气溶胶

合集下载

气溶胶的基本特征课件

气溶胶的基本特征课件

THANKS
感谢观看
改变云的形成和降水过程
01
影响地面对太阳辐射的吸收和反射
02
增加温室效应
03
对空气质量的影响
降低能见度
增加大气污染
形成光化学烟雾
对人类健康的影响
呼吸系统疾病 心血管系统疾病 增加死亡率
05
气溶胶的监测与测量方法
监测站点布局与采样方法
监测站点布局
采样方法
气溶胶测量仪器与技术
仪器
气溶胶测量仪器包括颗粒物计数器、粒子质量浓度测量仪、气溶胶质谱仪等。这 些仪器可以测量不同物理和化学性质的气溶胶,如颗粒物大小、成分和数量浓度 等。
06
气溶胶的控制与减排策略
减少排放源的措施
工业生产
控制工业生产过程中的废弃物排放,推广清洁生产技术,降低气 溶胶颗粒物产生。
能源利用
优化能源结构,减少燃煤和燃油使用,发展清洁能源,降低硫氧 化物、氮氧化物等气溶胶前体物的排放。
农业活动
推广有机肥和低毒农药使用,减少土壤和农作物中气溶胶颗粒物 的产生和排放。
控制大气中已有的气溶胶的措施
颗粒物排放控制
大气中已有气溶胶的去除
发展新型的气溶胶控制技术
新材料应用
研发新型材料,降低气溶胶颗粒物的产 生和排放,如低散发材料、水性涂料等。
VS
技术创新
推动清洁能源技术创新,提高能源利用效 率,减少气溶胶颗粒物的排放。如发展高 效、低成本的清洁能源转换技术、废弃物 资源化利用技术等。
气溶胶的性 质
物理性质
化学性质 环境影响
02
气溶胶的物理特性
粒子尺寸分布
气溶胶粒子大小通常在0.1-100 微米之间,其中大部分粒子在1-

