大学物理13章习题详细答案(供参考)

合集下载

《物理学基本教程》课后答案 第十三章 电磁感应

《物理学基本教程》课后答案 第十三章 电磁感应

第十三章 电磁感应13-1 地球表面的磁感应强度约为5105-⨯T,若将一个电阻Ω5.0,半径为20cm 的金属圆环翻转︒180,则流过该圆环截面的电荷量的最大值为多少?若将该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多少 (中子星表面的磁感应强度为810T)?分析 由(13-4)式可知,金属环在翻转中要获得流穿过环截面的感应电量的最大值,应将翻转前金属环面的法线方向置于地磁场方向,则通过环面的磁通量有最大值,翻转后磁通量为最大负值,这样翻转才有最大的磁通量改变,才能产生最大的感应电量.解 在地球表面, 最大感应电荷量为RBSR R q 221)(1121==-=ΦΦΦ 5251051.2C 5.02.014.31052--⨯=⨯⨯⨯⨯= C在中子星表面, 最大感应电荷量为RBS R R q 221)(1121==-=ΦΦΦ81002.5⨯= C 13-2半径分别为R 和r 的金属圆环共轴放置,且R >>r ,在大圆环中有恒定电流,而小圆环则以恒定速度沿轴线方向运动,问当小圆环运动到什么位置时,其内部的感应电流为最大?分析 本题中载流大圆环半径远大于小圆环的半径,小圆环所围面积内的磁场可视为均匀,其中各点的磁感应强度均近似等于位于大圆环轴线上的小圆环圆心处的值.在真空中恒定电流的磁场一章(11-10)式给出,载流圆环轴线上某点的磁感应强度B 是该点到圆环圆心距离x 的函数,小圆环沿轴线远离大圆环运动时,所围面积的磁通量减小,小圆环中将产生感生电动势和感应电流.应用极值条件可以求出感应电流为最大时小圆环的位置.解 如图13-2所示,小圆环所围面积内的磁感应强度近似等于其圆心处的值,由(11-10)式得2/3222)(2x R IR B +=μ 小圆环以恒定的速度t xd d =v 运动到轴线上x 处,圆环中的感生电动势为 2/5222202/3222202/322220i )(3d d )(2d d )(2d d d d d d x R xI R r tx x R r IR x x R r IR t BS t t +=⋅⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=-=-=2v πμπμπμΦE 圆环中感生电动势最大时感应电流也为最大值.令0d d i=xE ,得 02)(25)()(d d 227222/5222522=+-+=+--x x R x R x R x x解得2R x ±=,并取2Rx =.计算可得22i 2d d Rx x =E < 0,故小圆环运动到轴线上2R 处时,环中感应电流最大.13-3 一立方体在坐标系中的位置如图13-3所示,它的一边长为1m ,磁感应强度为0.2T 的均匀磁场沿y 轴方向,导体A 、C 和D 沿图中所示的方向以0.5m/s 的速度运动,试求每一导体内的感应电动势.分析 与用法拉第电磁感应定律比较,本题用动生电动势的定义式⎰⋅⨯=Li d )(l B v E 计算较简便.从该定义式可以看出,i E 的计算涉及到三个矢量的矢量积和标量积,因此必须先确定)(B ⨯v 的方向,以及导体棒上线元d l 的方向.解 对于导体A ,因)//(B v ,则0=⨯B v , E i = 0对于导体C ,因v 与B 夹角为 45,且 //)(B ⨯v d l ,则⎰⋅︒=⋅⨯=ll B 0i 45sin d )(v l B v E V 1007.7V 1222.05.02-⨯=⨯⨯⨯= 对于导体D ,因B v ⊥,)(B ⨯v 方向与l d 夹角为︒45,︒⋅=⋅⨯=⎰45cos 2d )(20i l B lv l B v E V 1.0V 22122.05.0=⨯⨯⨯⨯= 13-4 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框以速度v 垂直于导体运动,如图13-4所示.当线框AB 边与导线的距离为d 时,试用如下两种方法求出此时线框内的感应电动势,并标明其方向.(1)用动生电动势定义式;(2)用法拉第电磁感应定律.分析 这是一道很典型的求动生电动势题.注意以下几点:长直导线的磁场具有轴对称性,因而矩形框沿垂直于轴线方向运动时,框内将产生动生电动势;线框内的感应电动势大小与运动中矩形框的位置有关;可以用动生电动势定义式和法拉第定律求解;用法拉第定律需先求穿过闭合回路的磁通量. 在线框平面内凡与长直导线距离相等处B 大小相等方向相同,而在垂直长直导线方向B 大小不等,于是计算穿过矩形框的磁通量时,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.解1 用动生电动势的定义式计算 对于AD 和BC 边,因)(B ⨯v 方向与l d 方向垂直,电动势为零.取AB 边上线元l d 方向从A 到B ,CD 边上线元l d 方向从C 到D ,动生电动势分别为d Ibl d I ABbAB πμππμ2d cos 2d )(000v v-=⋅=⋅⨯=⎰⎰l B v E )(2d )(2d )(000a d Ibl a d ICDbCD +=+=⋅⨯=⎰⎰πμπμv vl B v E)(2)11(200a d d I d a d b I ABCDA +-=-+=πμπμvab v E 其中负号表明电动势的方向为ADCBA .解2 用法拉第定律计算如图13-4所示,以长直导线为坐标原点取x 轴向右.t 时刻AB 边距长直导线为x . 在框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过矩形框的磁通量为xax Ib x x Ib ax x+==⎰+ln2d 200πμπμΦ )(2d d ln d d 2d d 00i a x x aIb t x x a x x Ib t +=⋅⎪⎭⎫ ⎝⎛+-=-=πμπμΦv E 当d x =时矩形框上的电动势为0)(20i >+=a d d aIb πμv E即矩形框电动势i E 的方向为ADCBA .也可以用楞次定律判定框内电动势的方向为ADCBA 方向.13-5 一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于L 处的轴O 以匀角速度ω沿反时针方向旋转,磁场方向如图13-5所示,磁感强度为B ,求导体棒内的感应电动势,并指出哪一端电势较高.分析 导体棒在磁场中转动,导体棒切割磁感线,棒中产生感应电动势.如果转轴位于2L 处,棒两端电势相等,与转轴间有电势差.假如用铜盘代替导体棒,盘心与盘边缘便有一定的电势差,分别用导线从盘心和盘边缘接出,就构成一个直流发电机.