不等式的综合应用提高。知识梳理

合集下载

一元一次不等式(组)综合+应用拔高训练

一元一次不等式(组)综合+应用拔高训练

不等关系综合应用(讲义)一、知识点睛一元一次不等式(组)是探求不等关系的基本工具,主要应用在复杂不等式(含参、高次、多元等)的处理,比较大小等方面. 1. 复杂不等式的处理①含参不等式(组)解题步骤:________________;________________;________________. ②高次不等式:________,转化成一元一次不等式(组)求解.③方程与不等式组合:____________________,转化成一元一次不等式(组)求解. ④一次函数与不等式:利用_____________求解. 2. 比较大小作差是比较大小常用的手段,作差之后是二次三项式结构,可以考虑通过配方借助完全平方的非负性进行判断.当0a >时,代数式2()a x h k k -+≥; 当0a <时,代数式2()a x h k k -+≤. 二、精讲精练1. 若关于x 的不等式组12x m x m >-⎧⎨>+⎩的解集是1x >-,则m =____.2. 若关于x 的不等式组1240x a x +>⎧⎨-⎩≤有解,则a 的取值范围是_______________. 3. 若关于x 的不等式组4050a x x a -⎧⎨+->⎩≥无解,则a 的取值范围是_______________.4. 若关于x 的不等式组23335x x x a >-⎧⎨-⎩≥有两个整数解,则a 的取值范围是_______________. 5. 已知a ,b 为实数,则解集可以为22x -<<的不等式组是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩6. 阅读下列材料,并解答问题.例题:解一元二次不等式2620x x -->.解:把262x x --分解因式,得262(32)(21)x x x x --=-+, 又2620x x -->, ∴(32)(21)0x x -+>,由有理数的乘法法则“两数相乘,同号得正”得,①320210x x ->⎧⎨+>⎩或②320210x x -<⎧⎨+<⎩解不等式组①得23x >,解不等式组②得12x <-,∴(32)(21)0x x -+>的解集为23x >或12x <-,∴原不等式的解集为23x >或12x <-. 仿照上面的解法解不等式.(1)若2210x x +-≥,则x 的取值范围是______________.(2)若2230x x -++≤,则x 的取值范围是_____________. 7. 已知4a b +=,23a b a <<,则a 的取值范围是____________. 8. 已知6a b -=,97420a b <+<,则b 的取值范围是________.9. 若2a b +=-,且2a b ≥,则( )A .b a 有最小值12B .b a 有最大值1C .ab 有最大值2D .a b 有最小值89-10. 如图,直线1y k x b =+经过点A (0,2),且与直线2y mx =交于点P (1,m ),则不等式组2mx kx b mx -<+<的解集是( ) A .12x << B .02x << C .23x << D .13x << 11. 已知函数1y x =,2113y x =+,3455y x =-+的图象如图所示,若无论x 取何值,y 总取1y ,2y ,3y 中的最小值,则y 的最大值为( )A .32B .3717C .6017D .25912. 已知当12x -≤≤时,函数6y ax =+满足y ≤A .2a ≤B .4a -≥C .42a -≤≤D .4a -≤或2a ≥13. 当x =______时,代数式241x x -+有最____值,值为_______;当x =______时,代数式2247x x -++有最____值,值为________.14. 若无论x 取何值,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是________________________.15. 用作差法比较大小.(1)22a +与2a ;(2)23x +与3x ;(3)2259x x ++与256x x ++; (4)221x y ++与2(1)x y +-.不等关系综合应用(作业)1. 若关于x 的不等式组31222x mx n -⎧>-⎪⎨⎪+⎩≤的解集是12x -<≤,则m =_________,n =__________.2. 若关于x 的不等式组1<21x m x m -⎧⎨+⎩≥无解,则m 的取值范围是__________________.3. 若关于x 的不等式组13240x a x ->⎧⎨-⎩≤的解集是2x ≤,则a 的取值范围是__________________.4. 若关于x 的不等式组3123x a x b >-⎧⎨-⎩≤的整数解仅有2和3,则a 的取值范围是___________,b 的取值范围是___________.5. 已知a ,b 为实数,关于x 的不等式组的解集在数轴上的表示如图所示,则这个不等式组可能是( )A .>1>1ax bx ⎧⎨⎩B .>1<1ax bx ⎧⎨⎩C .<1>1ax bx ⎧⎨⎩D .<1<1ax bx ⎧⎨⎩6. 若2a b -=,且1533a b a -<-≤,则a 的取值范围是______________________.7. 若21a b +=-,且3a b ≥,则ab 的最大值是_____________.8. 若(1)(3)0x x -+>,则x 的取值范围是_________________.9. 若2230x x --<,则x 的取值范围是___________________.10. 如图,已知直线y kx b =+经过点A (-2,-1)和点B (-3,0),则关于x 的不等式组12x kx b <+<的解集为___________.第10题图 第11题图11. 已知函数1y x =,2113y x =+,3453y x =-+的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为_______________.12. 当x =_________时,代数式2610x x -+有最_______值,值为____________;当x =_________时,代数式21x x --+有最_______值,值为____________.13. 用作差法比较大小.(1)24m m -与5-;(2)22x y --与2()3x y ++;(3)253x x ++与251x x ++.不等式(组)应用题(讲义)一、知识点睛1.理解题意,借助表格等梳理信息.2.建立不等式(组)模型.①辨析不等关系类型,列出不等式(组)显性不等关系:不少于、不超过、至少、不空不满等;隐性不等关系:原材料供应型(使用量≤供应量),容器容量型(载重量≥货物量)等.②注意不等式(组)与方程、一次函数的配合方程:共计、总计等;一次函数:最大、最优、最节约等.3.结合实际意义进行求解、验证.二、精讲精练1.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品时每件的利润(元)如下表:(1)设分配给甲店x件A型产品,这家公司卖出这100件产品的总利润为W(元),求W与x之间的函数关系式,并求出x的取值范围.(2)若公司要求总利润不低于17 560元,请你为这家公司设计销售方案,并分析哪种方案所获利润最多.(3)为了促销,公司决定对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.若甲店的B型产品及乙店的A,B型产品的每件利润均不变,该公司又如何设计销售方案,才能使总利润达到最大?2.为了保护环境,某企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:经预算,该企业购买设备的资金不高于105万元.(1)该企业有哪几种购买方案?请你设计出来.(2)若该企业每月产生的污水量为2 040吨,为节约资金,应选择哪种购买方案?3.某省的家电以旧换新政策规定:消费者在购买政策限定的新家电时,每台新家电可以用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:某商场家电部准备购进电视、洗衣机、冰箱共100台,已知这批家电的进价和售价如下表:设购进的电视机和洗衣机的数量均为x台,这100台家电政府需要补贴y元,商场所获利润为W 元.(利润=售价-进价)(1)请分别求出y与x和W与x之间的函数关系式;(2)若商场决定购进的每种家电均不少于30台,则有哪几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴的金额为多少?4. 为加强对学生的爱国主义教育,某中学计划组织八年级480名师生到爱国主义教育基地参观,乘车往返.经与客运公司联系,他们有座位数不同的A ,B 两型客车供选择,已知A 型客车满载40人,B 型客车满载60人.(1)如果学校同时租用m 辆A 型客车和n 辆B 型客车,师生正好坐满每辆车,请你帮助学校设计所有的租车方案.(2)租车过程中,客运公司负责人向校方介绍:A 型客车是新购进的“低碳”汽车,既节能又环保,每辆租金320元;B 型客车虽然载客量大些,但尾气排放量大,每辆租金460元.已知校方租用的A 型客车多于B 型客车,在(1)的条件下,请你通过计算说明,如何租车学校所付租金最少.5. 某企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.C 地B 地A 地所在地8元/件25元/件企业30元/件(1)当n =200时, ①根据信息填表:②若运往B 地的件数不多于运往C 地的件数,总运费不超过4 000元,则有哪几种运输方案? (2)若总运费为5 800元,求n 的最小值.6. 农村医疗保险制度中,医疗费的报销比例标准如下表:(1)某农民一年的实际医疗费为x 元(50010000x ≤),按标准报销的金额为y 元,试求y 与x 之间的函数关系式;(2)若某农民一年内的自付医疗费为2 600元 (自付医疗费=实际医疗费-按标准报销的金额),则该农民当年的实际医疗费为多少元?(3)若某农民一年内的自付医疗费不少于4 100元,则该农民当年的实际医疗费至少为多少元?不等式(组)应用题(作业)1. 某农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A ,B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天租赁价格如下表:(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金总额为y 元,求y 与x 之间的函数关系式,并写出x 的取值范围.(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,则有多少种租赁方案?请将各种方案设计出来.2.某村庄计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积和可供使用农户数见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)如何合理分配建造A,B型号“沼气池”的个数才能满足条件?满足条件的方案有几种?通过计算分别写出各种方案.(2)若A型号“沼气池”每个造价2万元,B型号“沼气池”每个造价3万元,试说明在(1)中的各种建造方案中,哪种建造方案最省钱,最少的费用需要多少万元?3.某家电商场为了响应国家家电下乡的号召,准备用不超过105 700元购进40台电脑,其中A型电脑每台进价2 500元,每台售价3 000元,B型电脑每台进价2 800元,每台售价3 200元,预计销售总额不低于123 200元.设购进A型电脑x台,商场的总利润为y元.(1)商场有哪几种进货方案?请你设计出来.(2)求y与x之间的函数关系式,并说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中最大利润的一部分再次购进相同数量的A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.若钱恰好用尽且三样都购买,请直接写出满足条件的购买方案.4.为了鼓励节约用水,某市居民生活用水按阶梯式水价计费.下面是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)随着夏天的到来,用水量将增加,为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?。