简述气溶胶的概念

简述气溶胶的概念

简述气溶胶的概念
气溶胶是指在气体中悬浮的微小固体或液体颗粒,其直径在
0.001~100微米范围内。

气溶胶分为固体气溶胶和液体气溶胶两种形式。

固体气溶胶是指在气体中悬浮的固态微小颗粒,如尘埃、烟雾、粉尘等。

这些颗粒主要由硅酸盐、金属氧化物、一氧化碳等组成。

固体气溶胶的颗粒较小,有机械性质和凝聚力较弱,容易在空气中长时间悬浮。

液体气溶胶是指在气体中悬浮的液态微小颗粒,如雾霾中的细小水滴。

这些颗粒主要由水蒸气和空气中的微小颗粒物质凝结而成。

液体气溶胶比固体气溶胶更容易产生,一般在高湿度环境中生成。

气溶胶对空气质量和环境有重要影响。

大气中的气溶胶会对可见光产生散射和吸收,导致大气的不透明度和光线衰减。

气溶胶中的微小颗粒还能作为云凝结核,影响云的形成和持续时间。

此外,气溶胶还与大气湍流、放射传输、化学反应等相互作用,对气候、环境和健康产生重要的影响。

气溶胶是什么

气溶胶是什么

气溶胶是什么1、气溶胶是指一种胶体分散体系,具体是指由小固体颗粒或小液体颗粒悬浮分散在气体介质中形成的气体分散体系。

在这种分散体系中,分散相是固体或液体的小颗粒,而分散质是气体。

就拿生活中常见的例子来说,天空中的云,燃料燃烧形成的烟,都是各种各样的气溶胶。

这种气溶胶的消除主要依靠大气降水的过程,经过小分子分散相的碰撞、凝聚和组合,然后以降水的形式沉降下来。

2、气溶胶的分类。

根据不同的分类标准,气溶胶可以分为许多类别。

具体分类方法如下:根据产生方式的不同,气溶胶可分为自然产生和人工产生。

其中,自然产生的气溶胶包括天气溶胶和生物溶胶。

常见的天气溶胶包括烟、云、雾等。

而常见的生物溶胶是指颗粒中含有生物大分子或微生物的溶胶。

人类活动产生的气溶胶包括工业气溶胶和食用气溶胶。

工业气雾剂包括农和洗涤剂,食用气雾剂包括搅拌奶油。

延伸阅读气溶胶是什么1.什么是气溶胶:稳定分散悬浮在气体中的微小液体或固体颗粒称为气溶胶。

之所以翻译成“胶”,是指粒子和介质是粘的,不可分的。

也许每个人都有过这样的经历:走在楼道里甚至路上,明明周围几十米内没有人,但还是能闻到烟味。

我们闻到的其实是烟草燃烧形成的颗粒。

颗粒越小,空气粘度越明显。

微米级的颗粒像空气中的芝麻一样分散在蜂蜜中,沉降速度较慢。

1微米颗粒在静态空气中的沉降时间可达1小时以上。

但是环境中总是有麻烦,所以这些颗粒几乎从不沉降,一直停留在空气中。

这就是为什么吸烟者早已消失,烟味依然久久不散。

什么是气溶胶传播:2.液滴核的大小在亚微米到微米的范围内,所以液滴核可以长时间悬浮在空气中,借助空气湍流飘得很远。

如果滴核中有冠状病毒,吸入体内,可能会导致感染。

除了打喷嚏、咳嗽、说话产生的气溶胶外,人体排泄也会产生气溶胶。

由于新冠肺炎病患者粪便中存在病毒核酸(rna),因此粪便中可能存在病毒。

病毒也可能通过这种气溶胶传播。

即使感染者只是正常轻轻呼吸,肺部长期在做大量雾化,雾化颗粒极小。

气溶胶的形成机理与应用

气溶胶的形成机理与应用

气溶胶的形成机理与应用气溶胶(aerosol)是一种固体或液体微小颗粒(一般直径小于10微米)在气态中的悬浮体系。

它们是空气污染、臭氧层破坏、气候变化等环境问题的重要源头,同时也是许多技术领域中重要的物质传输和反应媒介。

本文将介绍气溶胶的形成机理、分类及其在工业、医学等领域的应用。

一、气溶胶的形成机理气溶胶的形成是通过物质从气体相转化为固体或液体颗粒的过程。

气溶胶的形成机理十分复杂,其主要包括以下几个过程:1.生成:气体分子在物理或化学条件下经过反应,形成固体或液体颗粒。

2.生长:气态颗粒在气态流中吸附气体分子并凝结,从而增大粒径。

3.扩散:气态颗粒在气态流中的碰撞和扩散作用下向下趋近地面。

4.输运:包含微粒的气体在大气环流作用下向地面输送。

5.沉积:微粒在地面附近因重力作用而沉积下来。

二、气溶胶的分类气溶胶根据其粒径、化学成分、来源等不同特征,可以划分为不同的类型。