解 在棒上取线元l d 沿CD 方向,则导体棒内的感应电动势为⎰⎰⋅⨯+⋅⨯=+O CDOOD CO l B l B d )(d )(v v E E⎰⎰+=3320d cos d lll Bl l Bl πωω6)32(2)3(2222L B L B L B ωωω-=-= 即棒内感应电动势大小为62L B ω,方向从D 指向C .CD 两端间的电势差为261L B V V ODCO C D ω-=+=-E E 表明C 点电势较高.13-6 如图13-6,一半径为R 的半圆形导线,保持与一载流长直导线共面,且直径CD 与长直电流垂直,C 端到直电流的距离为d .当半圆导线以匀速度v 平行于长直电流向上运动时,求半圆导线中的感应电动势大小,那一端电势较高?设cm 0.10=d ;.A 0.2;s m 0.2;m 0.15===I R v分析 连接直径CD ,与半圆弧导线构成闭合回路CDOC ,设回路顺时针绕行.由于回路匀速地平行长直导线运动,磁通量没有变化,回路中感应电动势为零,则沿回路绕行方向半圆弧导线与直线上的感应电动势大小相等,方向相反.因直径CD 上的感应电动势计算简单,可由此确定半圆弧导线上的感应电动势.解 如图13-6,在直径CD 上距长直导线为x 处取线元x d ,方向从D C →,CD 上的动生电动势为1.04.0ln 2d 2d )(04.01.00πμπμI x x I CD CD v v ==⋅⨯=⎰⎰x B v E 0V 1011.1V 4ln 22210467<⨯-=⨯⨯⨯⨯=--ππ故C 点电势高.半圆弧导线上感应电动势与直径CD 上的大小相等为V 1011.16-⨯.13-7如图13-7(a),在通有电流的无限长直导线附近,有一直角三角形线圈ABC 与其共面,并以速度v 垂直于导线运动,求当线圈的A 点距导线为d 时,线圈中的感应电动势的大小及方向.已知θ=∠=ACB b AB ,.分析 本题与13-4题相似.要注意的是AC 边与v 有一夹角,BA 边上l d 方向与)(B v ⨯方向垂直,0=AB E .解1 用动生电动势的定义如图13-7(a),取ACBA 为回路绕行方向.对于AC 段,)(B v ⨯方向竖直向上,平行长直导线,在AC 上与A 相距为l 处取线元l d ,方向C A →,动生电动势为⎰⋅+=CAAC l l d Id cos )sin (20θθπμvE⎰+=θθπθμsin 0sin d 2cos b l d l I v db d I +⋅=ln cot 20θπμv方向C A →.对于CB 段,)(B v ⨯方向竖直向上,得θπμοcot )(2b b d ICB⋅+⋅-=v E方向C B →.对于BA 段,)(B v ⨯方向与l d 垂直,则0=BA E .所以直角三角形线框上电动势大小为)(ln cot 20i bd bd b d I BA CB AC +-+⋅=++=θπμv E E E E 因b d bd b d +>+ln,则0i >E ,表明感应电动势方向为ACBA .解2 用法拉第定律如图13-7(b),在距直导线x 处取宽为x d 的面元x t x S d cot )(d θv -=,面元法线方向垂直纸面向里.设t 时刻A 点距离长直导线t v ,面元处磁感强度方向垂直纸面向里 ,大小为xIB x πμ20=穿过直角三角形的磁通量为⎰+-=b t t x x t I v v v d )1(cot 20θπμΦ)ln (cot 20tbt t b I v v v +-=θπμ当d t =v 时,应用法拉第电磁感应定律,直角三角形中的感应电动势为)(ln cot 2d d 0i bd bd b d I tdt +-+=-==θπμΦv v E >0 电动势的方向为ACBA .13-8 如图13-8,在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度为l ab =,导轨一端由一电阻相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速度为0v 运动时,求(1)金属杆能够移动的距离;(2)在此过程中电阻R 所放的焦耳热.分析 金属杆以0v 的初速度在磁场中向右运动,金属杆与导轨组成的回路中有感应电流,因而金属杆受到向左的安培力作用.在安培力作用下杆的运动速度渐慢,最后为0.速度的变化使安培力为变力.于是本题不能简单地用匀加速直线运动公式aS 22-=v -计算,而应从牛顿第二定律出发建立运动方程后求解.根据能量守恒定律,在此过程中杆的初动能全部转化电阻所发出的焦耳热.解 (1)取向右为x 正向,当杆的速度为v ,金属杆ba 上的感应电动势为⎰=⋅⨯=abBl v l B d )(v E感应电流为 RBl R I v==E 方向沿b 到a .在金属杆ba 上取电流元I l d 方向从b 到a ,I B l ⊥d ,安培力B l F ⨯=d d I ,所以作用于杆的安培力沿x 轴的负方向.Rl B B l I F F ab x v22 d -=⋅-==⎰负号表示F 与v 反向.应用牛顿第二定律,得mRl B m F t v v 22d d -== x mRl B t mR l B d d d 2222-=-=v v 设杆的移动距离为d ,由上式分离变量两边积分,有⎰⎰-=022d d v v dx mRl B得 d mRl B 220-=-v 即杆可移动的最大距离为 220l B mR d v =(2)由焦耳热公式, 电阻R 上释放的焦耳热为⎰⎰==t R Rl B t R I Q d d 22222v (1) 又 v v mRl B t 22d d -= 分离变量两边积分,t 时刻有⎰⎰-=t t mR l B 022d d vv 0vv t mRl B 22e0-=v v (2)(2)式代入(1)式,且当∞→t 时0→v ,得⎰⎰∞-=-==222022222221d ed 22v v v m t R l B t R R l B Q t mRl B 即杆从开始运动到停止,其间电阻所放的焦耳热在量值上等于2021v m .13-9磁场沿x 方向,磁感强度大小为T )6(y -,在yOz 平面内有一矩形线框,在0=t 时刻的位置如图13-9所示,求在以下几种情况下,线框中的感应电动势与t 的函数关系:(1)线框以速度m 2=v 的速度平行于y 轴匀速运动;(2)线框从静止开始,以2s m 2=a 的加速度平行于y 轴运动;(3)线框在yOz 平面内平行于z 轴重复以上两种运动.分析 磁场沿x 轴方向,矩形线框沿y 轴运动,所以DC 、BA 边上的电动势为0. 磁感强度是y 的函数,AD 边上的各点B 相等,BC 边上的各点B 相等.此题可以用动生电动势定义式和法拉第定律两种方法求解.不过,对此类既有感生又有动生电动势的题,一般来说先求磁通量,再用法拉第定律求解较易.解1 (1))(B v ⨯的方向为z 轴负向,DC 、BA 边的感应电动势为0,设AD 边感应电动势为1E ,BC 边的为2E ,方向分别为从D 到A 、从C 到B ,矩形框的总电动势为)]6()6[()(212121i y y l B B l ---=-=-=v v E E E lb v =2.0V 2.05.02=⨯⨯=V 方向为逆时针方向.