华师大版--图形的相似专题复习卷

合集下载

华师大版--图形的相似基础复习卷

华师大版--图形的相似基础复习卷

图形的相似专题复习卷(基础)◆考点聚焦1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,•并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,•会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.◆备考兵法1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,•要注意基本图形的应用,如“A型”“X型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题,•关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置,•用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.◆识记巩固1.相似形:形状相同,大小不一定相等的图形称为______.2.相似多边形的特征:对应边______,对应角______.3.成比例线段:如果四条线段a,b,c,d中,•某两条线段的长度的比与另两条线段的长度的比相等,那么这四条线段叫做成比例线段,简称比例线段.如a:b=c:d或a:d=b:c,则a,b,c,d叫___________;若a,b,b,c成比例,即a:b=b:c,•则称b•是a•和c•的_______.4.相似三角形:对应角相等,对应边成比例的三角形叫做相似三角形.•对应边之比叫做________.当相似比为1时,两个三角形就称为_______.5.相似三角形的识别:(1)两组对应角分别__________的两个三角形相似;(2)两组对应边成比例,且_______相等的两个三角形相似;(3)三组对应边________的两个三角形相似;(4)平行于三角形一边的直线和其他两边(或其延长线)相交,所得的三角形与原三角形 .6.相似三角形的性质:(1)相似三角形对应边成_________,对应角_______.(2)相似三角形对应线段(对应角,对应中线,对应角平分线,•外接圆半径和内切圆半径)之比和周长之比都等于_______;(3)相似三角形的面积比等于_______.7.黄金分割:若线段AB上一点P分线段成AP与PB两条线段,且A P P BA B A P(可求出比值为0.618……),这种分割叫黄金分割.P点叫线段AB的黄金分割点,一条线段有_____个黄金分割点.8.位似:对应顶点的连线_________的相似叫位似.•作位似图形的方法是先确定位似中心和每个顶点之间的直线,在直线的另一侧取原多边形的对应顶点,连结各点即得放大或缩小的位似图形(注意“放大”和“放大到”的区别).9.相似三角形中常见的基本图形:条件:DE∥BC ∠1=∠B ∠1=∠B条件:AB∥DE ∠A=∠D CD是斜边AB上的高基础练习题一.相似的图形1、 相同, 不一定相同的图形叫相似图形。

华师大版九年级上册数学第23章 图形的相似含答案(完整版)

华师大版九年级上册数学第23章 图形的相似含答案(完整版)

华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A. B. C. D.2、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.83、一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为()A.24cmB.21cmC.13cmD.9cm4、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =5、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)6、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =7、如图,赵师傅透过平举的放大镜从正上方看水平桌面上的菱形图案的一角,那么∠A与放大镜中的∠C的大小关系是( )A.∠A=∠CB.∠A>∠CC.∠A<∠CD.无法比较8、AD 是△ABC 的中线,E 是 AD 上一点,AE= AD,BE 的延长线交 AC 于F,则的值为()A. B. C. D.9、点(3,-2)关于x轴的对称点是 ( )A.(-3,-2)B.(3,2)C.(-3,2)D.(3,-2)10、在平面直角坐标系xOy中,点A的坐标为(1,2),如果射线OA与x轴正半轴的夹角为α,那么sinα的值是()A. B.2 C. D.11、若,则的值是()A. B. C. D.12、点M(-3,4)离原点的距离是()A.3B.4C.5D.713、如图 ,D,E分别是△ABC的边AB,AC上的点,,则△AED与△ABC的面积之比等于()A.1:2B.1:3C.1:4D.4:914、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上15、如图,在矩形ABCD中,点E在AB上,点F在CD上,且BE=2AE,DF=2CF,G,H是对角线AC的三等分点。

华东师大版图形的相似单元测试题(中考原题)

华东师大版图形的相似单元测试题(中考原题)

1A B G C D EF L CA B A D A O A E A F A 第18题图 E C DA FB 图5 ECDA F B图17(第18)A BCE D (中考原题)图形的相似单元检测题(相似的图形~相似三角形的判定 考试时间120分钟 满分120分)班级 号数 姓名____ ____成绩一、选择题(每题3分,共计30分) 1.下列说法不一定正确的是( )A 、所有的等边三角形都相似B 、有一个角是1000的等腰三角形相似 C 、所有的正方形都相似 D 、所有的矩形都相似 2、列各组线段中,能成比例线段的是 ( )A 、 1㎝,3㎝,4㎝,6㎝B 、 30㎝,12㎝,㎝,㎝C 、 ㎝,㎝,㎝,㎝D 、 12㎝,16㎝,45㎝,60㎝3、2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( )4、ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )A .2B .3C .6D .545、2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5 C .1:4 D .1:26、2008江苏南京)小刚身高,测得他站立在阳关下的影子长为。

