被限制在半径为R 的圆柱形空间,磁感强度对时间的变化率0d d >t B ,在圆柱形空间外与磁场垂直的平面内有一导体AB .(1)计算AB 上的感应电动势;(2)B A 、两点间的电势差有多高?(3)在图中表示出B A 、两点的涡旋电场强度.分析 磁场局限在圆柱形空间内部,连接OB OA 、,计算穿过三角形OAB ∆的磁通量时,只需计算该三角形所包围的圆柱形空间内扇形面积的磁通量.解1 (1) 如图13-16(a),连接OB OA 、,穿过OAB ∆的磁通量与穿过扇形的磁通量相等为tBd b l a b R t dbl a b R B d d )arctan (arctan 21d d )arctan(arctan 212i 2-+-=-=-+⋅=ΦΦE(2) 0d d >tB,应用楞次定律判定电动势从B A →,所以B 点的电势高. tBd b l a b R U BA d d )arctan (arctan 212-+= (3)kB kA E E 、都在该点切线方向,且沿逆时针绕行的切线方向.解2 (1) 如图13-16(b),在AB 上取线元l d 方向从A 到B ,到圆心的距离为r ,据(13-7)式,有⎰⎰=⋅=BA BA l tB r R d cos d d 2d 2i θl E 涡E而θθcos d d r l =,AB 上的感生电动势为 )(21cos cos d d d 221202i 21θθθθθθθ+-=⋅-=⎰+R r t B r R E 其中d bl ab-==arctanarctan21θθ,得 tBd b l a b R d d )arctan (arctan 212i-+-=E 13-17截面为矩形的环形螺线管,平均半径为R ,截面边长为b 和c ,螺线管共有N 匝导线,管内充满磁导率为μ的均匀磁介质,如图13-17(a )所示,试求其自感系数.分析 螺绕环的磁感线是以对称中心为圆心的一系列同心圆,每条磁感线都要穿过矩形截面,于是求自感系数的问题归结为求穿过矩形截面的磁通量.由于沿螺绕环半径方向的磁场分布不均匀,需在矩形截面上取面元S d ,算出ϕd ,再积分得ϕ.解 如图13-17(b),在矩形截面上取面元r c S d d =,与螺绕环中心距离为r .由安培环路定理(11-15)式得S d 处的磁感应强度为rNIB πμ2=穿过螺绕环的磁通链为⎰⋅==sS N N d B ϕΦ22ln 2d 22222b a b a Ic N r r Ic N b a b a -+==⎰+-πμπμ 螺绕环的自感系数为22ln 22b a b a c N I L -+==πμΦ13-18 如图13-18, 两平行长直导线,其中心距离为d ,载有等大反向的电流(可以想象它们在相当远的地方汇成单一回路),每根导线的半径均为R ,如果不计导线内部磁通量的贡献,试求单位长度的自感系数.分析 两平行长直导线间的磁感应强度为两长直导线在该处磁感应强度之代数和.沿着以下思路解题:先求出两导线间的B ,再求两导线间的磁通量,再求自感系数.解 如图13-18,由磁场叠加原理,在两条导线间距左边一根为r 远(R r <)处磁感应强度为)11(20rd r I B -+=πμ取长为l 的一段导线,通过图中阴影部分的磁通量为⎰--+=R d Rr r d r Il d )11(20πμΦRR d Il -=ln 0πμ 长为l 的一段导线的自感系数为RRd l IL l -==ln 0πμΦ单位长导线的自感系数为RR d l L L l -==ln 0πμ 13-19 如图13-19,两圆形线圈共轴放置在一平面内,它们的半径分别为1R 和2R ,21R R >>,匝数分别为1N 和2N ,试求它们之间的互感系数.(大线圈中有电流时,小线圈所在处的磁场可看作是均匀的.)分析 题目给出条件21R R >>,2R 线圈与1R 线圈共轴,所以2R 线圈所在处的磁感应强度可视为均匀,且等于1R 线圈圆心处的磁感应强度. 解 因21R R >>,当大线圈中有电流1I 时,小线圈所在处各点的磁感应强度近似相等,且等于圆心处的磁感应强度,即1110212R N I B μ=穿过小线圈的磁通链为1221102212212R R N I N N πμϕΦ==互感系数为1222101212R R N N I M πμΦ==13-20 在如图13-20所示的电路中,线圈I 连线上有一长为l 的导线棒CD 可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈I 连线接触,导体棒的速度与棒垂直.设线圈I 和线圈Ⅱ的互感系数为M ,电阻为1R 和2R .分别就以下两种情况求通过线圈I 和线圈Ⅱ的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动.分析 CD 边运动,线圈I 中有感应电流. 由于互感,线圈I 中的电流变化将在线圈Ⅱ中产生感应电流.解(1)CD 匀速运动时,线圈I 中的感应电流是常量,为111R lB R I i v ==E 它在线圈Ⅱ中引起的磁通量的变化率为0 d d 21=tΦ 在线圈Ⅱ中引起的互感电动势021=E ,因此线圈Ⅱ中的感应电流为零.