(完整版)不等式知识结构及知识点

(完整版)不等式知识结构及知识点

o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。

高一基本不等式及其应用知识点+例题+练习 含答案

高一基本不等式及其应用知识点+例题+练习 含答案

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.答案 4解析 由log 2x +log 2y =1得xy =2,又x >y >0,所以x -y >0,x 2+y 2x -y =(x -y )2+2xy x -y =x -y +4x -y ≥2(x -y )·4x -y =4,当且仅当x -y =2,即x =1+3,y =3-1时取等号,所以x 2+y 2x -y的最小值为4.3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案 3解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 4.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25.5.(教材改编)已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎨⎧x =12y =18时,(xy )max =116.题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________.(3)函数y =x -1x +3+x -1的最大值为________.答案 (1)1 (2)23+2 (3)15解析 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.(3)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.命题点2 常数代换或消元法求最值例2 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. (2)(高考改编题)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5. 方法二 由x +3y =5xy 得x =3y5y -1, ∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15)≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2,∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0, ∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 思维升华 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m =________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 (1)4 (2)6解析 (1)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ), (当且仅当y x =mxy 时取等号)∴13(1+m +2m )=3, 解得m =4.(2)由已知得x =9-3y1+y .方法一 (消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y =121+y +(3y +3)-6≥2121+y·(3y +3)-6=6, 当且仅当121+y =3y +3,即y =1,x =3时,(x +3y )min =6. 方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立. 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.题型二 基本不等式与学科知识的综合命题点1 用基本不等式求解与其他知识结合的最值问题例3 (1)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是________.(2)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.答案 (1)9 (2)4解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc +5.因为b ,c >0, 所以4c b +b c≥24c b ·bc=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时,等号成立. 命题点2 求参数的值或取值范围例4 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.答案 12解析 由3a +1b ≥ma +3b得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +ab +6≥29+6=12, ∴m ≤12,∴m 的最大值为12.思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________________________________________________________________________. 答案 (1)32 (2)[-83,+∞)解析 (1)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16, 所以2m +n -2=24,所以m +n =6. 所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn 时,等号成立,故1m +4n 的最小值等于32. (2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).题型三 不等式的实际应用例5 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100].(或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时时,这次行车的总费用最低,最低费用的值为2610元. 思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250.当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250 =1 200-(x +10 000x).∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x)(x ≥80).(2)当0<x <80时,L (x )=-13x 2+40x -250.对称轴为x =60,即当x =60时,L (x )最大=950(万元). 当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当x =100时,年获利最大.9.忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6. 解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y) =3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案 (1)3+22 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[方法与技巧]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. [失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:30分钟)1.下列不等式一定成立的是________.①lg(x 2+14)>lg x (x >0); ②sin x +1sin x≥2(x ≠k π,k ∈Z ); ③x 2+1≥2|x |(x ∈R );④1x 2+1>1(x ∈R ). 答案 ③解析 当x >0时,x 2+14≥2·x ·12=x , 所以lg(x 2+14)≥lg x (x >0), 故①不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2成立”的__________条件. 答案 必要不充分解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0, 所以“a 2+b 2≥2ab ”是“a b +b a≥2成立”的必要不充分条件. 3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意,得1a +4b =12(1a +4b)·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号, 即1a +4b 的最小值是92. 4.(2014·重庆改编)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.答案 7+4 3解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a =7+43, 当且仅当3a b =4b a时取等号. 5.已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________.答案 8解析 由x +2y -xy =0,得2x +1y=1,且x >0,y >0. ∴x +2y =(x +2y )×(2x +1y )=4y x +x y+4≥4+4=8. 6.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a 、b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗x x的最小值为________. 答案 1 3解析 1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍去).∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3, 当且仅当x =1x ,即x =1时等号成立. 7.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为________.答案 2解析 ∵x >0,y >0,x +2y ≥22xy ,∴4xy -(x +2y )≤4xy -22xy ,∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.8.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是________. 答案 6解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.9.若当x >-3时,不等式a ≤x +2x +3恒成立,则a 的取值范围是________. 答案 (-∞,22-3]解析 设f (x )=x +2x +3=(x +3)+2x +3-3, 因为x >-3,所以x +3>0,故f (x )≥2(x +3)×2x +3-3=22-3, 当且仅当x =2-3时等号成立,所以a 的取值范围是(-∞,22-3].10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 答案 (-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8. 11.(2015·南通二模)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020, 当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组 专项能力提升(时间:20分钟)12.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________. 答案 16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16.13.已知m >0,a 1>a 2>0,则使得m 2+1m≥|a i x -2|(i =1,2)恒成立的x 的取值范围是________________________________________________________________________.答案 [0,4a 1] 解析 因为m 2+1m =m +1m≥2(当且仅当m =1时等号成立), 所以要使不等式恒成立,则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,所以0≤a i x ≤4,因为a 1>a 2>0, 所以⎩⎨⎧ 0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1, 所以使不等式恒成立的x 的取值范围是[0,4a 1]. 14.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号).综上可知4≤x 2+4y 2≤12.15.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________. 答案 4解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b=4, 当且仅当a =b =12时,等号成立. 16.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t=30时,W(t)有最小值W(30)=4432,3所以t∈[1,30]时,W(t)的最小值为441万元.。

