基本不等式知识点归纳

合集下载

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点总结向量不等式:注意: a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线⇔||||||||||||a b a b a b -<±<+.这些和实数集中类似代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 说明:b b m a a m+<+0,0a b m >>>,糖水的浓度问题. 拓展:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈<< ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质1函数()0)(>+=b a xbax x f 、图象如图:2函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 基本不等式知识点总结重要不等式1、和积不等式:,a b R ∈⇒222a b ab +≥当且仅当a b =时取到“=”.变形:①222()22a b a b ab ++≤≤当a = b 时,222()22a b a b ab ++==注意:(,)2a b a b R ++∈,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”.若0x >,则12x x +≥ 当且仅当1x =时取“=”; 若0x <,则12x x+≤- 当且仅当1x =-时取“=”若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 当且仅当b a =时取“=”.若0>ab ,则2≥+ab ba 当且仅当b a =时取“=”若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 当且仅当b a =时取“=” 3、含立方的几个重要不等式a 、b 、c 为正数:3333a b c abc ++≥0a b c ++>等式即可成立,时取等或0=++==c b a c b a ;不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11; ,,b a 均为正数,b a ba -≥22八种变式: ①222b a ab +≤ ; ②2)2(b a ab +≤; ③2)2(222b a b a +≤+ ④)(222b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则ba b a +≥+411;⑦若a>0,b>0,则ab b a 4)11(2≥+; ⑧ 若0≠ab ,则222)11(2111b a ba +≥+; 上述八个不等式中等号成立的条件都是“b a =”;最值定理积定和最小①,0,x y x y >+≥由若积()xy P =定值,则当x y =时和x y +有最小值和定积最大②,0,x y x y >+≥由若和()x y S +=定值,则当x y =是积xy 有最大值214s .推广:已知R y x ∈,,则有xy y x y x 2)()(22+-=+.1若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.2若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时,||xy 最大.③已知,,,R a x b y +∈,若1ax by +=,则有则的最小值为:21111()()2 ()by axax by a b a b ab a b x y x y x y+=++=+++++=+≥④已知,若则和的最小值为:①.②应用基本不等式求最值的“八种变形技巧”:⑴凑系数乘、除变量系数.例1.当 04x <<时,求函的数(82)y x x =-最大值.⑵凑项加、减常数项:例2.已知54x <,求函数1()4245f x x x =-+-的最大值.⑶调整分子:例3.求函数2710()(1)1x x f x x x ++=≠-+的值域; ⑷变用公式:基本不等式2a b ab +≥有几个常用变形2222a b a b ++≥,222()22a b a b ++≥不易想到,应重视;例4.求函数152152()22y x x x =--<<的最大值;⑸连用公式:例5.已知0a b >>,求216()y a b a b =+-的最小值;⑹对数变换:例6.已知1,12x y >>,且xy e =,求ln (2)yt x =的最大值;⑺三角变换:例7.已知20y x π<<≤,且tan 3tan x y =,求t x y =-的最大值;⑻常数代换逆用条件:例8.已知0,0a b >>,且21a b +=,求11t a b=+的最小值. “单调性”补了“基本不等式”的漏洞: ⑴平方和为定值若22x y a +=a 为定值,0a ≠,可设,,x a y a αα==,其中02απ<≤.①(,)2)4f x y x y a a a πααα=+==+在15[0,],[,2)44πππ上是增函数,在15[,]44ππ上是减函数; ②1(,)sin 22g x y xy a α==在1357[0,],[,],[,2)4444πππππ上是增函数,在1357[,],[,]4444ππππ上是减函数;③11(,)x y m x y x yxy +=+==.令sin cos )4t πααα=+=+,其中[1)(1,1)(1,2]t ∈--.由212sincos t αα=+,得22sin cos 1t αα=-,从而2(,)1)m x y t t==-在[1)(1,1)(1,2]--上是减函数. ⑵和为定值若x y b +=b 为定值,0b ≠,则.y b x =-①2(,)g x y xy x bx ==-+在(,]2b -∞上是增函数,在[,)2b +∞上是减函数;②211(,)x y bm x y x y xy x bx +=+==-+.当0b >时,在(,0),(0,]2b -∞上是减函数,在[,),(,)2b b b +∞上是增函数;当0b <时,在(,),(,]2b b b -∞上是减函数,在[,0),(0,)2b+∞上是增函数. ③2222(,)22n x y x y x bx b =+=++在(,]2b -∞上是减函数,在[,)2b +∞上是增函数;⑶积为定值若xy c =c为定值,0c ≠,则.c y x= ①(,)cf x y x y x x=+=+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是增函数;②111(,)()x y cm x y x x y xy c x+=+==+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是减函数;③222222(,)()2c c n x y x y x x c x x=+=+=+-在(,-∞上是减函数,在()+∞上是增函数.⑷倒数和为定值若112x y d +=d 为定值,111,,x d y ,则.c y x=成等差数列且均不为零,可设公差为z ,其中1z d≠±,则1111,,z z x d y d =-=+得,.11d d x y dz dz ==-+. ①222()1d f x x y d z =+=-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是增函数,在11[0,),(,)d d --+∞上减函数;②222(,).1d g x y xy d z ==-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是减函数,在11[0,),(,)d d --+∞上是增函数;③222222222(1)(,).(1)d d z n x y x y d z +=+=-.令221t d z =+,其中1t ≥且2t ≠,从而22222(,)4(2)4d t d n x y t t t==-+-在[1,2)上是增函数,在(2,)+∞上是减函数.。