(2) 矩形框作加速运动时,框上的动生电动势为lb y y l B B l v v v =---=-=-=)]6()6[()(212121i E E E其中 at =v 故 2.0i ==a t l bE t 解2 (1)以下均取逆时针方向为回路绕行方向,若0i >E ,则其沿回路绕行方向,反之亦然.穿过矩形框的磁通量为)2(26)2(26d )6(d b t lblb b y lb lb y l y by y +-=+-=-=⋅=⎰⎰+v s B Φ 其中y=vt .矩形框中的电动势为2.0d d i ==-=bl tv ΦE V (2)取回路逆时针绕行,矩形框作加速运动时穿过框的磁通量为⎰⎰++-=-=⋅=by yb y lblb y l y )2(26d )6(d s B Φ其中 2202121at at t y =+=v即 22622lb labt lb --=Φ 矩形框上的电动势为 t l a b t t2.0d d i ==-=ΦE (3)线框沿z 轴方向运动时,Φ不变,则i E 均为0.13-10 如图13-10所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回路.两电流方向相反,若有电流A t I )12(+=,求线圈中的感应电动势的大小和方向.分析 在本题中,应用法拉第电磁感应定律求感应电动势有两条途径:分别求出两个直电流在框上产生的感应电动势,再进行叠加;或者,先求出两直电流的合磁感强度,再求磁通量,应用法拉第定律.载流长直导线磁场是不均匀的,欲求磁通量,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.因两直电流方向相反,靠近线框的直电流在框上电动势大一些,它的贡献决定了线框上电动势的方向. 解 框内任一点磁感应强度为)(22120021d d x Ix I B B B -+-=-=πμπμ取逆时针方向为回路绕行方向,如图13-10,在线框上取面元d S ,且d S =h d x ,穿过框的磁通量为x d d x x Ih S B ld d d )11(2d 12011-+-==⎰⎰+πμΦ其中12+=t I .矩形框上的电动势为)ln (ln 22d d 11220i d l d d l d ht +-+=-=πμΦE )()(ln 12120l d d d l d h ++=πμ 因(l +d 2)d 1<d 2(l +d 1),得0i <E ,即i E沿顺时针方向. 13-11 如图13-11所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l d 表示绕行回路的正方向).如果磁感强度随时间的变化的规律为τ-t/0e B B =,其中B 0和τ为常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向.分析 本题用法拉第定律可方便求解.解 回路绕行方向为逆时针, 穿过圆线圈的磁通量为τππΦt B r B r -==e 022τττπτπΦ/02/02e e )1(d d t t B r B r t ---=-= 圆线圈上的电动势为ττπΦ/02ie d d t B r t -=-=E 方向沿回路正方向即逆时针方向.13-12 如图13-12所示,在与均匀磁场垂直的平面内有一折成α角的V 型导线框,其MN 边可以自由滑动,并保持与其它两边接触.今使ON MN ⊥,当t =0时,MN 由O 点出发,以匀速v 平行于ON 滑动,已知磁场随时间的变化规律为2)(2t t B =,求线框中的感应电动势与时间的关系.分析 导线在磁场中运动,磁感强度又随时间变化,因而线框中的电动势由动生电动势和感生电动势两部分组成,可以直接求出面积不断变化的回路MONM 任一时刻的磁通量,再应用法拉第电磁感应定律求解.也可以分别计算由于MN 边滑动产生的动生电动势和由于线框中磁感强度随时间变化引起磁通量变化产生的感生电动势.解1 取顺时针方向为回路绕行方向, t 时刻穿过V 型导线框的磁通量为B xl2=Φ 其中 t x v =,αtan x l =,22t B =,应用法拉第电磁感应定律,导线框上的感应电动势为)2(d d d d B xlt t -=-=ΦE ααt a n )t a n 4(d d 3242t t t v v -=-= 负号表明E 与回路绕行方向相反,即沿逆时针方向.解2 由于MN 边滑动产生的动生电动势为⎰==⋅⨯=MN t Bx ααtan 21tan d )(32v v l B v 动E 沿NM 方向.t 时刻回路面积xl S 21=,取逆时针方向为回路绕行方向,回路法向矢量n e 与B 相反,则())2(d d 2d d d d d d 2t t xl t B S BS t t ==--=-=Φ感E =αtan 2132t v总感应电动势为感动E E E +==αtan 32t v 沿逆时针方向.13-13 一导线弯成如图13-13的形状,在均匀磁场中绕轴O O '转动,角速度为1ω.若电路的总电阻为R ,当0=t 时从图示的位置开始转动.(1)当磁感强度B 为常量时;(2)当t B B 20sin ω=时,求导线中的感应电流和感应电动势.解 (1)B 为常量,t 时刻穿过线圈的磁通量为t l Bl 112cos ωΦ=,线圈上的感应电动势为t l Bl t1112i sin d d ωωΦ=-=E 线圈上的感应电流为t R l Bl R I 1112i i sin ωω==E(2)t B B 20sin ω=时,t 时刻穿过线圈的磁通量为t l l t B 11220cos sin ωωΦ⋅=线圈上的电动势为sin (d d 212211120i l l B tωωΦ=-=E线圈上的感应电流为)cos cos sin sin (212211120it t t t Rl l B R I i ωωωωωω-==E 13-14 均匀磁场B 被限制在如图13-14所示的圆柱型空间中, B 从0.5T 以0.1T/s 的速率减小,(1)确定涡旋电场电场线的形状和方向并示于图中;(2)求图中半径为r =10cm 的导体回路上各点的涡旋电场场强和回路中的感生电动势;(3)设回路的电阻为Ω2,求其中感应电流的大小;(4)回路中任意两点b a ,间的电势差为多大?(5)如果在回路某点将其切断,两端稍微分开,问此时两端的电势差为多大?分析 例题413-讨论了这种在圆柱形空间中随时间改变的均匀磁场所产生的涡旋电场,可以直接利用其结果计算该涡旋电场中的电场强度的大小和方向.解 (1)由例题413-的讨论知,该圆柱形空间中随时间改变的均匀磁场产生涡旋电场,其电场线是圆心在轴线上的一系列同心圆,又因0d d <t B ,该涡旋电场中的电场强度涡E 为同心圆上沿顺时针绕行的切线方向,如图13-14所示.