数据分析模型ppt课件

合集下载

《数据模型》课件

《数据模型》课件

第三范式(3NF)
在2NF的基础上,消除传递依 赖,确保非主属性只依赖于主 键。
BCNF范式
更严格的规范化形式,确保所 有决定因素都是候选键。
数据模型的优化
索引优化
合理使用索引,提高数据查询效率。
查询优化
优化查询语句,减少不必要的计算和数据访 问。
分区优化
根据数据访问模式,将数据分区存储,提高 查询性能。
详细描述
根据数据抽象层次,数据模型可以分为概念数据模型、逻辑数据模型和物理数据模型;根据使用范围,数据模型 可以分为通用数据模型和特定领域数据模型;根据面向对象的不同,数据模型还可以分为对象-关系数据模型、 关系数据模型和非关系数据模型等。
02
常见的数据模型
关系型数据模型
总结词
最常用、最成熟的数据模型
详细描述:关系型数据模型广泛应用于各种领域,如金融、电子商务、社交网络 、企业资源计划(ERP)系统等。它能够满足大量数据的存储、检索和管理需求 ,提供可靠的数据一致性和完整性保障。
面向对象数据模型
总结词
模拟现实世界的对象
VS
详细描述
面向对象数据模型是一种基于对象的模型 ,它模拟现实世界的对象和概念。在面向 对象数据模型中,对象由属性和方法组成 ,属性是对象的特征,方法定义了对象的 行为。面向对象数据模型支持继承和多态 等面向对象特性。
构。
逻辑设计
根据概念设计,构建出 具体的逻辑模型,包括 实体、属性、关系等。
物理设计
将逻辑模型映射到物理 存储,优化数据存储和
查询效率。
数据模型的规范化
第一范式(1NF)
确保每个列都是不可分割的最 小单元,消除重复组。
第二范式(2NF)

数据模型PPT演示课件

数据模型PPT演示课件
接下页
教务管理系统
教学系统主要提供数据维护、选课和信息查询。 其中常见的查询有: 系统中各对象的基本信息查询。 查询指定班、系的学生信息(名单、人数等)。 查询学生的成绩、学分情况。 查询教师授课情况和学生选课情况…等等。
请画出E-R图。
教务管理 E-R图
系 1
包含
N 班级
1 包含
多对多联系(M:N)
对于实体集A中的每一实体,实体集B中有N个实 体(N ≥ 0)与之联系,对于实体集B中每一实体,实 体集A中有M个实体(M ≥ 0)与之联系。
实体联系模型(概念模型的表示方法)
反映实体集合及其联系的结构形式称为实体联 系模型。实体联系模型就是信息模型,它是现 实世界事物及其联系的抽象。
教师有工作证号、姓名、职称、电话等;学生 有学号、姓名、性别、出生年月等;班级有班号、 最低总学分等;系有系代号、系名和系办公室电话 等;课程有课序号、课名、学分、上课时间及名额 等。
每个学生都属于一个班,每个班都属于一个系, 每个教师也都属于一个 系。
接下页
教务管理系统
每个班的班主任都由一名教师担任。 一名教师可以教多门课,一门课可以有几位主 讲老师,但不同老师讲的同一门课其课序号是不同 的(课序号是唯一的)。 一名同学可以选多门课,一门课可被若干同学 选中。一名同学选中的课若已学完,应该记录有相 应成绩。 本单位学生、教师都有重名,工作证号、学号 可以作为标识。
缺点:查询效率低。
面向对象模型 优点:表达能力强 缺点:复杂
关系模型
在关系模型中,数据的逻辑结构就是二维表。 概念单一、清晰,无论是实体,还是实体间的
联系,都用关系来表示,用户易懂易用。 关系模型有严格的数学基础及在此基础上发展