(2)CD 加速运动时, 线圈I 中的感应电流为11R BlatI =在线圈Ⅱ中引起的磁通量为at R BlMMI 1121==Φ在线圈Ⅱ中引起的互感电动势为12121 d d R BlMat -=-=ΦE因此线圈Ⅱ中的感应电流为212212R R BlMa R I -==E13-21 如图13-21所示的两个共轴圆形线圈,它们的间距为d ,半径为R 和r ,且r R >>,大线圈中有电流时,小线圈所在处的磁场可看作是均匀的,试求(1)大线圈中的电流t I I ωsin 0=时小线圈中的感应电动势;(2)两线圈的互感系数M ;(3)当小线圈偏转,使得两线圈平面法线的夹角分别为︒︒︒90 60 30、、时,再求M .解 (1)大线圈在小线圈处产生的磁感强度为2/3222021)(2d R R IB +=μ 大线圈电流产生的磁场穿过小线圈的磁通量为232222022121)(2d R r IR S B +==πμΦ大线圈电流变化, 在小线圈中产生的互感电动势为232222002121)(2cos d d d R t R r I t +-=-=ωωπμΦE (1) (2)两电流的互感电动势又可表示为 t MI tIM ωωcos d d 021-=-=E 将(1)式代入上式,得232222021)(2d d d R r R t I M +=-=πμE(3)两线圈平面法向夹角为 30时穿过小线圈的磁通量为2121212330cos ΦΦΦ==' 互感系数 2322220)(43d R r R M +='πμ 夹角为 60时,得 2121212160cos ΦΦΦ==' 2322220)(4d R r R M +='πμ夹角为 90时,得 021='Φ 0='M13-22 试求题13-10中二长直导线组成的回路与矩形框之间的互感系数. 分析 在本题中,显然求出长直导线在矩形框处的磁通量,然后求互感系数较容易.解 利用习题13-10的结果,两长直导线在矩形线圈处产生的磁通量为)ln (ln 222110d ld d l d Ih +-+=πμΦ 得互感系数为 )()(ln 2)ln (ln 22112022110l d d l d d h d ld d l d h IM ++=+-+==πμπμΦ13-23 两线圈的自感系数分别为1L 和2L ,它们的互感系数为M ,当两线圈串联时,试证它的等效自感系数为M L L L 221±+=,其中的正负号分别是对应图13-23中的两种连接情况.分析 两线圈串联后的等效自感系数,应该等于输入端与输出端间自感电动势与回路电流变化率之比.任一线圈两端的感应电动势应等于各自的自感电动势与另一线圈在其上产生的互感电动势的代数和.根据楞次定律,线路顺接如图13-23(a)时,互感电动势与自感电动势方向相同;反接如图13-23(b)时,互感电动势与自感电动势方向相反.假如再拓展考虑两线圈顺并联和反并联的情况.这时流经两线圈的电流分别为1I 和2I ,但互感系数M 不变,且并联后的总电动势12E E E ==.可解出顺并联时M L L M L L L 221221-+-+=,反并联时ML L M L L L 221221++-+=. 解 顺连接如图13-23(a ),设左边的线圈为(1),右边的线圈为(2).根据楞次定律,线圈(1)上的总电动势1E ,应为其上的自感电动势11E 与线圈(2)在线圈(1)上产生的互感电动势12E 之和,有)d d d d (112111tIM t I L +-=+=E E E 同理 )d d d d (221222tI M t I L +-=+=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121++-=+=E E E 两线圈串联顺接时的等效自感系数为M L L tI L 2d d 21++=-=E反连接如图13-23(b ),根据楞次定律,线圈(1)上的总电动势E 1 ,应为其上的自感电动势E 11与线圈(2)在线圈(1)上产生的互感电动势E 12之差,有)d d d d (112111tIM t I L --=-=E E E同理 )d d d d (221222tI M t I L --=-=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121-+-=+=E E E 两线圈串联反接时的等效自感系数为M L L tI L 2d d 21-+=-=E13-24 在一细线密绕螺线管内填满了某种磁导率为μ(常量)的均匀介质,若该介质的电阻率为ρ,在介质中存在感应电流的情况,由定义tI L d d E-=求该螺线管的自感系数.设螺线管半径为R 、长为l 、总匝数为N ,且R l >>,忽略边缘效应.分析 缠绕螺线管的传导电流I 变化时,传导电流要产生自感电动势1E .现螺线管内充满磁导率为μ的磁介质,变化的传导电流在介质中激发感应电流,变化的感应电流也要产生自感电动势2E .总的自感电动势为21E E E +=.由传导电流激发的螺线管内磁场,方向沿轴线,且分布均匀,所以由变化的传导电流激发的感应电流是以轴线为圆心的圆电流.考虑到介质有电阻,感应电流在介质的径向分布不均匀,因而感应电流产生的磁场方向沿轴线,为非均匀磁场,在计算感应电流产生的磁通量时要注意.。