(2)利用例题413-的结果,r = 10cm 的回路上涡旋电场强度大小为V/m 005.0V/m 1.021.0d d 2=⨯==t B r E 涡内 回路上的感生电动势为V 1014.3V 1.01.014.3d d d d 322i -⨯=⨯⨯=-=-=tBr t B SπE 方向为顺时针方向.(3)回路中感应电流为 A 1057.1A 21014.333ii --⨯=⨯==R I E (4)根据一段含源电路的欧姆定律,弧⋂b a 上的电势差等于该段导线上电阻引起的电势差减去该圆弧上的感应电动势⋂abE ,即0)(2)(2 2)2(i ii i=-⋅=-=⋅-⋅=-=-⋂⋂⋂⋂⋂⋂E E E E E R Rr ab IR r ab abrab r R I IR V V ab ab b a ππππ(5)断开一个缺口cd 后回路不再闭合,因此回路中无电流,则cd 两点间电势差为V 1014.303i -⨯-=-=-E d c V V由于d c V V <,表明d 点电势高.13-15 在半径为R 的圆柱形空间中,存在着变化的均匀磁场)(t B ,有一长为l 的导体棒放在磁场中,如图13-15(a)所示,设磁场的变化率为t B d d ,(1)用感生电动势定义⎰⋅=ba l E d i 涡E 求棒中的感生电动势;(2)用法拉第电磁感应定律求棒中的感生电动势;(3)若导体棒在图示位置时有一个方向与棒垂直指向O 点、大小为v 的速度,再求棒上的感应电动势.分析 这是与上题特征相同的磁场.利用例题413-的结果,涡旋电场线是一系列同心圆,涡E 在圆的切线方向,所以用感生电动势定义计算时应注意ab 棒上各点的涡E 与l d 有一夹角.如果应用电磁感应法拉第定律计算,将ab 棒连接半径Oa ,Ob 构成闭合回路OabO ,考虑到沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势.当导体棒运动时,闭合回路OabO 中的磁通量随时间变化,求出任一时刻t 回路OabO 所围面积的磁通量,便可求解. 解 (1)如图13-15(b)所示,在ab 棒上取线元l d ,方向从b a →.该处涡E 在切线方向,大小为tBr d d 2,涡E 与l d 的夹角为θ,且rlR 22)2(cos -=θ,得ab 棒上感应电动势ab E 的方向从b a →,大小为⎰⎰=⋅=b abaab l tBr d cos d d 2d θl E 涡E 0)2(2d d d d d 2)2(02222>-=-=⎰l l R l t B l t B l R(2)连接Ob Oa ,成闭合回路OabO ,设回路逆时针绕行,穿过回路的磁通量为4222l R Bl --=Φ闭合回路OabO 上的感应电动势为42d d d d 22l R l t B t oabo-=-=ΦE因沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势,即42d d 22l R l t B oabo ab -==E E方向从b a →.(3) 如图13-15(c),经t 时间棒向着O 点移动t v ,连接Oa 、Ob 成闭合回路OabO ,设回路逆时针绕行.穿过回路的磁通量为t l R Bl v ---=4222Φ导体棒中的感应电动势为v v 2Bl t l R l t B t oaboab 21)4(2d d d d 2---=-==ΦE E若0>oabo E ,则ab E 从b a →;若0<oabo E ,则ab E 从a b →.13-16 如图13-16(a),均匀磁场被限制在半径为R 的圆柱形空间,磁感强度对时间的变化率0d d >t B ,在圆柱形空间外与磁场垂直的平面内有一导体AB .(1)计算AB 上的感应电动势;(2)B A 、两点间的电势差有多高?(3)在图中表示出B A 、两点的涡旋电场强度.分析 磁场局限在圆柱形空间内部,连接OB OA 、,计算穿过三角形OAB ∆的磁通量时,只需计算该三角形所包围的圆柱形空间内扇形面积的磁通量.解1 (1) 如图13-16(a),连接OB OA 、,穿过OAB ∆的磁通量与穿过扇形的磁通量相等为tBd b l a b R t dbl a b R B d d )arctan (arctan 21d d )arctan(arctan 212i 2-+-=-=-+⋅=ΦΦE(2) 0d d >tB,应用楞次定律判定电动势从B A →,所以B 点的电势高. tBd b l a b R U BA d d )arctan (arctan 212-+= (3)kB kA E E 、都在该点切线方向,且沿逆时针绕行的切线方向.解2 (1) 如图13-16(b),在AB 上取线元l d 方向从A 到B ,到圆心的距离为r ,据(13-7)式,有⎰⎰=⋅=BA BA l tB r R d cos d d 2d 2i θl E 涡E而θθcos d d r l =,AB 上的感生电动势为 )(21cos cos d d d 221202i 21θθθθθθθ+-=⋅-=⎰+R r t B r R E 其中d bl ab-==arctanarctan21θθ,得 tBd b l a b R d d )arctan (arctan 212i-+-=E 13-17截面为矩形的环形螺线管,平均半径为R ,截面边长为b 和c ,螺线管共有N 匝导线,管内充满磁导率为μ的均匀磁介质,如图13-17(a )所示,试求其自感系数.分析 螺绕环的磁感线是以对称中心为圆心的一系列同心圆,每条磁感线都要穿过矩形截面,于是求自感系数的问题归结为求穿过矩形截面的磁通量.由于沿螺绕环半径方向的磁场分布不均匀,需在矩形截面上取面元S d ,算出ϕd ,再积分得ϕ.解 如图13-17(b),在矩形截面上取面元r c S d d =,与螺绕环中心距离为r .由安培环路定理(11-15)式得S d 处的磁感应强度为rNIB πμ2=穿过螺绕环的磁通链为⎰⋅==sS N N d B ϕΦ22ln 2d 22222b a b a Ic N r r Ic N b a b a -+==⎰+-πμπμ 螺绕环的自感系数为22ln 22b a b a c N I L -+==πμΦ13-18 如图13-18, 两平行长直导线,其中心距离为d ,载有等大反向的电流(可以想象它们在相当远的地方汇成单一回路),每根导线的半径均为R ,如果不计导线内部磁通量的贡献,试求单位长度的自感系数.分析 两平行长直导线间的磁感应强度为两长直导线在该处磁感应强度之代数和.沿着以下思路解题:先求出两导线间的B ,再求两导线间的磁通量,再求自感系数.解 如图13-18,由磁场叠加原理,在两条导线间距左边一根为r 远(R r <)处磁感应强度为)11(20rd r I B -+=πμ取长为l 的一段导线,通过图中阴影部分的磁通量为⎰--+=R d Rr r d r Il d )11(20πμΦRR d Il -=ln 0πμ 长为l 的一段导线的自感系数为RRd l IL l -==ln 0πμΦ单位长导线的自感系数为RR d l L L l -==ln 0πμ 13-19 如图13-19,两圆形线圈共轴放置在一平面内,它们的半径分别为1R 和2R ,21R R >>,匝数分别为1N 和2N ,试求它们之间的互感系数.