紧接着他把手臂竖直举起,测得影子长为,那么小刚举起手臂超出头顶,AP =PB =BC =CD , 则下列结论成立的是( )PABCDA ΔPAB ∽ΔPCA B 、PAB ∽ΔPDAC 、ABC ∽ ΔDBAD 、ABC ∽ΔDCA8、图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚,梯上点D 距墙m ,BD 长m ,则梯子的长为( ) A .m B .m C .m D .m9、2008年广东茂名市)如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.91 B.92 C.31 D.9410、008 台湾)如图G 是ABC 的重心,直线L 过A 点与BC 平行。

华师大版图形的相似单元测试题

华师大版图形的相似单元测试题

图形的相似单元测试题一、填空题1、已知x :y=2:3,则(x+y):y 的值为2、在比例尺为1∶50 0000的福建省地图上,量得省会福州到漳州的距离约为46 厘米,则福州到漳州实际距离约为 千米.3、两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个 三角形的周长是4、如图,两个五边形是相似形,则=a ,=c ,α= ,β= .5、如果一个2米高的旗杆的影长为3米,同它邻近的一个建筑物的影长是24米,那么这个建筑物的高度是________。

6、如图3,ABC △中,DE BC ∥,2AD =, 3AE =,4BD =,则AC = .7、如图,AD 、BE 是△ABC 的中线,且相交于点O ,已知 AD=7.5cm ,则DO=______cm ;8、顺次连结菱形四边中点所得的四边形是9、如图,已知△ABC 中,D 是AB 上一点,连结CP , 要使△ACD ∽△ABC ,只需添加条件 。

(写出一个适合的条件) 10、如图所示,已知△ABC 的周长为1,连接△ABC 三 边的中点构成第二个三角形,再连接第二个三角形三 边中点构成第三个三角形,依次类推,第2008个三角 形的周长为 。

二、选择题1、下列四组线段中,不能成比例的是( )A 、a =4,b =6,c =5,d =10B 、a =2,b =5,c =152,d =35C 、a =2,b =4,c =3,d =6D 、a =0.8,b =3,c =1,d =2.4 2、在下列说法中,正确的是( )A .两个钝角三角形一定相似B .两个等腰三角形一定相似C .两个直角三角形一定相似D .两个等边三角形一定相似3、,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,已知DE=6cm ,则BC 的长是( )╮23acβ15595011501257αb ╭╮╯650 1150A . 3cmB . 12cmC .18cmD .9cm 4、依据下列各组条件,不能判断△AB C 和△C B A '''相似的是( ) A 、∠A =70°,∠B =46°,∠'A =70°,∠C '=64°;B 、AB =10,BC =12,AC =15,B A ''=150,C B '' =180,C A ''=225; C 、BC =8,AC =7,∠A =87°,C B ''=16,C A ''=14,∠'A =87°.D 、在等腰△ABC 和△C B A '''中,顶角∠A =顶角∠'A 5、如图,电灯P 在横杆AB 的正上方,AB 在灯光 下的影子为CD ,AB ∥CD ,AB = 2m ,CD = 5m ,点P 到CD 的距离是3m ,则P 到AB 的距离是( A 、56m B 、67m C 、65m D 、103m 6、如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7、如图,在钝角三角形ABC 中,AB =6cm ,AC =12cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A点止.点D 运动的速度为1cm/秒,点E 运动的速度为 2cm/秒.如果两点同时运动,那么当以点A 、D 、E 为 顶点的三角形与△ABC 相似时,运动的时间是( ).A 、3秒或4.8秒B 、3秒C 、4.5秒D 、4.5秒或4.8秒 三、解答题1、如图中的△OBC 分别作下列运动,请画出相应的图形。