基本不等式知识点和基本题型

基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。

2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。

3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当$a=b$时取“=”。

4、求最值的条件:“一正,二定,三相等”。

5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。

若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。

若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。

若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。

6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。

题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。

2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。

3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式知识点

基本不等式知识点

基本不等式知识点基本不等式知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)db c a dc b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)nna b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b=时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理): 设1212...,...n na aa b b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb bb ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f xg x a a f x g x >⇔> ⑵当01a <<时,()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法 ⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法 解形如2axbx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题 ⑴不等式2ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max();f x a ⇔< ()f x a≤恒成立max();f x a ⇔≤⑷()f x a >恒成立min();f x a ⇔>()f x a≥恒成立min().f x a ⇔≥15、线性规划问题 常见的目标函数的类型: ①“截距”型:;z Ax By =+ ②“斜率”型:y z x=或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

高三数学知识点总结3:基本不等式

高三数学知识点总结3:基本不等式

基本不等式1.基本不等式:2b a ab +≤.(一正、二定、三相等) (1)基本不等式成立的条件:0,0≥≥b a .(2)等号成立的条件:当且仅当b a =时取等号. 2.算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为,2b a +几何平均数为,ab 基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.3.几个重要的不等式(1)),(222R b a ab b a ∈≥+;(2))0,0(2≥≥≥+b a ab b a ;(3)),(4)(2R b a b a ab ∈+≤;(4)222)()(2b a b a +≥+(R b a ∈,) 4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (2)如果和y x +是定值,s 那么当且仅当y x =时,xy 有最大值是.4s 2注:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正(各项均为正),二定(积或和为定值),三相等(等号能否取得)”,若忽略了某个条件,就会出现错误.解答题用基本不等式求最值一定要说明何时取等号,不说明会扣分。

如果多次用基本不等式求最值,必须保持每次取“=”的一致性.5.注意:正负要判断,等号要考虑例(1)已知,45<x 函数54124-+-=x x y 的最大值为_________答案:1. (2)函数4522++=x x y 的最小值是_________答案:.25 6.“1”的代换问题:例(3)设,32,0,0=+>>b a b a 则11a b+最小值是 答案:3223+. (4)已知P 是ABC ∆的边BC 上的任一点,且满足,,,R y x AC y AB x AP ∈+=则xy y x +4的最小值是 .答案:9.7.“y x +”与“xy ”的互相转化例(5)若正实数y x ,满足,62++=y x xy 则xy 的最小值是_________答案:18.(6)设y x ,为实数,若,1422=++xy y x 则y x +2的最大值是_________答案:.5102 8.巧妙运用换元法 例(7)设y x ,是正实数,且,1=+y x 则1222+++y y x x 的最小值是_________答案:41. (8)若,0,0>>b a 且,11121=+++b b a 则b a 2+的最小值为________答案:.321+ 9.灵活使用消元法例(9)已知正实数y x ,满足,42=++y x xy 则y x +的最小值为_____答案:62.3-(10)若ABC ∆的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是_____答案:.426-。

高中数学《基本不等式》知识点归纳

高中数学《基本不等式》知识点归纳
1、分类讨论思想
例1.已知不等式 ,(1)求该不等式中x的集合;(2)若1不是不等式的解,0是不等式的解,求k的取值范围。
解:(1)
当k>1时,解集为
当时 ,解集为
当k<1时,解集为
(2)
所以
小结:当一次项系数为0时,,不等式的解集为R(不等式成立时)或 (不等式不成立时)。
典型例题精选
题型一 对公式的简单运用
题型二:条件最值问题
【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.
【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.


解得
从而

∴不等式的解集是
4、数形结合思想
例4.设a<0为常数,解不等式 。
解:不等式转化为
令函数 和
其图象如图所示

解得 (舍去)
∴两个函数图象的交点为
由图知,当 时,函数 的图象位于函数 的图象的上方
∴不等式的解集是
小结:在不等式的求解过程中,换元法和图象法是常用的技巧。
通过换元,可将较复杂的不等式化归为较简单的不等式或基本不等式,
例6. 解不等式
分析:本题若直接将左边通分采用解高次不等式的思维来做,运算较繁杂。
但注意到 ,且题中出现 ,
启示我们构造函数 去投石问路。
解:将原不等式化为

第7讲 基本不等式(知识点串讲)(解析版)