(大线圈中有电流时,小线圈所在处的磁场可看作是均匀的.)分析 题目给出条件21R R >>,2R 线圈与1R 线圈共轴,所以2R 线圈所在处的磁感应强度可视为均匀,且等于1R 线圈圆心处的磁感应强度. 解 因21R R >>,当大线圈中有电流1I 时,小线圈所在处各点的磁感应强度近似相等,且等于圆心处的磁感应强度,即1110212R N I B μ=穿过小线圈的磁通链为1221102212212R R N I N N πμϕΦ==互感系数为1222101212R R N N I M πμΦ==13-20 在如图13-20所示的电路中,线圈I 连线上有一长为l 的导线棒CD 可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈I 连线接触,导体棒的速度与棒垂直.设线圈I 和线圈Ⅱ的互感系数为M ,电阻为1R 和2R .分别就以下两种情况求通过线圈I 和线圈Ⅱ的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动.分析 CD 边运动,线圈I 中有感应电流. 由于互感,线圈I 中的电流变化将在线圈Ⅱ中产生感应电流.解(1)CD 匀速运动时,线圈I 中的感应电流是常量,为111R lB R I i v ==E 它在线圈Ⅱ中引起的磁通量的变化率为0 d d 21=tΦ 在线圈Ⅱ中引起的互感电动势021=E ,因此线圈Ⅱ中的感应电流为零.(2)CD 加速运动时, 线圈I 中的感应电流为11R BlatI =在线圈Ⅱ中引起的磁通量为at R BlMMI 1121==Φ在线圈Ⅱ中引起的互感电动势为12121 d d R BlMat -=-=ΦE因此线圈Ⅱ中的感应电流为212212R R BlMa R I -==E13-21 如图13-21所示的两个共轴圆形线圈,它们的间距为d ,半径为R 和r ,且r R >>,大线圈中有电流时,小线圈所在处的磁场可看作是均匀的,试求(1)大线圈中的电流t I I ωsin 0=时小线圈中的感应电动势;(2)两线圈的互感系数M ;(3)当小线圈偏转,使得两线圈平面法线的夹角分别为︒︒︒90 60 30、、时,再求M .解 (1)大线圈在小线圈处产生的磁感强度为2/3222021)(2d R R IB +=μ 大线圈电流产生的磁场穿过小线圈的磁通量为232222022121)(2d R r IR S B +==πμΦ大线圈电流变化, 在小线圈中产生的互感电动势为232222002121)(2cos d d d R t R r I t +-=-=ωωπμΦE (1) (2)两电流的互感电动势又可表示为 t MI tIM ωωcos d d 021-=-=E 将(1)式代入上式,得232222021)(2d d d R r R t I M +=-=πμE(3)两线圈平面法向夹角为 30时穿过小线圈的磁通量为2121212330cos ΦΦΦ==' 互感系数 2322220)(43d R r R M +='πμ 夹角为 60时,得 2121212160cos ΦΦΦ==' 2322220)(4d R r R M +='πμ夹角为 90时,得 021='Φ 0='M13-22 试求题13-10中二长直导线组成的回路与矩形框之间的互感系数. 分析 在本题中,显然求出长直导线在矩形框处的磁通量,然后求互感系数较容易.解 利用习题13-10的结果,两长直导线在矩形线圈处产生的磁通量为)ln (ln 222110d ld d l d Ih +-+=πμΦ 得互感系数为 )()(ln 2)ln (ln 22112022110l d d l d d h d ld d l d h IM ++=+-+==πμπμΦ13-23 两线圈的自感系数分别为1L 和2L ,它们的互感系数为M ,当两线圈串联时,试证它的等效自感系数为M L L L 221±+=,其中的正负号分别是对应图13-23中的两种连接情况.分析 两线圈串联后的等效自感系数,应该等于输入端与输出端间自感电动势与回路电流变化率之比.任一线圈两端的感应电动势应等于各自的自感电动势与另一线圈在其上产生的互感电动势的代数和.根据楞次定律,线路顺接如图13-23(a)时,互感电动势与自感电动势方向相同;反接如图13-23(b)时,互感电动势与自感电动势方向相反.假如再拓展考虑两线圈顺并联和反并联的情况.这时流经两线圈的电流分别为1I 和2I ,但互感系数M 不变,且并联后的总电动势12E E E ==.可解出顺并联时M L L M L L L 221221-+-+=,反并联时ML L M L L L 221221++-+=. 解 顺连接如图13-23(a ),设左边的线圈为(1),右边的线圈为(2).根据楞次定律,线圈(1)上的总电动势1E ,应为其上的自感电动势11E 与线圈(2)在线圈(1)上产生的互感电动势12E 之和,有)d d d d (112111tIM t I L +-=+=E E E 同理 )d d d d (221222tI M t I L +-=+=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121++-=+=E E E 两线圈串联顺接时的等效自感系数为M L L tI L 2d d 21++=-=E反连接如图13-23(b ),根据楞次定律,线圈(1)上的总电动势E 1 ,应为其上的自感电动势E 11与线圈(2)在线圈(1)上产生的互感电动势E 12之差,有)d d d d (112111tIM t I L --=-=E E E同理 )d d d d (221222tI M t I L --=-=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121-+-=+=E E E 两线圈串联反接时的等效自感系数为M L L tI L 2d d 21-+=-=E13-24 在一细线密绕螺线管内填满了某种磁导率为μ(常量)的均匀介质,若该介质的电阻率为ρ,在介质中存在感应电流的情况,由定义tI L d d E-=求该螺线管的自感系数.设螺线管半径为R 、长为l 、总匝数为N ,且R l >>,忽略边缘效应.分析 缠绕螺线管的传导电流I 变化时,传导电流要产生自感电动势1E .现螺线管内充满磁导率为μ的磁介质,变化的传导电流在介质中激发感应电流,变化的感应电流也要产生自感电动势2E .总的自感电动势为21E E E +=.由传导电流激发的螺线管内磁场,方向沿轴线,且分布均匀,所以由变化的传导电流激发的感应电流是以轴线为圆心的圆电流.考虑到介质有电阻,感应电流在介质的径向分布不均匀,因而感应电流产生的磁场方向沿轴线,为非均匀磁场,在计算感应电流产生的磁通量时要注意.。