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

不等式的性质及应用

不等式的性质及应用

反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。

第二章 考点9 不等式的综合应用

第二章 考点9 不等式的综合应用

例1 变1 例2 变2 例3 变3 例4 变4
解:设使用x年的平均费用为y万元,由题意得
10 0.9x 0.2 0.2x x
y
2
1 10
x
1 2
x 10 3,
x
x 10
10 x
当10 x 即x=10时,取等号. x 10
∴使用10年报废最划算.
【回顾反思】 解不等式的应用题,关键是构造不等式模型,即分析题目
例1 变1 例2 变2 例3 变3 例4 变4
【解】 设床价提高10x元/床,则床位减少10x张,由题意得 (50+10x)(200-10x)>15 000⇒5<x<10, 5×10+50=100(元/床),10×10+50=150(元/床).∴价格应定 为100~150元/床.
例1 变1 例2 变2 例3 变3 例4 变4
【提示】
∵ 3a 2b a b 6a 4b 5a 5b a b 0 ,
5
2
10
10
∴a>b.
A组 1 2 3 4 5 6 7 8 9 10 11 12 B组 1 2 3
2.设矩形的长为a,宽为b(a>b),面积为S1,与此矩形周长相
等的正方形的面积为S2,则( A )
A.S1<S2
例1 变1 例2 变2 例3 变3 例4 变4
【例3】 设计一个面积为800 cm2的矩形广告牌,要求左右均 留2 cm的空白,上下边均留1 cm的空白.问:怎样设计使中 间的文字面积最大?并求此最大值.
【思路点拨】 本题是求最值问题,一般选用“基本不等式” 模型或“一元二次函数”模型来解决.
例1 变1 例2 变2 例3 变3 例4 变4
2.常见的应用题类型 (1)分配问题、速度和时间问题、工程问题等一般用一元一次 不等式(组)模型解决. (2)价格问题、面积问题等一般用一元二次不等式(组)模型解 决. (3)最值问题等一般用基本不等式模型(均值定理)解决.