华师版24.1---24.2图形的相似相应练习题

华师版24.1---24.2图形的相似相应练习题

华师版24.1---24.2图形的相似相应练习题1.下列说法正确的是()A.所有的菱形都相似B.所有的矩形都相似C.所有的正方形都相似D.所有的梯形都相似2.下列生活现象中,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.荡秋千D.投影片的文字经投影变换到屏幕3.下列命题是假命题的是()A.所有的矩形都相似B.所有的圆都相似C.一个角是100°的两个等腰三角形相似D.所有的正方形都相似4.我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A.①③B.①②C.①④D.②③5.下列图形一定是相似图形的是()A.两个矩形B.两个正方形C.两个直角三角形D.两个等腰三角形6.下列图形中一定相似的是()A.所有矩形B.所有等腰三角形C.所有等边三角形D.所有菱形7.小明的文具袋里有一个塑料的小等腰直角三角形,教室的讲台上有一木制的大等腰直角三角板,那么这两个三角板()A.形状相同B.形状不同C.边长不成比例D.无法比较8.下列说法正确的是()A.凡是三角形的形状都相同B.两个矩形的形状一定相同C.两个等腰梯形的形状一定相同D.正五边形的形状都相同9.下列各种图形相似的是()A.(1),(2)B.(3),(4)C.(1),(3)D.(1),(4)10.如图,下列图中与它相似的是().A B C D11.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是()AAA B C D12.你认为下列属性选项中哪个才是相似图形的本质属性()A.大小不同B.大小相同C.形状相同D.形状不同13.用幻灯机将一个△ABC的边长放大为原来对应边长的4倍,下列说法中错误的是()A.放大后三角形面积是原来的16倍B.放大后周长是原来的4倍C.放大后∠A,∠B,∠C的大小分别是原来对应角大小的4倍D.放大后对应中线长是原来的4倍14.如图,下列形状的边框,不相似的是()15.放大镜中的三角形与原三角形的关系是( )A .形状不同,大小不同B .形状相同,大小相同C .形状相同,大小不同D .形状不同,大小相同16.下列各组图形中不一定相似的有( )①两个矩形;②两个正方形;③两个等腰三角形;④两个等边三角形;⑤两个直角三角形;⑥两个等腰直角三角形.A .2个B .3个C .4个D .5个17.下图是上海大众汽车的标志图案,图中与它相似的是( )A B C D18.已知0432≠==c b a ,则cb a +的值为( ) A 、54 B 、45 C 、 D.21 19、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b a20、已知c b a ,,是△ABC 的三条边,对应高分别为c b a h h h ,,,且6:5:4::=c b a ,那么c b a h h h ::等于( )A 、4:5:6B 、6:5:4C 、15:12:10D 、10:12:1521.下列说法正确的是( )A 、所有的矩形都是相似形B 、 有一个角等于1000的两个等腰三角形相似C 、对应角相等的两个多边形相似D 、对应边成比例的两个多边形相似22.在比例尺为1:16000000的江苏省地图上,某条道路的长为1.5cm .这条道路的实际长度用科学记数法表示为 ( )A .2.4×107kmB .0.24×108kmC .2.4×102kmD .0.24×103km23.如图,赵师傅透过平举的放大镜从正上方看到水平桌面上的菱形图案的一角,那么∠A 与放大镜中的∠C 的大小关系是( )A .∠A=∠CB .∠A >∠C C .∠A <∠CD .无法比较24.若线段a ,b ,c ,d 成比例,其中a=5㎝,b=7㎝,c=4㎝,则,d= .25.已知4x -5y=0,则(x +y )∶(x -y )的值为 .26.设x 3 =y 5 =z 7 ,则x+y y =__ _,y+3z 3y-2z =__ __. 27..若AB=1m ,CD=25cm ,则AB ∶CD= ;若线段AB=m, CD=n ,则AB ∶CD= .28.若MN ∶PQ=4∶7,则PQ ∶MN= , MN= PQ , PQ= MN 。

(华师大版)中考数学总复习(28)图形的相似(1)及答案(25页)

(华师大版)中考数学总复习(28)图形的相似(1)及答案(25页)