大学物理(许瑞珍_贾谊明) 第13章答案

大学物理(许瑞珍_贾谊明) 第13章答案

第十三章 振动13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。

解:周期T = 2π/ ω= 0.25 s振幅A = 0.1m初相位φ= 2π/ 3V may = ωA = 0.8πm / s ( = 2.5 m / s )a may = ω2 A = 6.4π2m / s ( = 63 m / s 2)13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。

求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。

解:(1) )( )25sin(0.3 SI t dt dx v π--==0.3 20x m ma x ω-== (2) 2x m ma F ω-==5.13.052.0,2/ 2N F A x -=⨯⨯-==时13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。

解:设物体的运动方程为:x = A c o s (ωt +φ)恒外力所做的功即为弹簧振子的能量:F ⨯ 0.05 = 0.5 J当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J ,即:1 /2 kA 2 = 0.5 J ∴A = 0.204 mA 即振幅ω2 = k / m = 4 ( r a d / s )2ω= 2 r a d / s按题目所述时刻计时,初相为φ= π∴ 物体运动方程为x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。

已知球经平衡位置向右运动时,v =100cm ⋅s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。

大学物理第13章习题解答

大学物理第13章习题解答

第十三章习题解答1选择题:1B ,2A ,3B ,4A ,5D2填空题:1,2sin /d πθλ;2,0.45mm ;3,900nm ;4,变密;5,向上;6,向下;7,棱边,保持不变。

3计算题:1 用λ=500nm 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹。

若劈尖上面媒质的折射率n 1大于薄膜的折射率n (n =1.5).求:⑴ 膜下面媒质的折射率n 2与n 的大小关系; (2) 第10条暗纹处薄膜的厚度; ⑶ 使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解:⑴ n 2>n 。

