高中物理圆周运动总结
高中物理必修二圆周运动知识点总结

高中物理必修二圆周运动知识点总结
嘿,同学们!今天咱们要来聊聊高中物理必修二里超有意思的圆周运动知识点呀!
你想想看,那转来转去的摩天轮,不就是圆周运动的一个超级明显的例
子嘛!就像我们在学习圆周运动的线速度。
线速度是什么呢?简单说,就是物体沿着圆周运动的快慢呀!好比你骑着自行车绕着一个圆形广场转,那你的速度不就是线速度嘛,你骑得越快,线速度就越大呀!这不难理解吧?
还有角速度呢!角速度就像是摩天轮转一圈所用的时间差不多的概念哦。
你瞧,摩天轮转得快的时候,角速度就大,转得慢的时候,角速度就小咯。
这不就明白了嘛!
向心力可是个很重要的家伙呀!没有它,那些做圆周运动的东西不就飞
出去啦?就像你甩动一个系着绳子的小球,要是没有向心力拉着,小球不就飞走了嘛。
记得老师做那个实验的时候,大家都看得超认真呢!
离心力呢,和向心力相反,但也是存在的哦!哎呀,就好比你坐旋转木马,转得快了,你是不是感觉要被甩出去呀,那就是离心力在“捣乱”呢!
在这些知识点里,是不是超级有趣呀!我们学习这些可不只是为了考试哦,以后生活中很多地方都能用得到呢!你想想,那些赛车弯道,工程师们肯定都考虑了圆周运动的知识呀,不然车怎么能安全快速地通过弯道呢。
所以呀,好好学这些知识,真的超级有用呢!同学们,一起把圆周运动知识点牢牢掌握呀,加油!。
高中物理必修二第六章圆周运动知识点总结全面整理(带答案)

高中物理必修二第六章圆周运动知识点总结全面整理单选题1、如图所示,一倾斜的圆筒绕固定轴OO1以恒定的角速度ω转动,圆筒的半径r=1.5m,简壁内有一小物体与(设最大静摩擦力等于滑动摩擦力),转动轴与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为√32水平面间的夹角为60°,重力加速度g取10m/s2,则ω的最小值是()rad/sC.√10rad/sD.5rad/sA.2rad/sB.√303答案:C对小物体,受力分析如图所示小物体恰不下滑,则有F N+mgcos60°=mω2r,f=μF N=mgsin60°联立解得ω=√10rad/s故选C。
2、如图所示,底部装有4个轮子的行李箱a竖立、b平卧放置在公交车上,箱子四周均有一定空间。
当公交车()A.缓慢启动时,a、b均相对于公交车向后运动B.急刹车时,行李箱a相对于公交车向前运动C.缓慢转弯时,a、b均相对于公交车向外侧运动D.急转弯时,行李箱a相对于公交车向内侧运动答案:B设行李箱a竖立时与汽车发生相对运动的加速度为a1,行李箱b平放时与汽车发生相对运动的加速度为a2,根据实际情况可知a1<a2。
A.缓慢起动时,汽车的加速度比较小,如果小于a1,则两只行李箱不会相对车子运动,故A错误;B.急刹车时,汽车减速运动的加速度很大,行李箱a一定相对车子向前运动,故B正确;C.缓慢转弯时,只要转动的向心加速度小于a1,两只行李箱不会相对车子向外侧运动,故C错误;D.急转弯时,行李箱a一定会相对车子向外侧运动,不会相对车子向内侧运动,故D错误。
故选B。
3、闪光跳跳球是非常适合锻炼身体的玩具,如图1所示,其一端套在脚踝处,抖动腿可以使闪光轮转动,闪光轮整体围绕圆心O转动,如图2所示,由于和地面的摩擦,闪光轮又绕自身圆心转动,且闪光轮始终和地面接触并不打滑。
已知闪光轮到圆心O的距离为R,闪光轮的半径为r,闪光轮相对于自身圆心的角速度大于等于ω0时才会发光,为了使闪光轮发光,闪光轮绕O点转动的角速度至少是()A.ω0B.Rrω0C.Rω0r D.rω0R答案:D闪光轮刚好发光时,闪光轮上边缘点的线速度v=ω0r闪光轮始终和地面接触并不打滑,则闪光轮绕圆心O转动的线速度也为v,则闪光轮绕O点转动的角速度ω=vR=ω0rR故选D。
高一物理 必修2 5.4圆周运动的运动学问题 知识点总结 题型总结 同步巩固 新高考 练习