图形的变化——图形的相似1一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.52.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.CD•AB=AC•BD5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P46.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB 相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.47.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD 与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC 上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣69.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2二.填空题(共7小题)10 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=_________.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是_________.12.若,则=_________.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是_________.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为_________.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________.16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=_________.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC 上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.图形的变化——图形的相似参考答案与试题解析一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D. 5考点:比例的性质.专题:计算题.分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.解答:解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.点评:本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.2.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.专题:几何图形问题.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:考点:相似多边形的性质.专题:计算题.分析:根据相似多边形的面积的比等于相似比的平方解答.解答:解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.点评:本题考查了相似多边形的性质,熟记性质是解题的关键.4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D. CD•AB=AC•BD考点:相似三角形的判定;圆周角定理.专题:几何图形问题.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故B选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;D、∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误.故选:D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4考点:相似三角形的判定.专题:网格型.分析:由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解答:解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.6.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB 相似(不包括全等),则点C的个数是()A. 1 B.2 C.3 D. 4考点:相似三角形的判定;坐标与图形性质.分析:根据题意画出图形,根据相似三角形的判定定理即可得出结论.解答:解:如图①,∠OAB=∠BAC1,∠AOB=∠ABC1时,△AOB∽△ABC1.如图②,AO∥BC,BA⊥AC2,则∠ABC2=∠OAB,故△AOB∽△BAC2;如图③,AC3∥OB,∠ABC3=90°,则∠ABO=∠CAB,故△AOB∽△C3BA;如图④,∠AOB=∠BAC4=90°,∠ABO=∠ABC4,则△AOB∽△C4AB.故选D.点评:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.7.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD 与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个考点:相似三角形的判定;直角梯形.分析:由于∠PAD=∠PBC=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.解答:解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.点评:本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC 上,AD=AG,DG=6,则点F到BC的距离为()A. 1 B.2 C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.专题:几何图形问题.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2考点:相似三角形的判定与性质;三角形中位线定理.专题:计算题.分析:根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.解答:解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.点评:本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共7小题)10.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=2.考点:比例线段.分析:根据比例中项的定义可得b2=ac,从而易求b.解答:解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.点评:本题考查了比例线段,解题的关键是理解比例中项的含义.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是36.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比是相似比的平方,先求出相似比.再根据平行四边形的性质及相似三角形的性质得到BC:DM=6:1,即S△ABC:S△FDM=36:1,从而得到△ABC面积.解答:解:过M作BC的平行线交AB、AC于D、E,过M作AC的平行线交AB、BC于F、H,过M作AB的平行线交AC、BC于I、G,因为△1、△2、△3的面积比为1:4:9,所以他们对应边边长的比为1:2:3,又因为四边形BDMG与四边形CEMH为平行四边形,所以DM=BG,EM=CH,设DM为x,则ME=2x,GH=3x,所以BC=BG+GH+CH=DM+GH+ME=x+2x+3x=6x,所以BC:DM=6x:x=6:1,由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,所以S△ABC=36×S△FDM=36×1=36.故答案为:36.点评:本题考查了平行线的性质,平行四边形的性质及相似三角形的性质.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.12.若,则=.考点:比例的性质.分析:先用b表示出a,然后代入比例式进行计算即可得解.解答:解:∵=,∴a=,∴=.故答案为:.点评:本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是12.考点:相似三角形的性质.专题:计算题.分析:根据相似的性质得=,即=,然后利用比例的性质计算即可.解答:解:∵△ABC∽△DE F,∴=,即=,∴△DEF的周长=12.故答案为:12.点评:本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为y=2x.考点:相似三角形的性质;反比例函数图象上点的坐标特征.专题:数形结合.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解答:解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,∴=2k2,∴a4=4k2,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:△ABP∽△AED(答案不唯一).考点:相似三角形的判定;平行四边形的性质.专题:开放型.分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解答:解:∵BP∥DF,∴△ABP∽△AED.故答案为:△ABP∽△AED(答案不唯一).点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=.考点:相似三角形的判定与性质.分析:根据相似三角形的判定与性质,可得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCDE,∴,∴,故答案为:.点评:本题考查了相似三角形的判定与性质,平行于三角形一边截三角形另外两边所得的三角形与原三角形相似,相似三角形面积的比等于相似比的平方.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?考点:相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.专题:压轴题;动点型.分析:(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位点评:此题主要考查相似三角形的判定与性质,待定系数法求一次函数值,解直角三角形等知识点,有一定的拔高难度,属于难题.18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.考点:相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义.专题:综合题.分析:(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x ﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DPC,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.点评:本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x与y的等量关系是解决第(3)小题的关键.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.专题:几何综合题.分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP=AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;压轴题;动点型.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.考点:相似三角形的判定与性质;全等三角形的判定与性质.分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥FC,可证明△GBD∽△GCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.解答:(1)证明:∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵AB∥FC,∴△GBD∽△GCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴=,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.考点:相似三角形的判定与性质;平行四边形的性质.专题:几何综合题.分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND 与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.解答:解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.点评:此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC 上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE 和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.解答:(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.。

(华东师大版)数学初三上册 《图形的相似》全章复习与巩固--巩固练习(基础)

(华东师大版)数学初三上册 《图形的相似》全章复习与巩固--巩固练习(基础)

《图形的相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.如图,已知,那么下列结论正确的是( ).A.B. C.D.2. 在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( ).A.8,3 B.8,6 C.4,3 D.4,63.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( ).4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x 轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是().A.B. C.D.5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:66. 如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是( ).A.∠APB=∠EPC B.∠APE=90° C.P是BC的中点D.BP:BC=2:37. (2016•盐城)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个8.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是().A.∠E=2∠K B.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9. 在□ABCD中,在上,若,则___________.10. 如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11. (2016•衡阳)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。

华师大版九年级数学上册第24章 图形的相似同步训练(含答案)

华师大版九年级数学上册第24章 图形的相似同步训练(含答案)