因为劈尖的棱边是暗纹,对应光程差为:2)12(22λλ+=+=∆k ne ,膜厚e =0处,有k =0,只能是下面媒质的反射光有半波损失2λ才合题意; (2) 3995009 1.510222 1.5ne n λλ-⨯∆=⨯===⨯⨯ mm (因10个条纹只有9个条纹间距)⑶ 膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm343.5102 1.5212 5.010n e N λ--'∆⨯⨯⨯∆===⨯ 现被第21级暗纹占据.2 ⑴ 若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k +1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径.(2) 又如在牛顿环中用波长为500nm 的第5个明环与用波长为λ2的第6个明环重合,求未知波长λ2.解: ⑴ 由牛顿环暗环公式:λkR r k = 据题意有 21)1(λλR k kR r +==,∴ 212λλλ-=k ,代入上式得:2121λλλλ-=Rr =31085.1-⨯=m (2) 用1500λ=nm 照射,51=k 级明环与2λ的62=k 级明环重合,则有:2)12(2)12(2211λλR k R k r -=-=∴121221251500409.121261k k λλ-⨯-==⨯=-⨯-nm 3 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d 1=1.40×10-2m 变为d 2=1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空, n R k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n 4 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距d =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解: (1),x dk D λ=,21010 5.510()Dx m d λ-==⨯,1020.11()x m = (2),(1)69.6n ek λ-==5 双缝干涉实验装置如图所示,双缝与屏之间的距离D =120 cm ,两缝之间的距离d =0.50 mm ,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射双缝. (1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标x . (2) 如果用厚度l =1.0×10-2 mm , 折射率n =1.58的透明薄膜复盖在图中的S 1缝后面,求上述第五级明条纹的坐标x '.解:(1)55 6.0()Dx mm d λ==(2)21=()(1)5x k r r l nl d n l Dδλλ'=--+=--=19.9x mm '=6 在杨氏双缝实验中,设双缝之间的距离为0.2m m ,在距双缝远1m 的屏上观察干涉条纹,若入射光是波长为400760nm nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?解:3410(5.210)dx nmk D λλ⨯===6,7,8,9,10k ==666.6,571.4,500,444.4,400dxnm Dkλ=7 在双缝干涉实验中,波长550nm λ=的单色平行光垂直入射到双缝间距4210md -=⨯的双缝上,屏到双缝的距离2m D =.求: (1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为56.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? 解:同第4题(重复了)8 杨氏双缝干涉实验中,双缝间距为0.3m m ,用单色光垂直照射双缝,在离缝 1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm ,问所用单色光的波长为多少?解:522.78/211.39x mm ===380dxnm Dkλ= 9 油轮漏出的油(折射率 1.25n =)在海水(折射率为1.30)表面形成一层薄薄的油污. (1)如果太阳正位于海域上空,一直升飞机的驾驶员从机上向下观察,他所正对的油层厚度为400nm ,则他将观察到油层呈现什么颜色?(2)如果一潜水员潜入该区域水下,又将看到油层呈现什么颜色? 解:阶梯型薄膜。

大学物理13章习题详细答案(供参考)

大学物理13章习题详细答案(供参考)

大学物理13章习题详细答案(供参考)习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为SQ E 02ε=电势差为SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== 13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1)金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ;(2)金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知r E 01I 2πελ-=rE 02II 2πελ= 因此 AB BC 21ln :ln:R R R R =λλ 13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。

试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。

[解] 导体板内场强0=内E ,由高斯定理可得板外场强为故A 、B 两点间电势差为13-7.为了测量电介质材料的相对电容率,将一块厚为B A-Q/2Q/2Q/2Q/2A B -QQIII ⅠⅡⅢBA1.5cm 的平板材料慢慢地插进一电容器的距离为2.0cm 的两平行板中间。

大学物理标准答案(9、10、13、14、15、16章)

大学物理标准答案(9、10、13、14、15、16章)

P b a O xd xy9-5 一无限长均匀带电细棒被弯成如习题9-5图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零。

解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强。

在圆弧上取一弧元 d s =R d φ所带的电量为 d q = λd s 在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε=== 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=方向沿着x 轴正向。

再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==;方向沿着x 轴负向当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1;因此 θ/2 = π/4,所以 θ = π/29-6 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如习题9-6图所示。

试求 平板所在平面内,离薄板边缘距离为a 的P 点处的场强。

解: 建立坐标系。

在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x 根据直线带电线的场强公式02E rλπε=得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-其方向沿x 轴正向。

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+ ①场强方向沿x 轴正向。

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)

【13.11 解】无限大载流平面在其左右两侧所产生的磁感强度大小均为 B=μ0j/2,但方向相反。设在平面 左边 B
0 j
2
k ,右边则为 B
0 j
2
k 。当有两个电流方向相同的平行平面时,由场的迭加原理可得
(1)两平面之间,是处在一个平面的左边而另一个平面的右边,故
B合
0 j
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
dF I 2 dlB cos I 2 Rd
0 I1 I I d cos 0 1 2 2R cos 2
整个圆环受到的力为 F dF

0
2
0 I1 I 2 d 0 I 1 I 2 ,方向向右。 2
习题 13-18 图
习题 13-19 图
2 I (r 2 R 2 ) ], 2 2 ( R3 R 2 )
( R 2 r R3 )
B 0,
(r R 3 )
习题 13-9 图
习题 13-10 图
【13.10】如题图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上,求通入电流 I 后环内外磁场的分 布。 【13.10 解】在圆环内外分别作半径为 r 的圆形回路,由安培定理可得

新编基础物理学第13章习题解答和分析

新编基础物理学第13章习题解答和分析

《新编基础物理学》第13章习题解答和分析(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第13章 电磁场与麦克斯韦方程组13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。