高中物理 必修2 圆周运动的运动学问题1、描述圆周运动的物理量描述圆周运动的基本参量有:半径、线速度、角速度、周期、频率、转速、向心加速度等。
(1)v =∆l∆t =2πr T =2πrf(2)ω=∆θ∆t =2πT(3)T =1f =2πr v3、圆周运动中的运动学分析 (1)对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。
(2)对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。
在分析传动装置中的各物理量时,要抓住不等量和想等量的关系,具体有: (1)同一转轴的轮上各点角速度ω相同,而线速度v=ωr 与半径r 成正比。
(2)当皮带(或链条、齿轮)不打滑时,传动皮带上各点以及用皮带连接的两轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r 成反比。
(3)齿轮传动时,两轮的齿数与半径成正比,角速度与齿数成反比。
1、如图所示装置中,A、B、C三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比,周期之比,转速之比,频率之比。
答案:①2:1:2:4;②2:1:1:1;③4:1:2:4;④1:2:2:2;⑤2:1:1:1;⑥2:1:1:12、一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是(A)A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶13、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于(C)A.1∶1∶8 B.4∶1∶4C.4∶1∶32 D.1∶2∶44、如图所示,传动轮A、B、C的半径之比为2︰1︰2,A、B两轮用皮带传动,皮带不打滑,B、C两轮同轴,a、b、c三点分别处于A、B、C三轮的边缘,d点在A轮半径的中点。
【知识点】高中物理圆周运动及向心力知识点总结

【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
高中物理圆周运动知识点总结-高中物理圆周运动公式

高中物理圆周运动知识点总结|高中物理圆周运动公式各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢高中物理教学中,圆周运动问题既是一个重点,又是一个难点。
下面小编给大家带来高中物理圆周运动知识点,希望对你有帮助。
高中物理圆周运动知识点1.圆周运动:质点的运动轨迹是圆周的运动。
2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。
3.描述匀速圆周运动的物理量周期:质点完成一次圆周运动所用的时间为周期。
频率:1s钟完成圆周运动的次数。
f=线速度:线速度就是瞬间速度。
做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。
由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比值是相等的,所以,其线速度大小v= 角速度:作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。
ω==,由此式可知匀速圆周运动是角速度不变的运动。
4.竖直面内的圆周运动轻绳的一端固定,另一端连着一个小球,小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下:①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小,而小球要到达最高点,则必须在最低点具有足够大的速度才能到达最高点,否则小球就会在圆周上的某一点绳子的拉力为零时,小球就脱离圆周轨道。
物体在杆或圆管的环形轨道上作竖直面内圆周运动,虽然物体从最低点沿圆周向最高点运动的过程中,速度越来越小,由于物体可以受到杆的拉力和压力,所以,物体在圆周上的任意一点的速度均可为零。
(完整版)高中物理圆周运动总结

圆周运动的实例剖析(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动b.最常有的圆周运动有:①天体(包含人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各样外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动不过速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的全部力的协力供给向心力,其方向必定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,供给向心力,产生向心加快度;合外力沿切线方向的分力,产生切向加快度,其成效是改变速度的大小。
例 1:如图 3-1 所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A、 B 两处,上边绳AC 长 L=2m ,当两绳都拉直时,与轴的夹角分别为30°和 45°,求当小球随轴一同在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0 渐渐增大时,ω可能出现两个临界值。
【分析】如图 3-1 所示,当 BC 恰巧被拉直,但其拉力 T2 恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有:T1cos30mg①T1sin 30 = mω12LABsin 30②代入数据得:1 2.4rad / s ,要使 BC 绳有拉力,应有ω>ω 1,当 AC 绳恰被拉直,但其拉力 T1 恰为零,设此时角速度为ω2, BC 绳拉力为T2,则有T2cos45mg③ T2sin45 °=mω22LACsin30 °④代入数据得:ω。
要使 AC图绳有拉力,一定ω <ω 2,依题意ω =4rad/s>ω 2,故 AC 绳已无拉力, AC 绳是松驰状态,BC 绳与杆的夹角θ >45°,对小球有:T2cosmg,T2cosθ=mω2LBCsinθ ⑤而LACsin30°=LBCsin45°,LBC= 2 m⑥由⑤、⑥可解得T2 2.3N ; T10【总结】当物体做匀速圆周运动时,所受合外力必定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必定为零。
高中物理必修二第六章圆周运动知识点总结归纳完整版(带答案)