大学物理第13章习题解答

引言概述:大学物理第13章是力学的一个重要章节,主要介绍了质点系和刚体的运动学和动力学问题。
习题作为巩固章节知识和培养解决问题能力的重要手段,对于学生的学习具有重要的意义。
本文将对大学物理第13章的习题进行解答,以帮助读者更好地理解和掌握力学的相关知识。
正文内容:1.质点系的运动学问题1.1相对位矢和质心位矢的关系1.2质心速度的计算方法1.3质心加速度的计算方法1.4相对位矢和质心位矢之间的关系1.5相对位矢和质心位矢的运动规律2.质点系的动力学问题2.1质点间相互作用力的计算方法2.2质点系受到的合外力和合内力的关系2.3质点系统的动量守恒定律2.4质点系的动量定理2.5质点系的冲量和动量变化的关系3.刚体的运动学问题3.1刚体的转动轴和转动角速度的关系3.2刚体的几何中心和质心的关系3.3刚体的角速度和线速度的关系3.4刚体的力矩和角加速度的关系3.5刚体的运动规律和动能的计算方法4.刚体的动力学问题4.1刚体的力矩和合外力的关系4.2刚体的力矩定理和动力学定理的关系4.3刚体的动量矩定理4.4刚体的角动量守恒定律4.5刚体的角动量定理和动能定理的关系5.刚体的平衡问题5.1刚体的平衡条件5.2刚体的平衡方程的推导和应用5.3刚体的平衡条件和力矩定理的关系5.4刚体的平衡问题和静力学问题的区别和联系5.5刚体的平衡问题和静态平衡问题的应用总结:大学物理第13章习题解答了质点系和刚体的运动学和动力学问题,并深入探讨了质点系和刚体的平衡问题。
通过解答这些习题,我们可以更好地理解和掌握力学的相关知识,提高解决问题的能力和方法。
同时,我们也应该注重理论与实际结合,将所学的知识应用到实际问题中,不断提高自己的应用能力和创新能力。
希望读者通过本文的阐述,能够对大学物理第13章有更深入的理解,并能够在学习和解题中取得更好的成绩。
[工学]大学物理第13章
![[工学]大学物理第13章](https://img.taocdn.com/s3/m/08634bf7b9f3f90f76c61b83.png)
i i i i ( B, n) 90 ( B, n) 90 ( B, n) 90 ( B, n) 90 Bcos ds 0 0 0 0 d d d d 0 若 | | , 0 若, 0 若||, 0 dt dt dt dt 则 i<0 若, 则 i<0 则 >0 则 i>0 i 反向 与假定方向相反 同向 同向
v
共同因素:穿过导体回路的磁通量M发生变化。
d i dt
法拉第电磁感应定律
其中i为回路中的感应电动势 (i为回路中载流子提供能量)
注意:
“–”表示感应电动势的方向, i和都是标量,方向 只是相对回路的绕行方向而言。如下所示: n n n n B B
静电场E不能为闭合回路运动的电荷提供能量! 麦克斯韦 引入 感应电场的概念 非保守场 产生 电场 磁场 Bt 变化的同时
此电场的电力线是闭合的,称为有旋电场—感应电场Ei。
感应电场 E i 的特点: 1)E i 与 E e 一样,对场中的电荷有电场力的作用。 F F qEi Ei q 2) E i 不依赖空间是否有导体存在, 只要有 dB 0 ,则就有Ei的存在。 dt 3) E i 是非保守力场, Ei dl 0 。
为正;成钝角时, i 为负。因此,由上式算出的电动势 有正负之分, i为正时,表示电动势方向顺着 d l 的 方向; i为负时,则表示电动势的方向逆着 d l 的方向。 对于闭合回路
i 由上式可以看出,矢积 v B 与 d l 成锐角时,
L
i v B d l
2
1
磁通计原理
与d/dt无关
《大学物理》第13章电磁感应电磁场练习题及答案

《大学物理》第13章电磁感应电磁场练习题及答案练习1一. 选择题1. 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略):( ) A. 把线圈的匝数增加到原来的两倍;B. 把线圈的面积增加到原来的两倍,而形状不变;C. 把线圈切割磁力线的两条边增长到原来的两倍;D. 把线圈的角速度增大到原来的两倍。
2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时: ( ) A. 铜环中有感应电动势,木环中无感应电动势; B. 铜环中感应电动势大,木环中感应电动势小; C. 铜环中感应电动势小,木环中感应电动势大; D. 两环中感应电动势相等。
3. 对于位移电流,下列说法中正确的是 ( ) A. 与电荷的定向运动有关; B. 揭示了变化的电场能激发磁场; C. 产生焦耳热; D. 与传导电流一样。
4. 一圆形线圈在均匀磁场中作下列运动时,会产生感应电流的情况是 ( ) A. 沿垂直磁场方向平移;B. 以直径为轴转动,轴跟磁场垂直;C. 沿平行磁场方向平移;D. 以直径为轴转动,轴跟磁场平行。