主要有以下几种类型:1.大气气溶胶:不同来源的大气颗粒包括天然气溶胶、人为制造的气溶胶如汽车排放、电厂排放等。

2.工业气溶胶:包括金属颗粒气溶胶、纳米颗粒气溶胶等。

3.医用气溶胶:医用气溶胶主要用于治疗呼吸系统疾病,如雾化吸入的药品等。

4.食品气溶胶:用于优质食品的生产,如面粉、蛋白粉等。

5.生物气溶胶:包括细菌、真菌等生物微粒体。

三、气溶胶在各领域的应用气溶胶在很多技术领域中都有着广泛的应用,包括:1.医疗领域:雾化吸入、药物输送、治疗呼吸系统疾病等。

2.生物技术和纳米技术:生物标记、分析环境中的细菌和微生物、过滤器等等。

3.制造业和环保领域:改进生产过程和减少排污;铝粉涂层的涂装等等4.大气污染研究:分析和监测大气中的污染物浓度等。

结语总之,气溶胶在现代工艺和科学研究中具有不可替代的作用。

随着我们对其形成机理和特性的理解的加深,对气溶胶的合理利用必将成为环保、能源和医学等多个领域中有益的重要分支。

气溶胶介绍

气溶胶介绍

气溶胶介绍
气溶胶是指在气态下悬浮的液态和固态微粒,大小通常在几纳米至数十微米之间。


们不是分子也不是原子,而是粒子集合体。

气溶胶是自然环境和人类活动中的重要组成部分,例如,自然雾、云、灰尘、花粉、烟雾等都是气溶胶的一种。

气溶胶的形成与演化是一种复杂的过程。

在空气中,气溶胶往往是由于自然和人类活
动产生的微粒在空气中悬浮形成的。

自然活动中,气溶胶的来源包括火山喷发、沙漠风暴、森林火灾等;人类活动中,气溶胶的源头包括工业污染、交通排放、采矿和农业活动等。

气溶胶的组成和性质取决于其来源和生成过程,包括组成、形状、大小、散射、吸收和化
学性质等。

气溶胶对健康和环境的影响是非常重要的。

首先是对人类健康的影响。

气溶胶中的微
粒可以直接进入人的呼吸系统,并对呼吸系统产生一系列的不良影响,包括气道炎症、过
敏反应、肺部感染、肺功能损害等。

此外,气溶胶还可以吸附有毒物质,如重金属、细菌
和病毒等,进一步加剧了对健康的影响。

其次,气溶胶对环境的影响也十分重要。

气溶胶可以直接影响大气光学性质,如透明度、反射率和散射率等,降低大气质量。

此外,被吸附在气溶胶表面的有机物和重金属等
也会污染土壤和水体,影响生态系统的稳定性和健康。

因此,了解气溶胶的组成、形态、来源和演化过程对于环境保护和健康维护至关重要,特别是在大气污染严重的城市和地区。

目前,政府和学术界开展了大量的气溶胶研究,以
提高人们对气溶胶的认识,制定有效的控制和处理措施,减少气溶胶对健康和环境的危
害。

气溶胶特点

气溶胶特点

气溶胶特点气溶胶特指一种由固体或液体微粒悬浮于气体中的系统。

气溶胶是一个复杂的多相系统,由两个或更多的相组成,包括固相或液相微粒和气体相。

气溶胶微粒的尺寸通常在几纳米到几十微米之间,能够通过悬浮在空气中的方式传播。

气溶胶具有以下几个特点:1.微粒尺寸分布广泛:气溶胶微粒的尺寸范围很广,从几纳米到几十微米不等。

这种广泛的尺寸分布使得气溶胶微粒在环境中的行为和性质都具有很大的差异。

2.表面效应显著:由于气溶胶微粒的尺寸非常小,表面积相对较大,因此微粒表面效应非常显著。

气溶胶微粒与周围气体之间的相互作用主要发生在微粒的表面上,表面效应对气溶胶的物理和化学性质具有重要影响。

3.悬浮稳定性:气溶胶微粒在气体中呈现悬浮状态,能够长时间地保持分散状态而不沉降。

这种悬浮稳定性使得气溶胶微粒能够在空气中传播和扩散,并且对人类健康和环境产生潜在的影响。

4.易于传播:气溶胶微粒由于尺寸小,能够通过气流传播和扩散。

当气溶胶微粒被释放到空气中时,它们会随着气流移动并扩散到周围环境中。

这种传播特性使得气溶胶微粒在空气污染、疾病传播等方面具有重要作用。

5.物理化学性质多样:气溶胶微粒的物理和化学性质取决于其组成成分。

气溶胶微粒可以是无机物、有机物或二者的混合物。

它们可以是固体、液体或混合相。