第三节 基本不等式及其应用

第三节 基本不等式及其应用

第三节 基本不等式及其应用考试要求1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.[知识排查·微点淘金]知识点1 基本不等式 不等式 成立的条件 等号成立的条件两个不等式的关系 重要不等式a 2+b 2≥2ab a ,b ∈Ra =b在不等式a 2+b 2≥2ab 中,若a >0,b >0,分别以a ,b 代替a ,b 可得a +b ≥2ab ,即ab ≤a +b2基本不等式ab ≤a +b2a >0,b >0a =b设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.知识点2 利用基本不等式求最值 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)如果x +y 的和是定值p ,那么当且仅当x =y 时,xy 有最大值p 24(简记:和定积最大).[微思考]1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示:不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y =x +1x的最小值是2吗?提示:不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x+1x无最小值. 常用结论1.基本不等式的两种常用变形形式(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ,当且仅当a =b 时取等号).(2)a +b ≥2ab (a >0,b >0,当且仅当a =b 时取等号). 2.几个重要的结论(1)a 2+b 22 ≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). (2)b a +ab ≥2(ab >0). (3)21a +1b≤ab ≤a +b2≤ a 2+b 22(a >0,b >0). (4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.(×)(2)(a +b )2≥4ab .(√)(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.(×)(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.(×) 2.(链接教材必修5 P 99例1(2))设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81.3.(链接教材必修5 P 100A 组T 2)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是 m 2.解析:设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m ,所以y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 答案:254.(忽视变量的范围)函数f (x )=2x +3x +1(x <0)的最大值为 .解析:∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤(-2x )+3(-x )+1≤-26+1.当且仅当-2x =3-x且x <0,即x =-62时等号成立.答案:1-2 65.(忽视基本不等式等号成立的条件)当x ≥2时,x +4x +2的最小值为 .解析:设x +2=t ,则x +4x +2=t +4t -2.又由x ≥2得t ≥4,而函数y =t +4t -2在[2,+∞)上是增函数,因此当t =4时,t +4t -2即x +4x +2取得最小值,最小值为4+44-2=3.答案:3一、综合探究点——利用基本不等式求最值(多向思维)[典例剖析]思维点1 通过配凑法求最值[例1] (1)若0<x <12,则y =x 1-4x 2的最大值为( )A .1B .12C .14D .18解析:∵0<x <12,∴y =x 1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12×4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2, 即x =24时取等号, 则y =x1-4x 2的最大值为14.答案:C(2)已知函数f (x )=-x 2x +1(x <-1),则( )A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4解析:f (x )=-x 2x +1=-x 2+1-1x +1=-⎝ ⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4,当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4. 答案:A(3)已知x >54,则f (x )=4x -2+14x -5的最小值为 .解析:∵x >54,∴4x -5>0,∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5.当且仅当4x -5=14x -5,即x =32时取等号.答案:5通过配凑法利用基本不等式求最值的实质及关键点配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.思维点2 常数代换法求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为 .解析:因为a +b =1,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+⎝⎛⎭⎫b a +a b ≥2+2b a ·a b =2+2=4.当且仅当a =b =12时,取等号.答案:4常数代换法求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 思维点3 消元法求最值[例3] [一题多解]已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为 . 解析:解法一(换元消元法):由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0.令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 解法二(代入消元法):由x +3y +xy =9,得x =9-3y1+y,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6=12-6=6.当且仅当3(1+y )=121+y ,即y =1时取等号.即x +3y 的最小值为6. 答案:6消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.[学会用活]1.(2021·泉州检测)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A .13B .12C .34D .23解析:选B 因为0<x <1,所以x (3-3x )=3x (1-x )≤3⎣⎢⎡⎦⎥⎤x +(1-x )22=34.当且仅当x =1-x ,即x =12时等号成立.2.若直线2mx -ny -2=0(m >0,n >0)过点(1,-2),则1m +2n 的最小值为( )A .2B .6C .12D .3+2 2解析:选D 因为直线2mx -ny -2=0(m >0,n >0)过点(1,-2),所以2m +2n -2=0,即m +n =1,所以1m +2n =⎝⎛⎭⎫1m +2n (m +n )=3+n m +2m n ≥3+22,当且仅当“n m =2m n ,即n =2m ”时取等号,所以1m +2n的最小值为3+22,故选D .3.