不等式知识点详解
不等式知识点详解

不等式知识点详解不等式是数学中的一种重要的表示关系的方式,它利用不等号(大于号、小于号、大于等于号、小于等于号等)来表示数之间的大小关系。
不等式在数学中的运用广泛,特别在代数、几何、经济学等领域中起到了重要的作用。
下面将详细介绍一些有关不等式的基本知识点。
一、不等式的基本形式1. 一元一次不等式:形如ax+b>0(或<0)、ax+b≥0(或≤0)的不等式,其中a、b为已知的实数,x为未知数。
2. 一元二次不等式:形如ax^2+bx+c>0(或<0)、ax^2+bx+c≥0(或≤0)的不等式,其中a、b、c为已知的实数,x为未知数。
3.绝对值不等式:形如,f(x),>g(x)(或,f(x),<g(x),f(x),≥g(x),f(x),≤g(x))的不等式,其中f(x)和g(x)均为含有x的函数。
4.分式不等式:形如f(x)/g(x)>0(或<0、≥0、≤0)的不等式,其中f(x)和g(x)均为含有x的函数。
二、不等式的性质1.基本性质:不等式在数轴上表示一组数,一般情况下是一个区间或它的余区间。
对于不等式来说,如果它的一个解是真解,则它关于这个解的两边均成立。
2.四则运算性质:对于不等式,可以进行加减乘除等四则运算,但需要注意乘除以负数时不等号的方向要翻转。
3.取绝对值性质:对于不等式中的绝对值,可以将其加上取非的表示方式,即,a,>b等价于a>b或a<-b。
4.平方性质:对于一元不等式中的平方项,当平方项为正时,等号成立时解可能为空集;当平方项为负时,等号成立时解为全集;当平方项与常数同号时,等号成立时解由其他项决定。
三、不等式的求解方法1.绝对值不等式的求解方法:-对于,f(x),>g(x)的不等式,可以考虑f(x)>g(x)和f(x)<-g(x)两个不等式,然后求解得出解集。
-对于,f(x),<g(x)的不等式,可以考虑-f(x)<g(x)和f(x)<g(x)两个不等式,然后求解得出解集。
初中数学知识点梳理第四章不等式

初中数学知识点梳理第四章不等式初中数学第四章主要介绍了不等式的基本理论、解不等式的一般步骤以及一元一次不等式、一元二次不等式的解法等内容。
一、不等式的基本性质1.不等式的定义:不等式是表达两个数据之间大小关系的数学式,用不等号“<”、“>”、“≤”、“≥”等表示。
2.不等式的两端可以加上、减去相同的数,并且不等号方向不变。
3.不等式的两端可以乘以、除以正数,并且不等号方向不变;如果乘以或除以负数,则需要改变不等号的方向。
4.不等式的两端可以交换位置,但要改变不等号的方向。
二、不等式的解法步骤1.将不等式化简,使其符合格式要求。
2.根据不等式的性质,找出合适的变量范围。
3.根据条件,求出变量的取值范围。
4.根据不等式的性质,确定不等式的解集。
三、一元一次不等式的解法1. 一元一次不等式是指只含有一个变量的一次函数不等式,形如ax + b < c 或 ax + b > c。
2.解一元一次不等式的步骤:(1) 将不等式化为形如ax + b < 0或ax + b > 0的形式。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax + b = 0,得出一个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
四、一元二次不等式的解法1. 一元二次不等式是指只含有一个变量的二次函数不等式,形如ax² + bx + c > 0或ax² + bx + c < 0。
2.解一元二次不等式的步骤:(1) 将不等式化为标准形式ax² + bx + c > 0或ax² + bx + c < 0。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax² + bx + c = 0,得出两个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的基本概念1.不等式的定义:不等式是数学中表示两个数的大小关系的一种数学符号表示法。
2.不等式符号的意义:"<"表示小于、">"表示大于、"<="表示小于等于、">="表示大于等于。
3.一元一次不等式、二元一次不等式和多变量不等式的定义和性质。
4.不等式的解集:表示满足不等式的全部解的集合,可以用数轴表示。
二、不等式的性质1.不等式的传递性:如果a<b,b<c,则a<c。
2.不等式两边加减同一个数,不影响不等关系的大小。
3.不等式两边乘除同一个正数,不影响不等关系的大小。
4.不等式两边乘除同一个负数,不等关系会发生改变。
5.不等式两边取倒数时,要注意变号问题。
6.乘以不等式时,要考虑所乘以的数的正负情况。
三、不等式的解法1.第一类不等式(一元一次不等式)的解法:根据不等式的性质,将不等式中的未知数移到一边,得到关于未知数的集合表示的解,进而求解交集、并集或全集。
2.第二类不等式(一元二次不等式)的解法:将不等式变形为一元二次函数的图像问题,通过观察函数图像,确定不等式的解集。
3.系统不等式的解法:将多个不等式作为一个整体进行考虑,得到多个不等式的交集或并集形式,再求解。
四、一些常见的数学不等式1.加减法不等式:例如2x+3>7,根据性质将未知数移到一边,得到解集x>22.乘除法不等式:例如3x/5>=6,根据性质将未知数移到一边,得到解集x>=10。
3.绝对值不等式:例如,3x+5,<7,根据绝对值的性质进行分段讨论,得到解集-4<x<24.开方不等式:例如√(x-1)>3,根据开方的定义和性质进行讨论,得到解集x>10。
5.取整不等式:例如[x]>2,根据整数函数的定义和性质进行讨论,得到解集x>3五、不等式的应用1.不等式在图像问题中的应用:例如求一元一次不等式的解集时,可以将不等式表示的区间在数轴上进行标注,直观地表示解集。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点汇总