OB二. 填空题1.如图所示,在一长直导线L中通有电流I,ABCD为一矩形线圈,它与L皆在纸面内,且AD边与L平行:(1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为____________;(2) 矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中感应动势的方向为_________________________。
2.引起动生电动势的非静电力是力;引起感生电动势的非静电力是力。
3.∮H⃗∙dlL=I+I d表明磁场强度沿任一闭合回路的线积分等于通过以该回路为边界的任意曲面的;∮E⃗∙dll =−dΦdt的物理意义是变化的磁场产生。
大学物理第十三章课后答案

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象• 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ?答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?λ答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用2来划分•对应于第3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k • 1) “ =(2 3 ■ 1) “ =7∙.∙由 22 2a Sin -4 ' - 8—213-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则asin「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公mλasin =(2k 1) (k =1,2,)式 2来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?k ■解:当全部装置浸入水中时,由于水中波长变短,对应asin 「= k ∙ = n ,而空气中为asi n「= k ∙,∙. Si n 「=n Sin ",即「=n :,水中同级衍射角变小,条纹变密.λ如用asin(2k ■ I)2 (k=1,2,…)来测光的波长,则应是光在水中的波长.(因asin‘ 只代表光在水中的波程差)•13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由asin ' =k'知,衍射角「变大,条纹变稀;(2) ,变大,保持a, k不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时asin即=k ∙;斜入射时,a(Sin「-Sin^)^k-,保持a ,'不变,则应有 ^ k或k二::k •即原来的k 级条纹现为k级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样说明?λ答:不矛盾•单缝衍射暗纹条件为.asin=k' =2k 2 ,是用半波带法分析(子波叠加问 题)•相邻两半波带上对应点向'方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为dsin a ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别 ?为何光栅衍射的明条纹特别明亮而暗区很宽 ?答:光栅衍射是多光束干涉和单缝衍射的总效果. 其明条纹主要取决于多光束干涉.光强与缝数N 2成正比,所以明纹很亮;又因为在相邻明纹间有 (N -1)个暗纹,而一般很大,故 实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级 ?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即"(a +b)si n d =±k ?* (k =0,1,2,…) a sin W = ±k 九 (^ = 1,2∙…)a +b * k = k H可知,当 a 时明纹缺级.(1)a∙b =2a 时,k = 2,4,6,•…偶数级缺级;(2) a b =3a 时,k=3,6,9,•…级次缺级;⑶ a ∙b =4a , k=4,8,12,∙∙级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问 (1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大 ?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光. 因为各种波长的光在零级明纹处均各自相干加强. ⑵可见光中红光的衍射角最大,因为由(a' b) sin :护=k ‘,对同一 k 值,衍射角 -'.