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233解析:选A 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x.由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x=223,当且仅当2x 3=13x ,即x =22,y =212时取等号. 故x +2y 的最小值为223.二、应用探究点——基本不等式的实际应用(思维拓展)[典例剖析][例4] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ·10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x ≥2 x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元).答案:160 [拓展变式]1.[变条件]若本例中容器底面长不小于2.5 m ,则该容器的最低总造价是 元. 解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(x ≥2.5),因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2>0,所以S =20⎝⎛⎭⎫x +4x +80在[2,+∞)上单调递增, 所以当x =2.5 m 时,S min =20×⎝⎛⎭⎫2.5+42.5+80=162(元). 答案:1622.[变条件]若本例中容器底面长不大于1.5 m ,则该容器的最低总造价是 元(精确到十分位).解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(0<x ≤1.5), 因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2<0,所以S =20⎝⎛⎭⎫x +4x +80在(0,2]上单调递减,所以当x =1.5时,S min =20×⎝⎛⎭⎫1.5+41.5+80≈163.3(元).答案:163.3有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.[学会用活]4.如图,在半径为30 cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A ,B 在直径上,点C ,D 在圆周上.怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积. 解:如图,连接OC .设BC =x ,矩形ABCD 的面积为S . 则AB =2900-x 2,其中0<x <30. 所以S =2x900-x 2=2x 2(900-x 2)≤x 2+(900-x 2)=900.当且仅当x 2=900-x 2,即x =152时,S 取最大值900 cm 2.所以,取BC 为15 2 cm 时,矩形ABCD 的面积最大,最大值为900 cm 2.三、综合探究点——基本不等式的创新交汇问题(思维创新)[典例剖析][例5] (1)已知f (x )=13x 3+ax 2+(b -4)x (a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( )A .3+223B .3+2 2C .3D .2 2解析:由f (x )=13x 3+ax 2+(b -4)x (a >0,b >0),得f ′(x )=x 2+2ax +b -4.由题意得f ′(1)=12+2a +b -4=0, 则2a +b =3,所以2a +1b =⎝⎛⎭⎫2a +1b ·2a +b 3=13⎝⎛⎭⎫2a +1b (2a +b )=13⎝⎛⎭⎫5+2b a +2a b ≥13⎝⎛⎭⎫5+22b a ·2a b =3, 当且仅当2b a =2ab ,即a =b =1时,等号成立.故2a +1b 的最小值为3. 答案:C(2)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A .76B .712C .712+33D .76+33解析:∵CA =3,CB =4,即|CA →|=3,|CB →|=4, ∴CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,∵P 为线段AB 上的一点,即P ,A ,B 三点共线, ∴x 3+y4=1(x >0,y >0), ∴1x +1y =⎝⎛⎭⎫1x +1y ·⎝⎛⎭⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33,当且仅当x 3y =y4x时,等号成立,∴1x +1y 的最小值为712+33,故选C . 答案:C1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后合理变形利用基本不等式求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.[学会用活]5.(2021·河南名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n的最小值为( )A .4B .9C .23D .32解析:选D 设各项均为正数的等比数列{a n }的公比为q ,q >0, 由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7, 即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =16⎝⎛⎭⎫5+n m +4m n ≥16⎝⎛⎭⎫5+2 n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号.限时规范训练基础夯实练1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8解析:选B f (x )=x 2+4|x |=|x |+4|x |≥4,当且仅当x =±2时取等号,所以f (x )=x 2+4|x |的最小值为4.故选B .2.(2021·钦州期末测试)已知a ,b ∈R ,a 2+b 2=15-ab ,则ab 的最大值是( ) A .15 B .12 C .5D .3解析:选C 因为a 2+b 2=15-ab ≥2ab ,所以3ab ≤15,即ab ≤5,当且仅当a =b =±5时等号成立.所以ab 的最大值为5.3.(2021·烟台期中测试)已知x ,y ∈R 且x -2y -4=0,则2x +14y 的最小值为( )A .4B .8C .16D .256解析:选B ∵x -2y -4=0,∴x -2y =4, ∴2x +14y ≥22x -2y =8.当且仅当x =2,y =-1时等号成立, ∴2x +14y 的最小值为8.4.(2021·山东师大附中月考)已知x >0,y >0,且1x +9y =1,则xy 的最小值为( )A .100B .81C .36D .9解析:选C 已知x >0,y >0,且1x +9y =1,所以1x +9y≥21x ·9y,即1≥29xy,故xy ≥36,当且仅当⎩⎨⎧1x =9y,1x +9y =1,即⎩⎪⎨⎪⎧x =2,y =18时等号成立,所以xy 的最小值为36.故选C .5.对于使f (x )≤M 成立的所有常数M ,我们把M 的最小值称为f (x )的上确界.若a ,b ∈(0,+∞),且a +b =1,则-12a -2b的上确界为( )A .-92B .92C .14D .-4解析:选A ∵a +b =1,∴-12a -2b =-a +b 2a -2a +2b b =-52-⎝⎛⎭⎫b 2a +2a b ,∵a >0,b >0,∴b 2a +2ab≥2,当且仅当b =2a 时取等号,∴-12a -2b ≤-52-2=-92,∴-12a -2b 的上确界为-92.