不等式知识点汇总不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。
下面我们来对不等式的相关知识点进行一个汇总。
一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。
例如:3 < 5,x + 2 > 5,y 1 ≤ 3 等都是不等式。
二、不等式的基本性质1、对称性:如果 a > b,那么 b < a 。
2、传递性:如果 a > b 且 b > c,那么 a > c 。
3、加法性质:如果 a > b,那么 a + c > b + c 。
4、乘法性质:如果 a > b 且 c > 0,那么 ac > bc ;如果 a > b 且c < 0,那么 ac < bc 。
这些基本性质是解决不等式问题的基础,需要牢记并能够熟练运用。
三、一元一次不等式形如 ax + b > 0 或 ax + b < 0(其中a ≠ 0)的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:1、去分母(如果有分母)。
2、去括号。
3、移项:把含未知数的项移到一边,常数项移到另一边。
4、合并同类项。
5、系数化为 1:根据不等式的性质,将未知数的系数化为 1。
例如,解不等式 2x + 5 > 9 ,首先移项得到 2x > 9 5 ,即 2x >4 ,然后系数化为 1 ,得到 x > 2 。
四、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0(其中a ≠ 0)的不等式叫做一元二次不等式。
解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图象来确定不等式的解集。
例如,对于不等式 x² 3x + 2 < 0 ,先解方程 x² 3x + 2 = 0 ,因式分解为(x 1)(x 2) = 0 ,解得 x = 1 或 x = 2 。
然后根据二次函数 y = x² 3x + 2 的图象,开口向上,与 x 轴的交点为 1 和 2 ,所以不等式的解集为 1 < x < 2 。
不等式知识点总结

不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试内容:
不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:
(1)理解不等式的性质及其证明.
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.
(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.
(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │
§06. 不 等 式 知识要点
1. 不等式的基本概念
(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.
(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质
(1)a b b a <⇔>(对称性)
(2)c a c b b a >⇒>>,(传递性)
(3)c b c a b a +>+⇒>(加法单调性)
(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.
(7)bc ac c b a <⇒<>0,(乘法单调性)
(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)
(9)0,0a b a b c d c d
>><<⇒
>(异向不等式相除) 11(10),0a b ab a b
>>⇒
<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)
3.几个重要不等式
(1)0,0||,2≥≥∈a a R a 则若
(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么
.2
a b +≤(当仅当a=b 时取等号)
极值定理:若,,,,x y R x y S xy P +∈+==则:
○
1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.
,3
a b c a b c R +++∈(4)若、、则
a=b=c 时取等号) 0,2b a
ab a b
>+≥(5)若则(当仅当a=b 时取等号)
2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或
(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式
(1)平均不等式: 如果a ,b 都是正数,那么
211
2
a b
a b
+≤+(当仅当
a=b
时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22
a b a b ab ++==)
),,,(332
222时取等c b a R c b a c b a c b a ==∈⎪⎭
⎫ ⎝⎛+++≥++ ⇒幂平均不等式:2212
22
21)...(1
...n n a a a n
a a a +++≥+++ 注:例如:2
2
2
2
2
()()()ac bd a b c d +≤++.
常用不等式的放缩法:①21111111
(2)1(1)(1)1n n n n n n n n n n
-==-≥++--p p
1)n =
=≥p
p
(2)柯西不等式: 时取等号
当且仅当(则
若n
n n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====++++
++
+≤++++∈∈ΛΛ
ΛΛΛΛ33
2211223
2
22122
3
22
21
2
332211321321)
)(();,,,,,,,,
(3)琴生不等式(特例)与凸函数、凹函数
若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有
12121212()()
()()(
)(
).22
22
x x f x f x x x f x f x f f ++++≤≥或
则称f(x)为凸(或凹)函数.
5.不等式证明的几种常用方法
比较法、综合法、分析法、换元法、反证法、放缩法、构造法.
6.不等式的解法
(1)整式不等式的解法(根轴法).
步骤:正化,求根,标轴,穿线(偶重根打结),定解.
特例① 一元一次不等式ax >b 解的讨论;
②一元二次不等式ax 2
+bx +c >0(a ≠0)解的讨论.
(2)分式不等式的解法:先移项通分标准化,则
()()0()
()
0()()0;0()0
()
()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ (3)无理不等式:转化为有理不等式求解
1
()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭
⎪>⎩
定义域
○2
⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0
)(0)()]
([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪
⎨⎧<≥≥⇔<2
)]
([)(0
)(0)()()(x g x f x g x f x g x f (4).指数不等式:转化为代数不等式
()()()()()(1)()();
(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b
>>⇔>><<⇔<>>>⇔⋅>
(5)对数不等式:转化为代数不等式
()0
()0log ()log ()(1)()0;
log ()log ()(01)()0
()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪
⎪
>>⇔>><<⇔>⎨⎨⎪⎪><⎩
⎩
(6)含绝对值不等式
○
1应用分类讨论思想去绝对值; ○2应用数形思想; ○
3应用化归思想等价转化 ⎩
⎨⎧>-<>≤⇔>⎩
⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为
注:常用不等式的解法举例(x 为正数): ①231124
(1)2(1)(1)()22327
x x x x x -=
⋅--≤=
②2222
2
32(1)(1)124(1)()223279
x x x y x x y y --=-⇒=≤=⇒≤
类似于2
2
sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x x x x
+=+≥与同号,故取等。