不同成分和相态的气溶胶微粒会表现出不同的物理和化学性质,如光学性质、电化学性质等。

6.来源复杂多样:气溶胶微粒的来源非常广泛,包括自然来源和人为活动释放的来源。

自然来源的气溶胶包括植物挥发物、海洋气溶胶、火山喷发产生的气溶胶等;而人为活动释放的气溶胶主要来自于燃煤、汽车尾气、工业排放、室内污染源等。

7.对环境和健康的影响:由于其微粒尺寸小、悬浮稳定性好以及易于传播等特点,气溶胶微粒对环境和人类健康产生重要影响。

例如,大气中的气溶胶微粒会影响空气质量,导致雾霾和光学效应;室内的气溶胶微粒能够导致室内空气污染,对人体呼吸系统产生不良影响。

气溶胶是一种复杂的多相系统,具有多样的物理和化学性质。

气溶胶是什么

气溶胶是什么

气溶胶是什么
气溶胶是以固体或液体为分散质和气体为分散介质所形成的溶胶,是指悬浮在气体介质中的固态或者液态颗粒所组成的气态分散系统。

大气中的固体和液体微粒作布朗运动,不因重力而沉降,可悬浮在大气中长达数月、数年之久。

气溶胶可以随着气流的运动而运动,如果周边的风力比较大,或者气流的运动比较快速的时候,这种情况气溶胶传播的距离就比较远。

静止的气流当中,一般可以在周边数十米内传播。

如果当气体的流动加快,比较活跃的时候,这种可以传播数百米以上的。

气溶胶本身对人体没有危害,但是如果携带某些致病菌或者其他病原体,会形成一种传播媒介,有一些病原体存在于气溶胶中,可以随着气溶胶的运动在空气当中进行传播,从而会使身体患病,危害人体。

气溶胶预防与控制

气溶胶预防与控制

气溶胶预防与控制一、引言气溶胶是指空气中悬浮的固体或者液体微粒,其直径通常在0.001到100微米之间。

气溶胶可以包括尘埃、烟雾、细菌、病毒等微生物,以及化学物质等。

这些微粒在空气中传播,可能对人体健康和环境造成潜在的威胁。

因此,进行气溶胶的预防与控制至关重要。

二、气溶胶预防1.室内通风良好的室内通风是预防气溶胶传播的重要措施之一。

通过增加新鲜空气的流动,可以有效稀释空气中的气溶胶浓度。

建议使用机械通风设备,如空调系统、排风扇等,以保持室内空气的流动。

2.个人防护措施个人防护措施是预防气溶胶传播的另一重要手段。

佩戴口罩可以有效阻挠气溶胶微粒的吸入和排出。

选择合适的口罩类型,如N95口罩,可以提供更高的过滤效果。

此外,勤洗手、保持良好的个人卫生也是预防气溶胶传播的重要措施。

3.消毒和清洁定期对室内环境进行消毒和清洁工作,可以有效减少气溶胶的传播。

使用含酒精成份的消毒剂,对常接触的物体表面进行清洁,如门把手、桌面等。

同时,定期清洗室内空调过滤器,以保持其良好的过滤效果。

三、气溶胶控制1.空气净化器使用空气净化器可以有效去除空气中的气溶胶微粒。

选择具有高效过滤系统的空气净化器,如HEPA过滤器,可以有效去除细小的气溶胶微粒。

同时,定期更换和清洁过滤器,以保持其良好的过滤效果。

2.空气湿化保持室内适度的湿度可以减少气溶胶的传播。

通过使用加湿器或者保持适度的通风,可以有效控制空气中的气溶胶浓度。

建议保持室内湿度在40%至60%之间。

3.隔离措施对于已经感染气溶胶传播疾病的患者,应采取隔离措施,以防止疾病的传播。

将患者隔离在单独的房间,确保室内空气流动良好,并定期消毒和清洁房间。

四、数据分析根据相关研究数据显示,采取适当的气溶胶预防与控制措施可以显著降低气溶胶传播疾病的风险。

例如,在一项针对流感传播的研究中,通过增加室内通风和佩戴口罩,成功降低了气溶胶传播的概率。

此外,一项关于空气净化器的研究表明,使用具有高效过滤系统的空气净化器可以去除空气中的细菌和病毒,从而减少气溶胶传播疾病的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气溶胶本节内容要点:气溶胶的定义、分类、源、汇、粒径分布、气溶胶粒子的化学组成、气溶胶的危害、气溶胶污染源的推断等1)气溶胶的定义和分类气溶胶(aerosol)是指液体或固体微粒均匀地分散在气体中形成的相对稳定的悬浮体系。