第24章 图形的相似检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.下列四组图形中,不是相似图形的是( )2.已知四条线段是成比例线段,即=,下列说法错误的是( )a ,b ,c ,d A .ad =bcB .=C .=D .=3.在比例尺为的地图上,量得两地的距离是,则这两地的实际距离是( 1∶6 000 000 15 cm )A . B.C.D.0.9 km 9 km 90 km 900 km4.若,且,则的值是( )875cb a ==3a -2b +c =32a +4b -3c A.14B. 42C.7D.3145.如图,在△中,点分别是的中点,则下列结论:①;②△ABC D 、E AB 、AC BC =2DE ∽△;③其中正确的有( )ADE ABC AD AE=ABAC .A. 3个B.2个C.1个D.0个6.如图,//,//,分别交于点,则图中共有相似三角形()AB CD AE FD AE、FD BCG 、HAA.4对B.5对C. 6对D.7对7.已知△如图所示,则下列4个三角形中,与△相似的是()ABC ABC 8.如图,在△中,∠的垂直平分线交的延长Rt ABC ACB =90°,BC =3,AC =4,AB DE BC 线于点,则的长为()E CEA. B.3276C.D. 25629.如图,笑脸盖住的点的坐标可能为( ) A .B .C.D.(5,2) (-2,3) (-4,-6) (3,-4)10.如图,正五边形是由正五边形经过位似变换得到的,若,FGHMN ABCDE AB ︰FG =2︰3则下列结论正确的是( )A.B.C.D.2DE =3MN 3DE =2MN 3∠A =2∠F 2∠A =3∠F 11.(2013·山东东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4及,那么的值( )x x A.只有1个 B.可以有2个 C.可以有3个 D.有无数个x第9题图第8题图第10题图HB12.(2013·山东聊城中考)如图,是△的边上任一点,已知∠D ABC BC 42,,AB AD ===DAC ∠.若△的面积为,则△的面积B ABD a ACD 为()A.B. C. D. a 12a 13a 25a 二、填空题(每小题3分,共18分)13.已知,且,则_______.a ∶b =3∶2a +b =10b =14.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为_______,面积为________.15.如图,在△中,∥,,ABC DE BC AD =2,AE =3,BD =4则______.AC =16.若,则=__________;5.0===fe d c b af d b e c a +-+-232317.如图,阳光从教室的窗户射入室内,窗户框在地面上的影长,窗户下檐到AB DE = 1.8 m 地面的距离 ,,那么窗户的高为________.BC =1m EC = 1.2 m AB18.五边形∽五边形,,∠ABCDE A 'B 'C 'D 'E '∠A =120o ,∠B '=130°,∠C =105°D '=85°,则∠E =________.三、解答题(共78分)19.(8分)已知:如图,是上一点,∥,,分别交于点,D AC BE AC BE =AD AE BD 、BC F 、G ∠1=∠2,探索线段之间的关系,并说明理由.BF 、FG 、EF20.(8分)如图,梯形中,∥,点在上,ABCD AB CD F BC 连结并延长与的延长线交于点.DF AB G (1)求证:△∽△;CDF BGF (2)当点是的中点时,过点作∥交于点,若,求 F BC F EF CD AD E AB =6 cm ,EF =4 cm CD 的长.21.(8分)如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点.(1)以O 为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC 位似,且O 位似比为12;∶(2)连结(1)中的AA′,求四边形AA′C′C 的周长(结果保留根号).第20题图第23题图C22.(8分)已知:如图,在△中,∥,点在边上,与相交于ABC AB =AC ,DE BC F AC DF BE 点,且∠.G EDF =∠ABE 求证:(1)△∽△;(2)DEF BDE DG•DF =DB•EF.23.(12分)如图,在正方形中,分别是边上的点,ABCD E 、F AD 、CD 连结并延长交的延长线于点AE =ED ,DF =DC ,41EF BC G.(1)求证:;ABE DEF △∽△(2)若正方形的边长为4,求的长.BG24.(8分)已知:如图所示的一张矩形纸片, 将纸片折叠一次,使点与ABCD (AD >AB )A 重合,再展开,折痕交边于,交边于,分别连结和.C EF AD E BC F AF CE (1)求证:四边形是菱形.AFCE (2)若,△的面积为,求△的周长.AE =10 cm ABF 24 cm 2ABF (3)在线段上是否存在一点,使得?若存在,请说明点的位置,AC P 2AE =AC·AP 2P 并予以证明;若不存在,请说明理由.25.(12分)(2013·江苏扬州中考)如图,在中,,,点在△ABC 90∠ACB =︒AC BC =D 边上,连接,将线段绕点顺时针旋转至位置,连接.AB CD CD C 90︒CE AE (1)求证:;(2)若,求证:四边形为正方形.AB AE ⊥2BC AD AB =⋅ADCEB DCAE26.(14分)如图,在平行四边形中,为边延长线上的一点,且为的黄金分割点,ABCD E AD D AE 即,交于点,已知,求的长.AD =5‒12AEBE DC F AB =5+1CF参考答案1.D解析:根据相似图形的定义知,A 、B 、C 项都为相似图形,D 项中一个是等边三角形,一个是直角三角形,不是相似图形.2.C 解析:由比例的基本性质知A 、B 、D 项都正确,C 项不正确.3.D 解析:15×6 000 000=90 000 000(cm )=900(km ).4.D解析:设,则所x cb a ===875a =5x ,b =7x ,c =8x ,又因为3a -2b +c =3,以所以.15x ‒14x +8x =3,即x =13,2a +4b -3c =10x +28x ‒24x =14x =3145.A解析:因为点分别是的中点,所以是△的中位线.由中位线的D 、E AB 、AC DE ABC 性质可推出①②③全部正确.6.C 解析:△∽△∽△∽△.CEG CDH BFH BAG 7.C解析:由对照四个选项知,C 项AB =AC ,∠B =75°,知∠C =75°,∠A =30°,中的三角形与△相似.ABC 8. B解析:在△中,∠由勾股定理得Rt ABC ACB =90°,BC =3,AC =4,AB =5.因为所以.