故选A .6.已知a >0,b >0,且ab +2a +b =4,则a +b 的最小值是 . 解析:∵ab +2a +b =4,a >0,b >0, ∴b =4-2a a +1=6a +1-2,∴a +b =a +6a +1-2=a +1+6a +1-3≥26-3,当且仅当a =6-1时取得最小值, ∴a +b 的最小值是26-3. 答案:26-37.(2021·江西五市九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为 .解析:因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b+3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立,即b 3a +3b的最小值为5.答案:58.设x ,y 为正数,若x +y 2=1,则1x +2y 的最小值是 ,此时x = .解析:因为x +y 2=1,x >0,y >0,所以1x +2y =⎝⎛⎭⎫1x +2y ⎝⎛⎭⎫x +y 2=2+y 2x +2xy≥2+2y 2x ·2xy=4,当且仅当y 2x =2x y ,即x =12,y =1时等号成立,所以1x +2y 的最小值为4,此时x =12.答案:4 129.已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,因此不存在x ,y 满足(x +1)(y +1)=5. 10.设a ,b 为正实数,且1a +1b =2 2.(1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值. 解:(1)由22=1a +1b ≥21ab 得ab ≥12,当且仅当a =b =22时取等号,故a 2+b 2≥2ab ≥1,当且仅当a =b =22时取等号,所以a 2+b 2的最小值是1. (2)由(a -b )2≥4(ab )3得a 2+b 2-2ab ≥4a 3b 3,不等式两边同除以a 2b 2,得1b 2+1a 2-2ab ≥4ab ,即⎝⎛⎭⎫1a +1b 2-4ab ≥4ab ,从而ab +1ab ≤2,又ab +1ab≥2. 所以ab +1ab=2,所以ab =1.综合提升练11.(2021·湖北十一校联考)设a >0,b >0,则“1a +1b ≤4”是“ab ≥14”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 因为a >0,b >0,所以4≥1a +1b ≥21a ·1b,当且仅当a =b 时取等号, 则2≥1ab,所以ab ≥14;若ab ≥14,取a =14,b =1,则1a +1b =4+1=5>4,即1a +1b ≤4不成立.所以“1a +1b ≤4”是“ab ≥14”的充分不必要条件,故选A .12.(2021·江西重点中学联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( )A .14B .12C .22D .1解析:选A 圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b 时等号成立,故ab 的最大值是14.13.(2021·安徽合肥二模)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形的长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论.如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推断正确的是( )①由图1和图2面积相等可得d =aba +b; ②由AE ≥AF 可得 a 2+b 22≥a +b2; ③由AD ≥AE 可得a 2+b 22≥21a +1b; ④由AD ≥AF 可得a 2+b 2≥2ab . A .①②③④ B .①②④ C .②③④D .①③解析:选A 由题图1和题图2面积相等得ab =(a +b )d ,可得d =aba +b,①正确;由题意知题图3的面积为12ab =12a 2+b 2·AF ,则AF =ab a 2+b2,AD =12BC =12a 2+b 2,设题图3中正方形的边长为x ,由三角形相似,得a -x x =x b -x ,解得x =aba +b ,则AE =2aba +b,可以化简判断②③④都正确,故选A . 14.已知a >b >0,则a 2+1b (a -b )的最小值为 .解析:由a >b >0,得a -b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24.∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a2=4, 当且仅当b =a -b 且a 2=4a 2,即a =2,b =22时取等号. ∴a 2+1b (a -b )的最小值为4.答案:415.(2021·湖南岳阳模拟改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为 ,1a +2b的最小值为 . 解析:∵a >0,b >0,且a +2b -4=0,∴a +2b =4, ∴ab =12a ·2b ≤12·⎝ ⎛⎭⎪⎫a +2b 22=2, 当且仅当a =2b ,即a =2,b =1时等号成立, ∴ab 的最大值为2.∵1a +2b =⎝⎛⎭⎫1a +2b ·a +2b 4=14⎝⎛⎭⎫5+2b a +2a b ≥14·⎝⎛⎭⎫5+22b a ·2a b =94, 当且仅当a =b =43时等号成立,∴1a +2b 的最小值为94. 答案:2 9416.(2021·吉林六校联考)已知lg(3x )+lg y =lg(x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解:由lg(3x )+lg y =lg(x +y +1), 得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)因为x >0,y >0,所以3xy =x +y +1≥2xy +1. 所以3xy -2xy -1≥0,即3(xy )2-2xy -1≥0. 所以(3xy +1)(xy -1)≥0. 所以xy ≥1.所以xy ≥1.当且仅当x =y =1时,等号成立.所以xy 的最小值为1.(2)因为x >0,y >0,所以x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22.所以3(x +y )2-4(x +y )-4≥0. 所以[3(x +y )+2][(x +y )-2]≥0.所以x +y ≥2.当且仅当x =y =1时取等号. 所以x +y 的最小值为2.创新应用练17.某工厂拟建一座平面图为矩形且面积为200 m 2的三级污水处理池(平面图如图所示).如果池四周围墙建造单价为400元/m ,中间两道隔墙建造单价为248元/m ,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解:设隔墙的长度为x m ,总造价的函数为y 元,则隔墙造价为2x ·248=496x , 池底造价为200×80=16 000, 四周围墙造价为⎝⎛⎭⎫2x +2×200x ·400=800·⎝⎛⎭⎫x +200x .因此,总造价为y =496x +800⎝⎛⎭⎫x +200x +16 000(0<x <50)=1296x +160 000x + 16 000≥21296x ·160 000x+16 000=28 800+16 000=44 800.当1296x =160 000x ,即x =1009时,等号成立.这时,污水池的长为18 m.故当污水池的长为18 m ,宽为1009 m 时,总造价最低,最低为44 800元.。