高中物理必修二第六章圆周运动知识点总结归纳完整版单选题1、如图所示为走时准确的时钟面板示意图,M、N为秒针上的两点。
以下判断正确的是()A.M点的周期比N点的周期大B.N点的周期比M点的周期大C.M点的角速度等于N点的角速度D.M点的角速度大于N点的角速度答案:C由于M、N为秒针上的两点,属于同轴转动的两点,可知M与N两点具有相同的角速度和周期。
故选C。
2、如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvR B.mv2RC.mv2R2D.mvR2答案:B根据向心力公式得F 向=mv2R故选B。
3、如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。
某段时间内圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受摩擦力F f的方向的四种表示(俯视图)中,正确的是()A.B.C.D.答案:C因为圆盘转速不断增大,所以橡皮块将随圆盘一起进行加速圆周运动,此时摩擦力F f既要提供指向圆心的向心力,又要提供与运动方向相同的切向力,所以合力方向应该在轨道内侧且与速度成锐角,故选C。
4、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt解得水平位移x=2√3R故选A。
5、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,此时牵引秋千的轻绳绷直,小明相对秋千静止,下列说法正确的是()A.此时秋千对小明的作用力可能不沿绳的方向B.此时秋千对小明的作用力小于mgC.此时小明的速度为零,所受合力为零D.小明从最低点摆至最高点过程中先处于失重状态后处于超重状态答案:BABC.在最高点,小明的速度为0,设秋千的摆长为l,摆到最高点时摆绳与竖直方向的夹角为θ,秋千对小明的作用力一定沿绳的方向,设为F,则对人,沿摆绳方向受力分析有F−mgcosθ=0得F=mgcosθ<mg沿垂直摆绳方向有F合=mgsinθ=ma显然小明在最高点的合力不为零,加速度为a=gsinθ故B正确,AC错误;D.小明从从最低点摆至最高点过程中,做圆周运动,根据圆周运动的特点可推知小明加速度在竖直方向上的分量方向先向上,后向下,所以小明先处于超重状态后处于失重状态,故D错误。
高中物理第六章圆周运动知识汇总大全(带答案)