ο13-11 一单色平行光垂直照射一单缝, 若其第三级明条纹位置正好与 6000 A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为a sin = (2 k 1)2o当人=6000 A 时 k = 2,='X 时,k = 3 重合时'角相同,所以有5 ■ X6000 =4286 o7Ao13-12 单缝宽0.10mm,透镜焦距为50Cm 用^ =5000 A 的绿光垂直照射单缝•求:(1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少 ?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少 ?AλL X = 2 f解:中央明纹的宽度为na-Sin —半角宽度为 na(1)空气中,n=1,所以A5000 汇 10 “J:x =2 0.5厂=5.0 100.10 汉 10ma sin 即=(22 1)-6000=(2 3 ■ 1)1015000 X 10 一 3V - Sin厂=5.0 10 一0.10x10 一rad(2)浸入水中,n=1.33 ,所以有105000 x10一3:^=2 0.50- 3.76 10 _1.33x0.10x10—mI5000 00」° 3V - Sin 3 : 3.7610 一 1.33 X 0.1 X10 一 rad13-13 用橙黄色的平行光垂直照射一宽为 a=0.60mm 的单缝,缝后凸透镜的焦距 f=40.0cm ,观察屏幕上形成的衍射条纹•若屏上离中央明条纹中心 1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?X 1.4 J3.5 10 tan f 4002 0.6 3.5 10 2k 1k = 4 得)-4 = 4700o若-3 = 6000 A ,则P 点是第3级明纹;o若-4 =4700 A ,贝U P 点是第4级明纹.a Sin = (2k 亠 1)-⑶由2可知,当k=3时,单缝处的波面可分成2k 1当k=4时,单缝处的波面可分成2kTo13-14用‘氛=5900A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 1 a+b = J二o解:500 mm =2.010 mm = 2.010 A由(a ' b )sin ' = k '知,最多见到的条纹级数ka +b 2.0 汇104k max ==fc3.39∣Z-Qkmax^3所以有5900,即实际见到的最高级次为o 13-15 波长为5000A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透解:(1)由于P 点是明纹,故有a sin ' = (2k 1)—2 , k =1,2,3 - ■ 2a sin 2k 1X4.2 X10 °2k 1k =3,得 K =6000 mmoA=7个半波带;=9个半波带.<Pmax 对应的max镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?1a +b = ------ =5.0x10~6解: 200 mm 5.0 10 - m(1)由光栅衍射明纹公式X Sin Φ = tan W =— (a +b) sin 申=k k ,因k =1 ,又fX 1(a +b)所以有f这就是中央明条纹的位移值•o13-16 波长九=6000A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 Sin=0∙20与Sin =0∙30处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;⑶ 在90°> ’ > -90 °范围内,实际呈现的全部级数.解:(1)由(a b) Sin= k,式对应于Sin :1=0∙2° 与Sin ;:2=0∙30 处满足:-Lo0.20 (a b) =2 6000 10 I. 100.30 (a b) =3 600010得 a ∙ b =6.0 10 * m(2)因第四级缺级,故此须同时满足(a ■ b) Sin = k ■a sin = k ,= 1.5 10 "βk解得取=1 ,得光栅狭缝的最小宽度为 1.5 10 m⑶由(a b) Sin = k ■k 土(a ■ b) Sin λπW =—当 2,对应 k = k m aXa +b .66.0 10 k10λ6000 10500010 210 恥 60 10 一X l5.0 10 -⑵对应中央明纹, 2= 6.0 10 一k = 0 =6 Cm正入射时, (a -b) Sin 斜入射时, (a -b)(sin=0二Sin所以 Sin=0日)=0 即Sin 申±sin 日=0Sinl : tanXCP二 30=1 60 10 2 2=3010m = 30Cm因_4 , _ 8缺级,所以在-9°:::「::: 9°范围内实际呈现的全部级数为k = 0, 一1, _2, _3, _5, _6, 一7, _9 共 15 条明条纹(k= 1° 在 k= 9° 处看不到).o13-17 一双缝,两缝间距为 0.1mm ,每缝宽为0.02mm ,用波长为4800A 的平行单色光垂 直入射双缝,双缝后放一焦距为 50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹 的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹 ? 解:(1)中央明纹宽度为 (2)由缺级条件a sin = k '■(a - b) sin = k ■0.1k " = 5k ' 0.02 k =1,2,即k=5,10,15,…缺级V -1.221 .22 5000= 30.5 10 D0.2d4f tan v : f v - 50030 .5 10 一 =1.5.∙.爱里斑半径2mm13-19已知天空中两颗星相对于一望远镜的角距离为 4.84 × 10-6rad ,它们都发出波长为o5500A 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星 ?解:由最小分辨角公式J -1.22 —D5λ5.5j<10D =1.22 — =1 .22- = 13.864.84 10 Cmo13-20已知入射的X 射线束含有从0.95〜1.30A 范围内的各种波长,晶体的晶格常数为 o2.75 A ,当X 射线以45°角入射到晶体时,问对哪些波长的 X 射线能产生强反射? 解:由布喇格公式2d Sin=k'_ 2d Sin 申λ = --------得k时满足干涉相长Qo当 k =1 时,& = m 、s in 45=3.89 A2 2.75 sin 45Λ --1.91 ok =2 时,2AI 。
许瑞珍、贾谊明 大学物理课后答案(机械工业出版社)

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y=)11(4220Ly y +--πελ,方向沿x 轴负向。
习题7-1图dq ξd ξ习题7-2 图axθθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L +πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
《大学物理学》习题解答(第13章 稳恒磁场)(1)

【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章汇编

1-7 一人扔石头的最大出手速率为 v=25m/s,他能击中一个与他的手水平距离 L=50m,
高 h=13m 的目标吗?在此距离上他能击中的最大高度是多少?
解:由运动方程
x
vt
cos
,
y
vt
sin
1 2
gt 2
,消去
t
得轨迹方程
y
xtg
g 2v2
(tg 2
1) x 2
以x=05.0m ,v=25ms-1代入后得
l 2 v02t2 (H h)2
dl dt
v02t v02t 2 (H h)2
d 2l dt 2
(H h)2 v02 (H h)2 v02t 2 3/ 2
H v0
h
所以小车移动的速度 v
v02t
(H h)2 v02t 2
图 1-18 习题 1-4 图
小车移动的加速度 a
(H h)2 v02 (H h) 2 v02t 2 3/ 2
z
h 2
t
这是一条空间螺旋线。
在 O xy 平面上的投影为圆心在原点,半径为 R 的圆,螺距为 h
(2) vx
dx dt
R sin t
v
v
2 x
v
2 y
v
2 z
R2
h2 4 2
(3) ax R 2 cost a y R 2 sin t az 0
a
a
2 x
a
2 y
R 2
1-10 飞机以 100m·s-1的速度沿水平直线飞行,在离地面高为 100m时,驾驶员要把物品 投到前方某一地面目标处。问:(1)此时目标在飞机下方前多远?(2)投放物品时,驾驶 员看目标的视线和水平线成何角度?(3)物品投出 2s后,它的法向加速度和切向加速度各 为多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 振动13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。
解:周期T = 2π/ ω= 0.25 s振幅A = 0.1m初相位φ= 2π/ 3V may = ωA = 0.8πm / s ( = 2.5 m / s )a may = ω2 A = 6.4π2m / s ( = 63 m / s 2)13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。
求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。
解:(1) )( )25sin(0.3 SI t dt dx v π--==0.3 20x m ma x ω-== (2) 2x m ma F ω-==5.13.052.0,2/ 2N F A x -=⨯⨯-==时13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。