不等式的复习

不等式的复习

一、重难点知识归纳(一)知识网络结构(二)不等式的性质1、实数的运算性质和大小顺序之间的关系;a-b>0a>b;a-b=0a=b;a-b<0a<b.2、不等式的基本性质(1)对称性:a>b b<a;(2)传递性:a>b,b>c a>c;(3)可加性:a>b,c∈R a+c>b+c;(4)可乘性:a>b,c>0ac>bc;a>b,c<0ac<bc.3、不等式的运算性质(1)加法:a>b,c>d a+c>b+d;(2)减法:a>b,c<d a-c>b-d;(3)乘法:a>b>0,c>d>0ac>bd;(4)除法:a>b>0,0<c<d;(5)乘方:a>b>0(n∈N*且n>1)(6)开方:a>b>0(n∈N*且n>1)(7)倒数:a>b,ab>0.(三)不等式的证明方法与主要依据1、证明不等式的方法:证明不等式的常用方法有:比较法、综合法、分析法.此外,在证明不等式中,有时还要运用综合分析法、放缩法、换元法、反证法.2、证明不等式的主要依据(1)a-b>0a>b;a-b<0a<b.(2)不等式的性质.(3)重要不等式及定理:①a2≥0(a∈R);②a2+b2≥2ab(a∈R,b∈R);③(a∈R+,b∈R+);④a3+b3+c3≥3abc(a,b,c∈R+);⑤(a,b,c∈R+);⑥|a|-|b|≤|a±b|≤|a|+|b|;⑦|a1+a2+…+an|≤|a1|+|a2|+…+|an|;(注:搞清楚以上定理取“=”号的条件)⑧|x|<a(a>0)x2<a2-a<x<a;⑨|x|>a(a>0)x2>a2x<-a或x>a. (四)不等式的解法1、绝对值不等式、高次不等式的解法2、无理不等式通过以上表解,进一步熟悉不等式的性质、证明、解法. 二、典型例题解析例1.已知四个条件,①b >0>a ②0>a >b ③a >0>b ④a >b >0能推出成立的有( )A.1个B.2个C.3个D.4个解析:运用倒数法则,a >b ,ab >0,②、④正确.又正数大于负数,故选C.例2、已知正数x ,y 满足x+2y=1,求的最小值.分析:利用x+2y=1代换或乘以以便利用基本不等式,注意列出等号成立的条件是解题的必要步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..【知识网络】【考点梳理】考点一:不等式问题中相关方法1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相不等式的综合应用 解不等式问题实际应用问题 不等式中的含参问题 不等式证明成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

2.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:①审题,②建立不等式模型,③解数学问题,④作答。

要点诠释:⑴解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。

⑵解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。

⑶不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。

如运用放缩法证明不等式时要注意调整放缩的度。

⑷根据题目结构特点,执果索因,往往是有效的思维方法。

【典型例题】类型一:不等式求解问题例1.解关于x 的不等式ax x >-12. 【思路点拨】考虑转化为整式不等式。

解:不等式ax x >-12可化为()a x x -+>-1202. 1)当a=1时,原不等式的解集为{|}x x >2; 2)当a >1时,原不等式的解集为{|}x x x a <->-221或; 3)若a -<10,则原不等式可化为x a x --<-2102, 故当a <<01时,原不等式的解集为{|}x x a<<-221; 当a =0时,原不等式的解集为ϕ;当a <0时,原不等式的解集为{|}x x a<<-221. 【总结升华】分式不等式应移项、通分,转化为整式不等式。

这是解决分式不等式的基本方法和思路。

举一反三:【变式1】己知三个不等式:①x x -<-542 ②12322≥+-+x x x ③0122<-+mx x (1)若同时满足①、②的x 值也满足③,求m 的取值范围;(2)若满足的③x 值至少满足①和②中的一个,求m 的取值范围。

解:记①的解集为A ,②的解集为B ,③的解集为C 。

解①得A=(-1,3);解②得B=][[)3,2()1,0B A ,4,2()1,0⋃=⋂∴⋃(1)因同时满足①、②的x 值也满足③,A ⋂B ⊆C设12)(2++=mx x x f ,由)(x f 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足3170173010)3(0)0(-≤∴⎩⎨⎧≤+<-⎩⎨⎧≤<⊆∴⋂m m f f B A 即 (2)因满足③的x 值至少满足①和②中的一个,]4,1(,-=⋃⋃⊆∴B A B A C 而因此]0124,1(2=-+∴-⊆mx x C 方程小根大于或等于-1,大根小于或等于4,因而(1)1031(4)4310,14144f m f m m m ⎧⎪-=-≥⎪⎪=+≥-≤≤⎨⎪⎪-<-<⎪⎩解之得 【高清课堂:基本不等式394889 典型例题一】【变式2】已知函数2()21()f x ax x a R =++∈(1)若()f x 的图像与x 轴恰有一个公共点,求a 的值;(2)若方程()0f x =至少有一个正跟,求a 的范围。