微粒的动力学直径为0.002~100μm。

由于粒子比气态分子大而比粗尘颗粒小,因而它们不象气态分子那样服从气体分子运动规律,但也不会受地心引力作用而沉降,具有胶体的性质,故称为气溶胶。

实际上大气中颗粒物质的直径一般为0.001~100μm;大于10μm的颗粒能够依其自身重力作用降落到地面,称为降尘;小于10μm的颗粒,在大气中可较长时间飘游,称为飘尘。

按照颗粒物成因不同,可将气溶胶分为分散性气溶胶和凝聚性气溶胶两类。

分散性气溶胶是固态或液态物质经粉碎、喷射,形成微小粒子,分散在大气中形成的气溶胶。

凝聚性气溶胶则是由气体或蒸汽(其中包括固态物升华而成的蒸汽)遇冷凝聚成液态或固态微粒,而形成的气溶胶。

例如二氧化硫转化成硫酸或硫酸盐气溶胶的过程如下:●二氧化硫气体的氧化过程● 气相中的成核过程(液相硫酸雾核)在过饱和的H2SO4蒸气中,由于分子热运动碰撞而使分子(n个)互相合并成核,形成液相的硫酸雾核。

它的粒径大约是几个埃。

硫酸雾核的生成速度,决定于硫酸的蒸气压和相对湿度的大小。

●粒子成长过程硫酸粒子通过布朗运动逐渐凝集长大。

如果与其他污染气体(如氨、有机蒸气、农药等)碰撞,或被吸附在空中固体颗粒物的表面,与颗粒物中的碱性物质发生化学变化,生成硫酸盐气溶胶。

根据颗粒物的物理状态不同,可将气溶胶分为以下三类:(1)固态气溶胶--烟和尘;(2)液态气溶胶--雾;(3)固液混合态气溶胶--烟雾(smog)。

烟雾微粒的粒径一般小于1μm (见表2-13)。

气溶胶按粒径大小又可分为:(1)总悬浮颗粒物(total suspended particulates或TSP),用标准大容量颗粒采样器(流量在1.1~1.7m3/min)在滤膜上所收集到的颗粒物的总质量,通常称为总悬浮颗粒物,它是分散在大气中各种粒子的总称。

(2)飘尘,可在大气中长期飘浮的悬浮物称为飘尘,其粒径小于10μm的微粒,飘尘是最引人注目的研究对象之一。

(3)降尘,降尘是指粒径大于10μm,由于自身的重力作用会很快沉降下来的微粒。

单位面积的降尘量可作为评价大气污染程度的指标之一。

(4)可吸入粒子(inhalableparticles或IP),易于通过呼吸过程而进入呼吸道的粒子。

国际标准化组织(ISO)建议将IP定为粒径DP≤10μm的粒子,这里的DP是空气动力学直径,其定义为与所研究粒子有相同终端降落速率的,密度为1的球体直径。

它反映出粒子的大小与沉降速率的关系。

所以可以直接表达出粒子的性质和行为,如粒子在空中的停留时间,不同大小粒子在呼吸道中沉积的不同部位等。

气溶胶的物理特征和成因可参见表2-13。

表2-13气溶胶形态及其主要形成特征注:引自唐孝炎《大气环境化学》,1991。

2)气溶胶的源与汇气溶胶粒子的来源有天然源和人为源两种。

气溶胶粒子可分为一次气溶胶粒子和二次气溶胶粒子。

一次气溶胶是由污染源释放到大气中直接造成污染的颗粒物,如土壤粒子、海盐粒子、燃烧烟尘等,大部分粒径在2μm以上。

二次气溶胶粒子是由大气中某些污染气体组分(如二氧化硫、氮氧化物、碳氢化合物)之间,或它们与大气正常组分(如氧气)之间通过光化学氧化或其他化学反应转化成的颗粒物,如二氧化硫转化成硫酸盐。

二次颗粒物粒径一般在0.01~1 μm范围。

表2-14气溶胶全球排放量及来源分配(Dp<20μm)气溶胶的排放量很大(见表2-14)。

天然排放量是人为排放量的两倍多。

随着工业的不断发展,人类的各种活动越来越占主导地位,以致在气溶胶粒子的来源中,人为源所占比例逐年增加。

另一方面,由天然源和人为源排出的H2、NH3、SO2、NOx、HC等气体污染物转化成二次气溶胶粒子每年达5.2~14.35×108t,约占全球每年排放气溶胶总量的54%~71%。