解:设物体的运动方程为:x = A c o s (ωt +φ)恒外力所做的功即为弹簧振子的能量:F ⨯ 0.05 = 0.5 J当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J ,即:1 /2 kA 2 = 0.5 J ∴A = 0.204 mA 即振幅ω2 = k / m = 4 ( r a d / s )2ω= 2 r a d / s按题目所述时刻计时,初相为φ= π∴ 物体运动方程为x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。
已知球经平衡位置向右运动时,v =100cm ⋅s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。
解:设小球的速度方程为:v = v m c o s (2π/ Tt +φ)以经平衡位置的时刻为t = 0根据题意t = o 时 v = v 0 = 100 c m s -1 且 v >0∴v m = v 0 φ= 0小球的动能 E k0 = 1 / 2 m v 02过1 / 3秒后,速度为 v = v 0 c o s ( 2π/T. 1/ 3) = - V 0 / 2x 习题13-3图动能 E k = 1 / 2 m v 2 = 1 / 2m 1/ 4v 02∴E K / E 0 = 1/ 4 动能是原来的1/ 4倍13-5 设地球是一个半径为R 的均匀球体,密度 ρ = 5.5 ⨯ 103 kg ⋅m -3。
现假定沿直径凿一条隧道。
若有一质量为m 的质点在此隧道内做无摩擦运动。
(1)证明此质点的运动是简谐振动;(2)计算其周期。
解:(l )取图所示坐标。
当质量为m 的质点位于x 处时,它受地球的引力为2x x mm G F -=式中G 为引力常量,m x 是以x 为半径的球体质量,即3/43x x m πρ=。
令3/4Gm k πρ=,则质点受力kx Gmx F -=-=3/4πρ因此,质点作简谐运动。
(2)质点振动的周期为s 1007.5/3/23⨯===ρππG k m T13-6 在一块平板下装有弹簧,平板上放一质量为1.0kg 的重物。
现使平板沿竖直方向做上下简谐运动,周期为0.50s ,振幅为2.0⨯10-2 m 。
求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物会跳离平板?(3)若振幅不变,则平板以多大的频率振动时,重物会跳离平板?分析:按题意作示意图,如图所示。
物体在平衡位置附近随板作简谐运动,其间受重力P 和板支持力F N 作用,F N 是一个变力。
按牛顿定律,有 22N d d t y m F mg F =-= (l )由于物体是随板一起作简谐运动,因而有)cos(d d 222ϕωω+-==t A t y a ,则式(l )可改写为)cos(2N ϕωω++=t mA mg F (2)(1)根据板运动的位置,确定此刻振动的相位ϕω+t ,由式(2)可求板与物体之间的作用力。
(2)由式(2)可知支持力F N 的值与振幅A 、角频率ω和相位ϕω+t 有关。
在振动过程中,当πϕω=+t 时F N 最小。
而重物恰好跳离平板的条件为F N = 0,因此由式(2)可分别求出重物跳离平板所需的频率或振幅。
解:(l )由分析可知,重物在最低点时,相位0=+ϕωt ,物体受板的支持力为N 96.12)2(22N =+=+=mA mg mA mg F πω重物对木块的作用力'N F 与F N 大小相等,方向相反。
(2)当频率不变时,设振幅变为'A 。
根据分析中所述,将F N = 0及πϕω=+t 代入分析中式(2),可得 m 102.64//2222-⨯==='πωgT m mg A(3)当振幅不变时,设频率变为'ν。
同样将F N =0及πϕω=+t 代入分析中式(2),可得Hz52.3/212=='='mA mg v ππω13-7 一物体沿x 轴做简谐运动,振幅为0.06m ,周期为2.0s ,当t = 0时位移为0.03m ,且向x 轴正方向运动。
求:(1)t = 0.5s 时,物体的位移、速度和加速度;(2)物体从x =- 0.03m 处向x 轴负向运动开始,到平衡位置,至少需要多少时间?解:(1)由题意知A = 0.06m 、1s /2-==ππωT 由旋转矢量图可确定初相则30πϕ-=,振动方程为)3cos(06.0ππ-=t x当t = 0.5s 时质点的位移、速度、加速度分别为m x 052.0)32cos(06.0=-=ππ m/s 094.0)32sin(06.0 -=-==πππdt dx v 2222/ 513.0)32cos(06.0s m dtx d a -=--==πππ (2)质点从x = -0.03 m 运动到平衡位置的过程中,旋转矢量从图中的位置M 转至位置N ,矢量转过的角度(即相位差)6/5πϕ=∆。
该过程所需时间为 s833.0=∆=∆ωϕt13-8 有一密度均匀的金属T 字形细尺,如本题图所示,它由两根金属米尺组成。
若它可绕通过点O 的垂直纸面的水平轴转动,求其微小振动的周期。
解:T 字形尺的微小振动是复摆振动。
T 字形尺绕轴O 的转动惯量J 。