数据分析模型PPT模板

数据分析模型PPT模板
点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字,点击此处添加您 的文字,点击此处添加您的文字
点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字——点击此处添加您的文字,点击此处添加 您的文字,点击此处添加您的文字;
点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字——点击此处添加您的文字,点击此处添加 您的文字,点击此处添加您的文字;
的文字 2. 添加您的文字
添加您的文字: • 添加您的文字 • 添加您的文字 • 添加您的文字 添加您的文字: 1. 添加您的文字 2. 添加您的文字
添加您的文字
添加您的文字 添加您的文字 添加您的文字 添加您的文字 添加您的文字
添加您的文字,添加您的文字,添加您的文字,添加您的文字 添加您的文字,添加您的文字,添加您的文字,添加您的文字 添加您的文字,添加您的文字,添加您的文字,添加您的文字 添加您的文字,添加您的文字,添加您的文字,添加您的文字 添加您的文字,添加您的文字,添加您的文字,添加您的文字
1. 点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字, 2. 点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字, 3. 点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字, 4. 点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字, 5. 点击此处添加您的文字,点击此处添加您的文字,点击此处添加您的文字,
河南 廊坊
西北 邢台
省内 东北 内蒙 山西 张家口
邯郸 石家庄
点击此处添加您的文字,点击此处添 加您的文字,点击此处添加您的文字
点击此处添加您的文字,点击此处添 加您的文字,点击此处添加您的文字

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件
对数据进行初步分析,了解数据 的分布、特征和关系。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。

数据分析PPT图片

数据分析PPT图片

完整性
数据是否包含了所需的所有信息。
及时性
数据是否及时更新,反映最新情况。
03 数据可视化呈现
CHAPTER
常用数据可视化工具介绍
Tableau 功能强大的数据可视化工具,支 持多种数据源连接,提供丰富的 图表类型和交互式分析功能。
D3.js 一个用于制作数据驱动的文档的 JavaScript库,提供强大的可视 化组件和数据驱动的API。
简洁明了
避免使用过多的图表元素和复杂的视 觉效果,保持设计的简洁明了,突出 重点信息。
一致性
在设计和呈现数据时,保持格式、颜 色、字体等的一致性,有助于提高可 读性和易理解性。
交互性
增加交互功能,如鼠标悬停提示、筛 选、排序等,提高用户体验和数据探 索的便捷性。
实例展示:数据可视化在PPT中的应用
直观地理解数据。
数据挖掘分析
利用算法和模型从大量 数据中挖掘出有用的信
息和模式。
02 数据收集与整理
CHAPTER
数据来源及收集方法
01
02
03
04
问卷调查
设计问卷,通过线上或线下方 式收集数据。
网络爬虫
利用爬虫技术从互联网上抓取 数据。
数据库
从企业内部数据库或公共数据 库中获取数据。
API接口
谢谢
THANKS
优化运营效果
通过对业务数据的分析, 可以发现运营中的问题并 进行优化,提高运营效率 。
数据分析的常用方法
描述性统计分析
对数据进行整理和描述 ,包括数据的中心趋势 、离散程度和分布形态
等。
推断性统计分析
通过样本数据推断总体 特征,包括假设检验和
置信区间等。

第一章数据分析模型 PPT

第一章数据分析模型 PPT
第一章数据分析模型
1. 数据分析模型
1.1 薪金到底是多少 1.2 评选举重总冠军 1.3 估计出租车的总数 1.4 解读CPI 1.5 NBA赛程的分析与评价——全国
大学生数学建模竞赛2008年D题
1.1 薪金到底是多少
日常生活中遇到的数据: • 一个班的考试成绩及按成绩的排 名 • 公司里每位职工一个月的薪金 • 超市中各个品牌牙膏一个月的销量 • 一个年级全部男同学的身高 用几个数简明地表示一组数据整体的大小.
依靠运动员全身力量完成的体育项目 举重 拳击 赛艇 摔跤
按照运动员体重划分级别进行比赛. 每个级别都有一个冠军. 能评选出一个“总冠军”吗?
……
问题
1.2 评选举重总冠军
男子举重比赛按运动员体重 (上限)分为8个级别: 56kg, 62kg, 69kg, 77kg, 85kg, 94kg, 105kg, 105kg以上.
a. 总额/万元
200
股东分红
150
职工薪金
100
2011 2012 2013
b. 增长率/%
c.人均/(万元/人)
哪种解读更有道理
500
400 300
职工薪金
200
100
股东分红
2011 2012 2013
a. 总额/万元
200
股东分红
150
职工薪金
100
2011 2012 2013
b. 增长率/%
不掌握创造记录的运动员的实际体重. 因为体重越大、举得越重,比赛时运动员体重 都会调整到非常接近各级别的上限.
105 kg以上级未设上限,只在其余7个级别中选总冠军.
数据分析 世界记录与体重数据的散点图
世 450