又因为所以DE 垂直平分AB ,BD =52∠ACB =∠EDB =90°,∠B =∠B ,△∽△所以,所以所以ABC EBD ,BE AB =BD BC BE =BD•AB BC =256,CE =BE ‒BC =256‒3=76.9.D解析:A 项的点在第一象限;B 项的点在第二象限;C 项的点在第三象限;D 项的点在第四象限.笑脸在第四象限,所以选D.10.B解析:由正五边形是由正五边形经过位似变换得到的,知FGHMN ABCDE ,所以选项B 正确. DE ∶MN =2∶3∠A =∠F . 11.B解析:当一个直角三角形的两直角边长为6,8,且另一个与它相似的三角形的两直角边长为3,4时,的值为5;当一个直角三角形的一直角边长为6,斜边长为8,另x 一直角边长为3,斜边长为4时,的x .故的值可以为5.x12.C 解析:因为DAC B,ACD BCA,∠=∠∠=∠所以△∽△ABCDAC,所以即24△△ABC DAC S AB ,S DA ⎛⎫== ⎪⎝⎭4△△ABC DACS S ,=所以所以.3△△ABD DACS S,=13△DAC S a =13.4 解析:因为,所以设,a ∶b =3∶2a =3x ,则b =2x ,所以a +b =3x +2x =5x =10所以所以x =2,b =2x =4.14.90,270解析:设另一个三角形的其他两边为由题意得,所以x ,y ,x 5=y 12=3913又因为所以三角形是直角三角形,所以周长为x =15,y =36.152+362=392, 15+36+39=90,面积为12×15×36=270.15.9解析:在△中,因为∥,所以∠∠∠ ∠,所以△ABC DE BC ADE =ABC ,AED =ACB ∽△,所以,所以,所以ADE ABC AD AB=AE AC 22+4=3AC AC =9.16. 解析:由,得,,,所以0.55.0===f e d c b a a =0.5b c =0.5d e =0.5f fd b ec a +-+-2323.5.0235.05.1=+-+-=fd b fd b 17.解析:∵ ∥,∴ △∽△,∴ ,即,且1.5 m BE AD BCE ACD CB AC =CE CD BC AB +BC =EC DE +EC ,,,∴ BC =1m EC = 1.2 m DE = 1.8 m AB =1.5 m.18.解析:因为五边形∽五边形100°ABCDE A 'B 'C 'D 'E ',所以∠B =∠B '=130°,∠D = ∠D '=85°.又因为五边形的内角和为所以.540°,∠E =540°‒ ∠A ‒∠B ‒∠C ‒∠D =100°19.解:. 理由:∵ ∥∴ ∠∠.又∴ .BF 2=FG•EF BE AC ,1=E ∠1=∠2,∠2=∠E 又∵ ∴ △∽△,∴即.∠GFB =∠BFE ,BFG EFB BF EF =FG BF ,BF 2=FG•EF20.(1)证明:∵ 在梯形中,∥,∴ ABCD AB CD ∠CDF =∠FGB ,∠DCF =∠GBF ,∴ △∽△.CDF BGF (2)解: 由(1)知,△∽△,又是的中点,∴ CDF BGF F BC BF =FC.∴ △≌△ ∴ CDF BGF.DF =FG ,CD =BG.又∵ ∥∥,∴ ∥,得. EF CD ,AB CD EF AG 2EF =AG =AB +BG ∴ ∴ .BG =2EF ‒AB =2×4‒6=2,CD =BG =2 cm 21.解:(1)如图.(2)四边形的周长=4+6.AA 'C 'C 222.证明:(1)∵,∴ ∠.AB =AC ABC =∠ACB ∵∥,∴ ,. DE BC ∠ABC +∠BDE =180°∠ACB +∠CED =180°∴ .∠BDE =∠CED ∵ ,∴ △∽△. ∠EDF =∠ABE DEF BDE (2)由△∽△,得,∴ . DEF BDE EFDE DE DB =EF DB DE ⋅=2由△∽△,得.DEF BDE ∠BED =∠DFE ∵∠∠,∴ △∽△.∴ . ∴ . GDE =EDF GDE EDF DFDEDE DG =DF DG DE ⋅=2 ∴ .EF DB DF DG ⋅=⋅23.(1)证明:在正方形中,,.ABCD ︒=∠=∠90D A AB =AD =CD ∵ ∴ , AE =ED ,DF =DC ,41AE =ED =AB , DF =AB 2141∴,∴.DFAE DE AB =ABE DEF △∽△(2)解:∵ ∴ ,AB =4,AE =2,522422=+=BE ∴ ,,∴ .DEF ABE ∠=∠︒=∠+∠=∠+∠90DEF AEB ABE AEB ︒=∠90BEG 由∥,得,∴ △∽△,AD BG EBG AEB ∠=∠ABE EGB∴,∴.BG BE BE AE =102==AE BE BG 24.(1)证明:由题意可知OA =OC ,EF ⊥AO.∵ ∥∴ ∠∠,∠=∠ ∴ △≌△AD BC ,AEO =CFO EAO FCO.AOE COF.∵ ,又∥∴ 四边形是平行四边形. AE =CF AE CF ,AECF ∵,∴ 四边形是菱形.AC ⊥EF AEFC (2)解:∵ 四边形是菱形,∴.AECF AF =AE =10设,∵ △的面积为24,AB =a ,BF =b ABF a +b =100,ab =48.22,∴ (a +b )=1962a +b=14或a +b =-14(不合题意,舍去).∴ △的周长为.ABF a +b +10=24(3)解:存在,过点作的垂线,交于点,点就是符合条件的点.E AD AC P P 证明如下:∵ ∠∠90°,∠∠AEP =AOE =EAO =EAP ,∴ △∽△,∴ ,∴ .AOE AEP AEAO AP AE =AE =AO·AP 2∵ 四边形是菱形,∴ AECF AO =AC.21∴ ∴AE =AC·AP. 221 2AE =AC·AP .225.证明:(1)∵ ,∴ .9090BCA ,DCE ∠=︒∠=︒BCD ACE ∠=∠在与中,△BCD △ACE ∵ ,BCD ACE,BC AC,DC EC ∠=∠==∴ ,∴ .△≌△BCD ACE B CAE ∠=∠又,∴ ,45B BAC ∠=∠=︒45CAE ∠=︒∴ ,∴ .454590BAE BAC CAE ∠=∠+∠=︒+︒=︒AB AE ⊥(2)∵ ,∴ ,2BC AC,BC AD AB ==∙AB AC AC AD =又,∴ ,∴ .45B DAC ∠=∠=︒△≌△ABC ACD 90ADC ACB ∠=∠=︒又,∴ 四边形是矩形.9090DAE ,DCE ∠=︒∠=︒ADCE 又,∴ 四边形是正方形.DC CE =ADCE 26.解:∵ 四边形为平行四边形,∴ ∠∠,∠∠,ABCD CBF =AEB BCF =BAECF AB =BCAECFAB=ADAECF5+1=5‒12 CF=2∴△∽△,∴,即,∴,∴.BCF EAB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似专题复习卷(基础版)
一.相似的图形
1、 相同, 不一定相同的图形叫相似图形。