高中物理第六章圆周运动知识汇总大全单选题1、甲、乙两物体都做匀速圆周运动,转动半径之比为1:2,在相等时间里甲转过60°角,乙转过45°角,则它们的()A.角速度之比为4:3B.角速度之比为2:3C.线速度之比为1:1D.线速度之比为4:9答案:A可知AB.相同时间内甲转过60°角,乙转过45°角,根据角速度定义ω=ΔθΔtω1:ω2=4:3选项A正确,B错误;CD.由题意可知r1:r2=1:2根据公式v=ωr可知v1:v2=ω1r1:ω2r2=2:3选项CD错误。
故选A。
2、如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,重力加速度为g。
下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg答案:DA.在最高点时,只要速度够大,人就会对座位产生一个向上的作用力,即使没有安全带,人也不会掉下去,故A错误;B.若在最高点时,人对座位产生压力为mg,则mg+mg=m v2 r解得v=√2gr故只要速度v=√2gr人在最高点时就对座位产生大小为mg的压力,故B错误;CD.人在最低点时,受到座位的支持力和重力,两力的合力充当向心力,即F N−mg=m v2 r解得F N=m v2r+mg>mg故C错误,D正确。
故选D。
3、关于质点做匀速圆周运动的下列说法中正确的是()A.由a=v 2r知a与r成反比B.由a=ω2r知a与r成正比C.由ω=vr知ω与r成正比D.由ω=2πn知角速度与转速n成正比答案:DA.由a=v 2r知,在v一定时,a与r成反比,故A错误;B.由a=ω2r知,在ω一定时,a与r成正比,故B错误;C.由ω=vr知,在v一定时,ω与r成反比,故C错误;D.由ω=2πn知,角速度与转速n成正比,故D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图圆周运动的实例分析(1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有:mg T =︒30cos 1 ① 30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为T2,则有mg T =︒45cos 2 ③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。
要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有:mg T =θcos 2,T2cos θ=m ω2LBCsin θ ⑤而LACsin30°=LBCsin45°,LBC=2m ⑥由⑤、⑥可解得N T 3.22=;01=T 【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。
(2)同轴装置与皮带传动装置在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等。
例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则A .a 点与b 点线速度大小相等B .a 点与c 点角速度大小相等C .a 点与d 点向心加速度大小相等D .a 、b 、c 、d 四点,加速度最小的是b 点【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。
这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。
【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va =vc ,又v =ωR , 所以ωar =ωc·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21ωa ,所以选项B错.又vb =ωb·r= 21ωar =2v a ,所以选项A也错.向心加速度:aa =ωa2r ;ab =ωb2·r =(2ωa)2r =41ωa2r =41aa ;ac =ωc2·2r =(21ωa )2·2r=21ωa2r =21aa ;ad =ωd2·4r =(21ωa )2·4r =ωa2r =aa .所以选项C 、D 均正确。
【总结】a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。
图图b.对于匀速圆周运动的问题,一般可按如下步骤进行分析:①确定做匀速圆周运动的物体作为研究对象。
②明确运动情况,包括搞清运动速率v,轨迹半径R及轨迹圆心O的位置等。
③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F(即提供向心力)。
④选用公式F=m Rv2=mRω2=mR22⎪⎭⎫⎝⎛Tπ解得结果。
c.圆周运动中向心力的特点:①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。
可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。
②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。
求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。
合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。
③当物体所受的合外力F小于所需要提供的向心力mv2/R时,物体做离心运动。
例3:如图3-4所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO/匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.【审题】物体A随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。
物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。
【解析】物体A做匀速圆周运动,向心力:RmFn2ω=,而摩擦力与重力平衡,则有:mgFn=μ,即:μmgFn=由以上两式可得:μωmgRm=2,即碗匀速转动的角速度为:Rgμω=【总结】水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。
例4:如图3-5所示,在电机距轴O为r处固定一质量为m的铁块.电机启动后,铁块以角速度ω绕轴O匀速转动.则电机对地面的最大压力和最小压力之差为__________。
【审题】铁块在竖直面内做匀速圆周运动,其向心力是重力mg与轮对它的力F的合力.由圆周运动的规律可知:当m转到最低点时F最大,当m转到最高点时F最小。
【解析】设铁块在最高点和最低点时,电机对其作用力分别为F1和F2,且都指向轴心,根据牛顿第二定律有:在最高点:mg+F1=mω2r①,在最低点:F2-mg=mω2r②,电机对地面的最大压力和最小压力分别出现在铁块m位于最低点和最高点时,且压力差的大小为:ΔFN=F2+F1 ③,由①②③式可解得:ΔFN=2mω2r【变式】(1)若m在最高点时突然与电机脱离,它将如何运动? (2)当角速度ω为何值时,铁块在最高点与电机恰无作用力? (3)本题也可认为是一电动打夯机的原理示意图。
若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。
(2)电机对铁块无作用力时,重力提供铁块的向心力,则mg=mω12r ,即ω1=rg(3)铁块在最高点时,铁块与电动机的相互做用力大小为F1,则 ,F1+mg=mω22r ,F1=Mg即当ω2≥mrgmM)(+时,电动机可以跳起来,当ω2=mrgmM)(+时,铁块在最低点时电机对地面压力最大,则 F2-mg=mω22r图图3-5FN =F2+Mg ,解得电机对地面的最大压力为FN =2(M +m )g(4)圆周运动的周期性:利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。
圆周运动是一个独立的运动,而另一个运动通常也是独立的。
在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。
同时,要注意圆周运动具有周期性,因此往往有多个答案。
例5:如图3-6所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =____,圆盘转动的角速度ω=_____。
【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。
【解析】①小球做平抛运动,在竖直方向上:h =21gt2,则运动时间t =g h 2,又因为水平位移为R所以球的速度,v =t R=R ·hg 2②,在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt ,则转盘角速度:ω=t n π2⋅=2n πh2g (n =1,2,3…)【总结】这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。
例6:如图3-7所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点为h 处开始自由下落.要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件?【审题】下落的小球P 做的是自由落体运动,小球Q 做的是圆周运动,若要想碰,必须满足时间相等这个条件。
【解析】设P 球自由落体到圆周最高点的时间为t ,由自由落体可得21gt2=h ,求得t=gh 2Q 球由图示位置转至最高点的时间也是t ,但做匀速圆周运动,周期为T ,有t=(4n+1)4T(n=0,1,2,3……),两式联立再由T=ωπ2得 (4n+1)ωπ2=gh 2,所以ω=2π(4n+1)h2g (n=0,1,2,3……)(5)竖直平面内圆周运动的临界问题 圆周运动的临界问题:(1)如上图3-8所示,没有物体支撑的小球,在绳和轨道的约束下,在竖直平面做圆周运动过最高点的情况:①临界条件:绳子或轨道对小球没有力的做用:mg =m R v 2⇒v 临界=Rg。
②能过最高点的条件:v≥Rg,当v >Rg时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道) (2)如图3-9球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,FN =mg (FN 为支持力)。
②当0<v <Rg时,FN 随v 增大而减小,且mg >FN >0,FN 为支持力。
③当v =Rg时,FN =0。