已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。

导线框长为a ,宽为b ,求导线框中的感应电动势。

分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律md d i tΦε=-计算感应电动势,其中磁通量m d sB S Φ=⋅⎰, B 为两导线产生的磁场的叠加。

解:无限长直电流激发的磁感应强度为02IB rμ=π。

取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。

取回路的绕行正方向为顺时针。

由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。

通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势 0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。

大学物理课后习题及答案 第13章

大学物理课后习题及答案 第13章

第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。

利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。

*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。

利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。

13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。

光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。

13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。

若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题13
13-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为
因而板间电场强度为
S
Q E 02ε=
电势差为
S
Qd
Ed U 0AB 2ε=
= (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 S
Q E 0ε=
电势差为 S
Qd
Ed U 0AB ε=
= 13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求
(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?
13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=
r
E 02
II 2πελ= 因此 A
B B
C 21ln :ln
:R R R R =λλ 13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电
导体板,单位面积上两表面带电量之和为σ。

试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。

[解] 导体板内场强0=内E ,由高斯定理可得板外场强为 故A 、B 两点间电势差为
13-7.为了测量电介质材料的相对电容率,将一块厚为
B A
-Q/2
Q/2
Q/2Q/2
A B -Q
Q
II
I Ⅰ


B
A
1.5cm 的平板材料慢慢地插进一电容器的距离为
2.0cm 的两平行板中间。

在插入过程中,电容器的电荷保持不变。

插入之后,两板间的电势差减小到原来的60%,求电介质的相对电容率。

[解] 设两平行板间距离为d ,介质板厚度为d ',插入前电容器电势差为U ,插入后为U ',电容器上面电荷密度为σ
插入介质板前电容器内场强0
εσ=
E ,电势差0εσd Ed U ==
插入介质板后,电容器内空气中场强仍为E ,介质内场强r
0εεσ
='E 两板间的电势差
已知U .U 600=',因此有 解此方程得
13-8.半径都是R 的两根无限长均匀带电直导线,其线电荷密度分别为λ+和λ-,两直导线平行放置,相距为d (d >>R )。

试求该导体组单位长度的电容。

[解] 可用叠加原理及高斯定理计算两导线间垂直连线上任意点P 的场强。

如图所示,过P 分别做两个长为L ,与两条直导线共轴的闭合圆柱面作为高斯面。

根据高斯定理分别计算每条线上电荷产生的场强。

所以 r
E 012πελ
=
同理 ()
r d E -=
022πελ
根据叠加原理,P 点总场强为 两条线间电压为 故单位长度电容
13-9.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1=2cm ,R 2 =5cm ,其间充满相对电容率为εr 的各向同性均匀电介质,电容器接在U =32V 的电源上(如习题13-9图所示)。

试求距离轴线R =3.5cm 的点A 处的电场强度和点A 与外筒间的电势差。

[解] 由
Q =⋅⎰⎰S D d L L r D λπ=⋅⋅2
因此 r
D πλ2=
r E r 02επελ=
因此 1
2r 0ln 2R R U
επελ=
所以 1
-1
2
r 01
2r 0r 0A m 998ln 21ln 212⋅====
V R R R U
R R R U R E επεεπεεπελ
R
r P
d
R
⎰⎰==2
22d d AR R R
R R
r E r E U =12.5 V
13-10.置于球心的点电荷+Q 被两同心球壳所包围,大球壳为导体,小球壳为电介质,相对电容率为εr ,球壳的尺寸如习题13-10图所示。

试求以下各量与场点矢径r 的关系:(1)电位移D ;(2)电电场强度度E ;(3)极化强度P ;(4)束缚电荷激发的电电场强度度E ';(5)面电荷密度σ;(6)电能密度ωe 。

[解] (1) 由有介质的高斯定理
Q =⋅⎰⎰S D d 1
(2) 由静电场的性能方程 E D r 0εε=得 (3) 由 ()ΕP 1r 0-=εε得 (4) 在电介质内 E E E '+=0
所以r e E E E ⎪⎪⎭⎫ ⎝⎛-=-='114r 200επεr Q
在其它位置0='E
(5) 由束缚电荷 ()2112n P P ⋅-='σ,在电介质中
在导体中,自由电荷 n D ⋅=σ (6) 由 DE w 2
1
=
得 13-11.一电容为C 的空气平行板电容器,接端电压为U 的电源充电后随即断开。

试求把两个极板间距增大至n 倍时外力所作的功。

[解] 断开电源后Q 不变,电容由原来的d
S
C 0ε=,变为nd
S
C 0ε=
'
外力所做的功即相当于系统静电能的改变量
由于Q 不变,C n C '=,所以nU U ='
因此222
1
U n C W '=
' 即外力做功()12
1
2-=n CU A
13-12.球形电容器由半径为R 1的导体球和与它同心的导体球壳构成,壳的内半径为R 2,其间充有两层均匀电介质,分界面的半径为r ,内外层电介质的相对电容率分别为εr 1和εr 2。

已知内球带电量为-Q ,试求:(1)各介质表面上的束缚面荷密度σ';(2)电容器的静电能和电场总能量。

[解] (1) 1R <r '<r 24r Q
D '-=
π 2
r1014r Q E '
-=επε r <r '<2R 24r Q
D '-=
π 2
r202
4r Q E '-=επε 1
R r ='时

()()()
()2
1
r112
1
r10r10r1012112R 414111
R Q R Q E P r πεεεπεεεεεσ-=
---=--=-=⋅-='n P P
r r ='时,()()()2r201r10122112r 11E E P P ---=-=⋅-='εεεεσn P P
2
R r ='时

()()()()22
2222202022022112R
414112
R Q R Q E P r r r r r πεεεπεεεεεσ--=--=-==⋅-='n P P
(2) DE w 2
1
=。

相关文档
最新文档