解:(1)当0a =时函数()f x 为一次函数,符合题意;当0a ≠时,函数()f x 为二次函数,则 440a ∆=-=,所以1a =综上,01a =或.(2)当0a =时,()0f x =为一次方程,不符合题意;当0a ≠时, ()0f x =为二次方程,显然(0)1f =所以0a <时有一正一负根,符合题意;当0a >时,121210100020a x x x a x x aφ⎧⎪≤∆≥⎧⎪⎪⎪⋅>⇒>⇒∈⎨⎨⎪⎪+>⎩⎪->⎪⎩综上,a 的范围0a <.类型二:不等式证明例2.已知△ABC 的三边长是,,a b c ,且m 为正数,求证:a b c a m b m c m+>+++. 【思路点拨】寻找各项的统一性,可以从函数单调性方面来考虑。

证明:设()(0)x f x m x m=>+,易知(0,)+∞是()f x 的递增区间,()()a b c f a b f c +>∴+>,即a b c a b m c m+>+++ 而a b a b a b a m b m a b m a b m a b m++>+=++++++++ a b c a m b m c m ∴+>+++ 【总结升华】函数是高中数学的重要知识,很多问题都可以从函数的角度来思考和分析。

举一反三:【变式1】设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1;(2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.证明:令m >0,n =0得:f (m )=f (m )·f (0).∵f (m )≠0,∴f (0)=1取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m )∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1]=f (x 1)-f (x 2-x 1)·f (x 1)=f (x 1)[1-f (x 2-x 1)],∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2),∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解, 数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]类型三:不等式与相关知识的融合例3.(2015 甘肃一模)已知函数()11ln f x m x x m x ⎛⎫=++- ⎪⎝⎭(其中常数m>0) (1)当m=2时,求()f x 的极大值.(2)时谈论()f x 在区间()0,1上的单调性(3)当[)3,m ∈+∞时,曲线()y f x =上总存在相异两点()()11,P x f x ,()()22,Q x f x ,使得曲线()y f x =在点,Q P 处的切线互相平行,求12x x +的取值范围.【解析】(1)当m=2时,()51ln 2f x x x x=+- ()()()()'22221511022x x f x x x x x--=--=->令()'0f x <可得102x <<或2x > 令()'0f x >解得122x << ()f x ∴在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递减,在1,22⎛⎫ ⎪⎝⎭单调递增 故()f x 的极大值为()532ln 222f =- (2) ()()2222111111x m x x m x m m m m f x x x x x ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭=--=-=- ①当01m <<时,则11m>故()0,x m ∈,()'0f x <;(),1x m ∈时,()'0f x > 此时()f x 在()0,m 上单调递减,在(),1m 上单调递增.②当1m =时,11m =故()0,1x ∈有()()2'210x f x x -=-<恒成立, 此时()f x 在()0,1上单调递减③当1m >时,101m << 故10,x m ⎛⎫∈ ⎪⎝⎭时,()'0f x <;1,1x m ⎛⎫∈ ⎪⎝⎭时()'0f x > 此时()f x 在10,m ⎛⎫ ⎪⎝⎭上单调递减,在1,1m ⎛⎫ ⎪⎝⎭上单调递增. (3)由题意,可得()()()''121212,0f x f x x x x x =>=且 即221122111111m m m m x x x x ++--=--所以12121x x m x x m ⎛⎫+=+ ⎪⎝⎭ 12x x ≠由不等式性质可得()212122x x x x +≤恒成立又12,,0x x m > 2121212x x x x m m +⎛⎫⎛⎫∴+<+ ⎪⎪⎝⎭⎝⎭即1241x x m m+>+对[)3,m ∈+∞恒成立 令()()13g m m m m=+>易知()g m 在[)3,+∞上单增()()1033g m g ∴≥=故()446135g m m ≤=+ 1265x x ∴+>12x x ∴+的取值范围为6,5⎛⎫+∞ ⎪⎝⎭举一反三:【变式】(2015 辽宁二模)已知1a b +=,对(),0,a b ∀∈+∞,14+211x x a b≥--+恒成立 (1)求14a b+的最小值; (2)求x 的取值范围. 【解析】(1) 0,0a b >>且1a b +=()1414445529b a b a a b a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当2b a =时等号成立,又1a b +=即12,33a b ==时,等号成立 故14a b+的最小值为9. (2)因为对(),0,a b ∈+∞使14+211x x a b ≥--+恒成立 所以2119x x --+≤当1x ≤-时,29x -≤71x ∴-≤≤-当112x -<<时,39x -≤112x ∴-<< 当12x ≥时,29x -≤1112x ∴≤≤ 综上可知x 的取值范围是[]7,11-.类型四:不等式相关应用题例4.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。

相关文档
最新文档