第7讲 基本不等式(知识点串讲)(解析版)
当且仅当x-2= ,即(x-2)2=1时等号成立,
解得x=1或3.又∵x>2,∴x=3,即a等于3时,函数f(x)在x=3处取得最小值.]
练习、(2019·山东济宁月考)已知0<x<1,则x(3-3x)取得最大值时x的值为()
A. B.
C. D.
【答案】B[∵0<x<1,∴x(3-3x)=3x(1-x)≤3 = .当且仅当x=1-x,即x= 时,“=”成立.]
练习、(2019·广东梅州月考)设a,b,c均为正数,满足a-2b+3c=0,则 的最小值是________.
【答案】3[∵a-2b+3c=0,∴b= ,∴ = ≥ =3,当且仅当a=3c时取“=”.]
【知识梳理】
6、用基本不等式求实际应用题的三个注意点
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(1)求S关于x的函数关系式;
(2)求S的最大值.
解(1)由题设,得S=(x-8) =-2x- +916,x∈(8,450).
(2)因为8<x<450,
所以2x+ ≥2 =240,
当且仅当x=60时等号成立,从而S≤676.
故当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
【考点精炼】
考点四、基本不等式的实际应用
例4、(2019·山东聊城月考)某化工企业2018年年底将投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量不等式:
【注意】:同向或有;
反向或有;
不共线.(这些和实数集中类似)
代数不等式:
同号或有; 异号或有.
绝对值不等式:
双向不等式:
(左边当时取得等号,右边当时取得等号.)
放缩不等式:
①,则.
【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,.
函数()(0)b
f x ax a b x
=+
>、图象及性质 (1)函数()0)(>+
=b a x
b
ax x f 、图象如图:
(2)函数()0)(>+
=b a x
b ax x f 、性质:
①值域:),2[]2,(+∞--∞ab ab Y ;
②单调递增区间:(,-∞
,)+∞;
单调递减区间:(0,
,[0).
基本不等式知识点总结
重要不等式
1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: ,
2、均值不等式:
两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均”
*.若0x >,则1
2x x +
≥ (当且仅当1x =时取“=”
); 若0x <,则1
2x x
+≤- (当且仅当1x =-时取“=”)
若0x ≠,则11122-2x x x x
x
x
+≥+≥+≤即或 (当且仅当b a =时取“=”)
*.若0>ab ,则2≥+a
b b
a (当且仅当
b a =时取“=”)
若0ab ≠,则
22-2a b a b a b
b a b a b a
+≥+≥+≤即或 (当且仅当b a =时取“=”
) 3、含立方的几个重要不等式(a 、b 、c 为正数):
(,);
*不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,
ab b a 222≥+同时除以ab 得
2≥+b a a b 或b
a a
b -≥-11。

*,,b a 均为正数,b a b
a -≥22
八种变式: ①222b a ab +≤ ; ②2
)2(b a ab +≤; ③2)2(
222b a b a +≤+ ④)(22
2
b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b
a b a +≥+4
11;⑦若a>0,b>0,则ab b a 4)11(
2≥+; ⑧ 若0≠ab ,则2
22)11(2111b a b
a +≥+。

上述八个不等式中等号成立的条件都是“
b a =”。

最值定理
(积定和最小)
①,若积,则当时和有最小值;
(和定积最大)
②,若和,则当是积有最大值.
【推广】:已知,则有.
(1)若积是定值,则当最大时,最大;当最小时,最小.
(2)若和是定值,则当最大时,最小;当最小时,最大.
③已知,若,则有则的最小值为:
④已知,若则和的最小值为:
①.

应用基本不等式求最值的“八种变形技巧”:
⑴凑系数(乘、除变量系数).例1.当时,求函的数最大值.
⑵凑项(加、减常数项):例2.已知,求函数的最大值.
⑶调整分子:例3.求函数的值域;
⑷变用公式:基本不等式有几个常用变形,,不易想到,应重视;
例4.求函数的最大值;
⑸连用公式:例5.已知,求的最小值;
⑹对数变换:例6.已知,且,求的最大值;
⑺三角变换:例7.已知,且,求的最大值;
⑻常数代换(逆用条件):例8.已知,且,求的最小值.
“单调性”补了“基本不等式”的漏洞:
⑴平方和为定值
若(为定值,),可设,其中.
①在上是增函数,在上是减函数;
②在上是增函数,在上是减函数;
③.令,其中.由,得,从而在上是减函数.
⑵和为定值
若(为定值,),则
①在上是增函数,在上是减函数;
②.当时,在上是减函数,在上是增函数;当时,在上是减函数,在上是增函数.
③在上是减函数,在上是增函数;
⑶积为定值
若(为定值,),则
①.当时,在上是减函数,在上是增函数;当时,在上是增函数;
②.当时,在上是减函数,在上是增函数;当时,在上是减函数;
③在上是减函数,在上是增函数.
⑷倒数和为定值
若(为定值,),则成等差数列且均不为零,可设公差为,其中,则得.
①.当时,在上是减函数,在上是增函数;当时,在上是增函数,在上减函数;
②.当时,在上是减函数,在上是增函数;当时,在上是减函数,在上是增函数;
③.令,其中且,从而在上是增函数,在上是减函数.。

相关文档
最新文档