2、下列各种图形相似的是( )
A 、(1)、(3)
B 、(3)、(4)
C 、(1)、(2)
D 、(1)、(4) 3、下列说法正确的是( )
A 、所有的等腰梯形都相似
B 、所有的平行四边形都相似
C 、有一个角是300的等腰三角形相似
D 、所有的等边三角形都相似 4、⑴用眼睛看月亮和用望远镜看月亮,看到的图象是相似的图形; ⑵用彩笔在黑板上写上三个大字1、2、3,它们是相似图形; ⑶用粉笔在黑板上写上“天”和用毛笔在纸上写上“天”,这两个字是相似图形;
以上说法你认为哪些是正确的,哪些是错误的?
9、把下列各题图中左边的图形,加以放大1倍后画出与它们相似的图形
.
(1)
(2)
二.相似图形的性质
(1)成比例线段。

1.若ab=cd ,则有a ∶d= ;若m ∶x=n ∶y, 则x ∶y= .
2. 若a, x, b, y 是比例线段,则比例式为 ;若a=1,x=-2, b=-2.5, 则y= . 3.判断下列线段是否成比例,若成,请写出比例式.
①a=3m, b=5m, c=4.5cm, d=7.5cm ②a=7cm,b=4cm, c=d=27cm ③a=1.1cm, b=2.2cm, c=3.3cm, d=5.5cm 4.若x ∶(x+1)=7∶9,则x= ;若
b
b a +=38,则b a = .;若5a=3b ,则b a
= ,b
a b
a +-3= 。

5.已知A, B 两地实距5Km ,图距2cm ,则比例尺是 ;若在此地图册上量得
A,C 两地间距离是16cm ,则A,C 两地间实际距离是 . 6.已知b a =43,c b =5
3,则a ∶b ∶c 等于( ) A. 3∶4∶5 B.4∶3∶5 C.9∶12∶20 D. 9∶15∶20
7. 如图,两个五边形是相似形,则=a ,=c ,α= ,β= .
(1)(2)(3)(4)╮2
3a c β1550 950 1150 12
5
7αb ╭╮
╯650 1150
第7题
8. 已知a b a -=32,求b
a b
a +-34的值.
9. 已知a,b,c 为△ABC 的三边长,且△ABC 的周长是60cm,
3a =4b =5
c
, 求a,b,c 的长.
10.已知三条长分别为3cm ,6cm ,9cm 的线段,请你再添一条线段,使这四条线段成比例,求所添线段的长度.
11.如图,在一块长和宽分别为a 和b 的长方形黑板的四周镶上宽为x 的木条,得到一个新的长方形.请你判断原来的长方形与新的长方形是否相似?(说明理由)
三.相似三角形
(1)相似三角形
1. 已知△ABC ∽△DEF,AB=21cm,DE=28cm,则△ABC 和△DEF 的相似比为 2. 若两个三角形的形似比为1,则这两个三角形
3. △ABC 的三边之比为3:5:6,与其相似的△DEF 的最长边是24cm,那么它的最短边长是 ,周长
是 。