其中细颗粒的80%~90%都是二次气溶胶粒子,对大气质量的影响甚大。

3)气溶胶的粒径分布所谓气溶胶粒径分布是指所含颗粒物的浓度按粒子大小的分布情况。

如前所述,由于颗粒物形状的不规则性,粒径的表示有空气动力学直径或斯托克斯(stokes)直径。

后者系指一颗粒与另一球形颗粒具有相同平均密度及沉降速度的直径。

颗粒物的浓度通常采用单位体积气溶胶内粒子的数目(数浓度N)、粒子的总表面积(表面积浓度S)或粒子的总体积(V)或总质量(M)来表示。

图2-18是某城市大气颗粒物的数浓度、表面积浓度和体积浓度分布曲线。

由图可见,在污染的城市大气中多数颗粒的粒径约为0.01μm;表面积主要决定于0.2μm的颗粒;体积或质量浓度分布呈双峰型,其中一个峰在0.3μm左右,另一个峰在10μm附近,也就是说,大气中0.3μm和10μm 的颗粒物居多数。

显然这三种表示的结果是不同的。

图2-18 气溶胶的粒径分布近来,对气溶胶的粒径分布与其来源和形成过程的关系方面开展了不少研究。

Whitby概括提出了气溶胶粒子的三模态模型并解释气溶胶的来源和归宿。

按照这个模型,气溶胶粒子可以表示为三种模结构:粒径小于0.05μm的粒子称为爱根(aitken)核模,0.05μm≤ Dp≤2μm的粒子称为积聚模(accumulation mode),粒径大于2μm的粒子称为粗粒子模(coarseparticle mode),见图2-19。

图中还表示出三种大气气溶胶的表面积按粒径的分布及各个模态粒子的主要来源和去除机制。

图2-19气溶胶的粒径分布及来源和汇(引自Whitby and Cantrel l,1976)由图2-19可见,爱根核模范围(0.005~0.05μm)的粒子是由高温过程或化学反应产生的蒸汽凝结而成的;积聚模范围(0.05~2μm)的粒子是由蒸汽凝结或核模中的粒子凝聚长大而形成的,两者合称为细粒子(0.005~2μm)。

二次颗粒物多在细粒子范围。

粗粒子直径大于2μm,是由液滴蒸发、机械粉碎等过程形成的。

低层大气中细粒子随高度变化不大,粗粒子则受地区局部排放源的影响较明显。

应当指出,气溶胶粒径分布,除了以上所述的三模态方法外,还有数密度、表面积密度及体积密度分布函数和累积分布表示法。

气溶胶粒子的成核是通过物理和化学过程形成的。

气体经过化学反应,向粒子转化的过程从动力学角度上可以分为以下四个阶段:(1)均相成核或非均相成核,形成细粒子分散在空气中。

(2)在细粒子表面,经过多相气体反应,使粒子长大。

(3)由布朗凝聚和湍流凝聚,粒子继续长大。

(4)通过干沉降(重力沉降或与地面碰撞后沉降)和湿沉降(雨除和冲刷)清除。

4)气溶胶粒子的化学组成气溶胶粒子的化学组成十分复杂,已发现含70多种元素或化合物。

气溶胶的组成与其来源、粒径大小有关;此外,还和地点和季节等有关。

例如,来自地表土及由污染源直接排入大气中的粉尘往往含有大量的Fe、Al、Si、Na、Mg、Cl等元素;来自二次污染物的气溶胶粒子则含有硫酸盐、铵盐和有机物等。

又如,硫酸盐气溶胶粒子多居于积聚模,而地壳组成元素(如Si、Ca、Al、Fe等)主要存在于粗模中。

气溶胶的化学组成按重要性顺序排列有硫酸盐、苯溶有机物、硝酸盐、铁、锰等少量其他金属元素等。

对大陆性气溶胶,与人类活动密切相关的化学成分可归纳为三类:离子成分(硫酸及硫酸盐、硝酸及硝酸盐)、痕量元素成分和有机物成分。

●气溶胶粒子中的离子成分(1)硫酸及硫酸盐气溶胶粒子由于在煤、石油等矿物燃料的燃烧过程中排放大量的SO2,其中一部分可通过多种途径氧化成硫酸或硫酸盐,以致造成气溶胶粒子中也含有硫酸或硫酸盐。