由两部分组成,其中尺OD 对该轴的转动惯量为2311ml J =尺AB 对轴O 的转动惯量为J 2,根据平行轴定理可得22212131212ml ml ml J =+=故有 21O 12172ml J J J =+= 图中T 字形尺的质心C 至点O 的距离为C l ,由质心定义可得l l 75.0C =。
则T 字形尺的振动周期为s 95.11817222C O ===g l mgl J T ππ13-9 如本题图所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落到盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?分析:原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 +m 2,因此新系统的角频率(或周期)要改变。
由于2020)(ωv x A +=因此,确定初始速度0v 和初始位移0x 是求解振幅A 的关键。
物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度0v ,这也是该振动系统的初始速度。
在确定初始时刻的位移0x 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置。
因此,本题中初始位移0x ,也就是空盘时的平衡位置相对新系统的平衡位置的位移。
解:(l )空盘时和物体落入盘中后的振动周期分别为 k m m T km T )(2222211+='='==πωπππ可见T T >',即振动周期变大了。
(2)如图所示,取新系统的平衡位置为坐标原点O 。
则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即k g m g k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,k g m m l )(212+=为物体粘在盘上后,静止时弹簧的伸长量。
由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度习题13-8图习题13-9图gh m m m v m m m v 22122120+=+=式中gh v 2=是物体由h 高下落至盘时的速度。
故系统振动的振幅为g m m khk gm v x A )(21)(2120202++='+=ω本题也可用机械能守恒定律求振幅A 。
13-10 一质量M 的物体在光滑水平上作谐振动,振幅是12cm ,在距平衡位置6cm 处速度是24cm / s ,求(1) 周期T ;(2)当速度是12cm / s 时的位移。
解:设振动方程为x = A c o s ωt ,则x ∙= A ωsin ωt(1) 在x = 6 c m ,x ∙= 24 c m / s 状态下有6 = 12 c o s ωt , 24 = -12ωsin ωt ,解以上两式得ω = 4 /3, ∴T = 2π/ ω= 3π/ 2 = 2.72 s (2) 设对应于x ∙= 12 c m / s 的时刻为l 2,则由x ∙= - A ωsin ωt得12 = - 12×4 /3×sin ωl 2,解得上式得sin 2ωl 2 = 0.1875相应的位移为x = A co s ωt 2 = ±A 110822-=±sin .ωt cm13-11 若在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2cm 而平衡,经推动后,该小球在竖直方向作振幅为A = 2cm 的振动,试证明此振动为谐振动;若选小球在正最大位移处开始计时,写出此振动的数值表达式。
解:设小球的质量为m ,由弹簧的倔强系数k = m g / l 0选平衡位置为原点,向下为正方向,小球在x 处,根据牛顿定律得m g - k ( l 0 + x ) = m d 2 x / d t 2将倔强系数k = m g / l 0代入整理后得d 2 x / d t 2 + g x / l 0 = 0∴此振动为谐振动令 ωπ==g l /.0910解得x = A c o s (ωt + φ) A = 2×10 -2由题意: t = 0时,x 0 = A ,v 0 = 0, ∴φ = 0∴x = 2×10 -2 c o s (9.1πt ) (SI)13-12 一台摆钟的等效摆长l =0.995m ,摆锤可上、下移动以调节其周期,该钟每天快1分27秒,假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少距离,才能使钟走得准确?解:钟摆周期的相对误差△T / T = 钟的相对误差△t / t ,等效单摆的周期T l g =2π/设重力加速度g 不变,则有2 d T / T = d l / l 令△T = d T ,△t = d l , 并考虑到△T / T = △t / t , 则摆锤向下移动的距离 △l = 2 l △t / t = 2.00 mm摆锤应向下移2.00mm ,才能使钟走得准确。