4.已知△ABC ∽△DEF 且AB=3,AC=4,DE=2,求(1)△ABC 与△DEF 的相似比k 。

(2)AF 的长.
(2)相似三角形的判定
1.下列图形不一定相似的是( )
A 两个等边三角形
B 各有一个角是110°的两个等腰三角形
C 两个等腰直角三角形
D 各有一个角是45°的两个等腰三角形 2、如图①:AD ⊥BC ,∠BAC=90°,那么△ABC ∽ ∽
3、如图②,BE 、CD 相交于点O ,CB 、ED 的延长线相交于点A ,且∠C=∠E ,图中相似三角形有 对,它们是
4、如图③,AC ⊥BC ,∠ADC=90°,∠1=∠B ,若AC=5,AB=6,则AD= 。

5、如图④,∠ABD=∠C ,AB=5,AD=3.5,则AC=( ) A
750 B 50
7
C 203
D 320
x x x
x D C B A ① B D O E C A ② B
A D C ③
B A D
C ④
6.如图,若∠ADE= 或∠C= 时,△ADE ∽△ABC;若=AB
AD 时,
△ADE ∽△ABC,理由是 . 7.下列条件中,判断△ABC 与△A ´B ´C ´是否相似?并说明理由.
⑴∠C=∠C ´=90°,∠B=∠B ´=50°.( )理由 . ⑵AB=AC,A ´B ´=A ´C ´,∠B=∠B ´. ( )理由 . ⑶∠B=∠B ´,'
'''C
B B
C B
A A
B =. ( )理由 .
⑷∠A=∠A ´,'
'''C
B B
C B
A A
B =. ( )理由 . 8.如图,要使△AEF∽△ACB,已具备的条件是 ,还需补充的条件是
或 或 .
9.如图,B 、C 在△ADE 的边AD 、AE 上,且AC=6,AB=5,EC=4,DB=7,则BC:DE= .
10、如图①,在△ABC 中,DE ∥BC,且S △ABC :S 四边形BCED =1:2,BC=62,则DE 的长为 .
第6 题 第8题 第9题 第10题
11、△ABC 和△A ′B ′C ′中,AB=8cm ,BC=6cm ,CA=5cm ,A ′B ′=6cm ,B ′C ′=4.5cm ,C ′A ′=3.75cm ,则△ABC 和△A ′B ′C ′相似吗? ,理由是 .
12、如果两个相似三角形的相似比是1:2,那么它们的周长比是( ),高之比是( ),面积比是( ) A 、 1:2
B 、2:4
C 、1:4
D 、2:1
13、如图:已知△ABC 与△ADE 的边BC 、AD 相交于点O ,且∠1=∠2=∠3。

求证:(1)△ABO ∽△CDO ;(2)△ABC ∽△ADE
14.如图,AD 、BC 交于点O,BA 、DC 的延长线交于点P, PA ·PB=PC ·PD. 试说明:①△PBC ∽△PDA;②△AOB ∽△COD.
15.如图,D 、E 分别为AB 、AC 边上两点,且AD=5,BD=3,AE=4,CE=6. 试说明:①△ADE ∽△ACB
16.已知△ABC ∽△A ′B ′C ′,对应高AD 和A ′D ′的长分别为3cm 和4cm ,S △ABC +S △A ′B ′C ′=75cm 2

求S △ABC 和S △A ′B ′C ′
E D C B A 1
2
3
O
B D C
E
A D
C
B
A P O
D B
A
E C
F
E B A
A B C D E
A B C D
G
17、如图,在△ABC中,AB=8c m,AC=16c m,点P从点A开始沿AB边向
B点以2c m/s的速度移动,点Q从点B开始沿BC边向点C以4c m/s的
速度移动,如果P、Q分别从A、B同时出发,经几秒钟△PBQ与
△ABC相似?
(3)中位线
1、DE、EF、FD是△ABC的三条中位线,若AB=2cm,BC=4cm,CA=6cm,则DE= cm,EF= cm,FD= cm。

2.三角形周长为64,则它的三条中位线组成的三角形周长是cm。

3.已知图中AC∥EF∥GH.AB、CD交于O,AO=OF=FH =AC=2.5cm,则HG= .
4、如图,在梯形ABCD中,AD∥BC,MN是它的中位线。

(1)若AD=3,BC=5,则MN= ______;
(2)若AD=a,MN=7,则BC= ______;
(3)若BC=12,MN=b,则AD= _______;第4题
5.梯形中位线长是24cm,上、下底之比是1:3,那么梯形上下底之差为。

6、已知梯形的面积是12cm2,底边上的高线长是4cm,则该梯形中位线长是_____cm.
7. 已知三角形三边之比为3:4:5,且周长为60cm,连结三边中点,求所得三角形各边长。

8.求证:顺次连结矩形四边中点所得的四边形是菱形。

9.如图,在△ABC中,AB=AC,D、E、F分别是AB、BC、CA的中点.求证:四边形ADEF是菱形。

四、画相似图形
将△ABC作下列变化,请画出相应的图形,并指出三个顶点的坐标
所发生的变化。

(1)向上平移4个单位;
(2)关于y轴对称(画图后写出每一个对应点的坐标);
(3)以A点为位似中心,相似比为2。

A
Q
P
B。

相关文档
最新文档