陆地气溶胶粒子中SO42-的平均含量为15%~25%,而海洋气溶胶粒子中SO42-量可达30%~60%。

大多数陆地性气溶胶粒子具有的共同特点是,95%的SO42-和96.5%的NH4+都集中在积聚模中,而且SO42-和NH4+的粒径分布也没有明显的差别。

硫酸盐气溶胶粒子大部分集中在积聚模中,它的粒径小,在大气中飘浮,对太阳光能产生散射和吸收作用,使大气能见度降低。

研究结果表明,只有粒径在0.1~1.0μm范围内才能对光线产生最大的散射。

当硫酸盐占颗粒物质量的17%时,它引起的光散射占整个气溶胶造成光散射作用的32%。

此外硫酸盐也是损害人体健康、造成酸雨的关键成分。

(2)硝酸及硝酸盐气溶胶粒子大气中的NO和NO2被氧化形成NO2和N2O5等,进而和水蒸气形成HNO2和HNO3,由于它们比硫酸容易挥发,因而很难形成凝聚状的硝酸(迅速挥发成分子态)。

因而一般经过下面反应形成低挥发性的硝酸盐:NH3+HNO3→NH4NO3然后再发生成核和凝结生长作用而形成颗粒物。

氮氧化物在空气中也可被水滴吸收,并被水中的O2或O3氧化成NO3-,如果有NH4+存在,则可促进氮氧化物的溶解,增加硝酸盐颗粒物的形成速度。

几乎所有地区SO42-都在细粒子中占优势。

另外,硫酸盐气溶胶和硝酸盐气溶胶的形成对气溶胶的粒子分布有影响。

●气溶胶粒子中的有机物气溶胶粒子中的有机物(particulates organic martter,POM),其粒径一般在0~10μm之间,其中大部分是2 μm以下的细粒子。

气溶胶粒子中有机物的种类很多,其中烃类--烷烃、烯烃、芳香烃和多环芳烃等是主要成分,此外还含有亚硝胺、氮杂环化合物、环酮、醌类、酚类和酸类等。

其浓度也相差很大,从ng/m3到mg/m3的量级,且因地而异。

有机物的一次颗粒物主要来自煤和石油的燃烧过程。

煤和石油在不完全燃烧时,部分碳氢化合物发生高温分解,产物包括C2H2和1,3-C4H6;在400~500℃时进行高温合成,形成多环芳烃化合物,如芘、蒽、菲、苯并(a)芘、苯并蒽等;同时还排出一些低级烃、醛等有机物。

大气中气体有机物通过化学转化形成二次颗粒物的速度较慢,一般小于2%/h,二次产物都是含氧有机物。

● 气溶胶粒子中的微量元素存在于气溶胶粒子中的元素达70余种,其中Cl、Br 和I 主要以气体形式存在于大气中,它们在气溶胶粒子中分别占总量的2%、3.5%和17.0%。

Cl-主要分布在粗模范围,地壳元素如Si、Fe、Al、Sc、Na、Ca、Mg和Ti一般以氧化物的形式存在于粗模中;Zn、Cd、Ni、Cu、Pb和S等元素则大部分存在于细粒子中。

气溶胶中微量元素虽有天然和人为之别,但主要来自人为活动,它们都属于一次气溶胶粒子。

不同类型的污染源所排放的主要元素也不同,如土壤中主要有Si、Al和Fe,汽车排放的尾气中含Pb、Br和Ba等,钢铁工业主要含Fe、Mn、Cu等,燃烧油料会排放Ni、V、Pb和Na等,垃圾焚烧炉排放Zn、Sb和Cd等。

相关文档
最新文档