《数据分析》课件

《数据分析》课件
关系型数据库、非关系型数据库等。
定期备份数据
本地备份、远程备份、增量备份等。
数据归档与过期处理
定期清理过期数据,释放存储空间。
03
CHAPTER
数据分析方法
总结词
描述性分析是数据分析的基础,它通过统计方法对数据进行整理和描述,以揭示数据的分布特征和规律。
详细描述
描述性分析主要关注数据的总体特征,如均值、中位数、众数、方差等统计量,以及数据的分布情况,如正态分布、泊松分布等。通过对数据的描述,可以初步了解数据的规律和趋势,为后续的数据分析提供基础。
数据科学教育将更加注重实践经验的积累,通过实际项目和实践课程提高学生的实际操作能力。
01
数据科学教育的重要性
随着数据分析行业的快速发展,数据科学教育将更加受到重视,培养更多具备专业素养的人才。
02
跨学科融合
数据科学教育将促进不同学科的融合,如计算机科学、统计学、经济学等,以培养具备综合素质的人才。
THANKS
R语言
02
CHAPTER
数据收集与整理
ห้องสมุดไป่ตู้
内部数据
市场调研、竞争对手分析、社交媒体数据等。
外部数据
实时数据
用户生成数据
01
02
04
03
用户调查、在线评论、社交媒体互动等。
公司内部数据库、CRM系统、销售数据等。
传感器、物联网设备、实时交易数据等。
选择合适的存储介质
硬盘、SSD、云存储等。
设计合理的数据库结构
Excel
普及度高的数据分析工具,内置数据可视化功能,适合初学者使用。
Power BI
基于云的商业智能工具,提供数据可视化、报表生成和数据分析功能。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件

数据安全和隐私保护
数据安全
随着数据价值的不断提升,数据安全问题也变得越来越重要。未来的数据分析将更加注重数据的安全保护,包括 数据的加密、备份、访问控制等方面,确保数据的完整性和安全性。
隐私保护
在数据分析过程中,保护用户隐私是一个重要的伦理问题。未来的数据分析将更加注重隐私保护,通过匿名化、 去标识化等技术手段,保护用户隐私不受侵犯。同时,数据分析人员也需要遵守伦理规范,确保用户隐私得到尊 重和保护。
运营效率等。
数据分析的流程
数据清洗
对数据进行预处理,包括缺失 值处理、异常值处理、数据转 换等。
建模分析
根据分析目的,选择适当的分 析方法和模型进行数据分析。
数据收集
根据分析目的,收集相关的数 据。
数据探索
对数据进行初步分析,了解数 据的分布和特征。
结果解读与报告
将分析结果进行解读,并形成 报告,以便于决策者理解和应 用。
数据集成
将多个数据源的数据进行整合,形成一个统 一的数据集。
数据清洗
缺失值处理
根据实际情况选择填充缺失值的方法 ,如使用均值、中位数、众数等。
异常值处理
通过统计方法、业务逻辑等方式识别 异常值,并采取相应的处理措施。
重复值处理
去除重复值或对重复值进行合并处理 。
格式统一
将不同格式或类型的数据统一为标准 格式,以便于后续分析。
客户细分
通过数据分析将客户群体 细分,以便更好地理解客 户需求并提供定制化服务 。
市场趋势预测
通过分析历史销售数据和 市场趋势,预测未来的市 场需求和销售情况。
产品定位与定价
通过分析市场和竞争环境 ,确定产品的定位和定价 策略。
销售数据分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
哪种解读更有道理
500
400 300
职工薪金
200
100
股东分红
2011 2012 2013
a. 总额/万元
200
股东分红
150
职工薪金
100
2011 2012 2013
b. 增长率/%
40 股东分红
30 20
10 职工薪金
2011 2012 2013
c.人均/(万元/人)
公司老板:职 工薪金比股东 分红增长得更 多、更快,可 谓有福同享.
大学生数学建模竞赛2008年D题
2
1.1 薪金到底是多少
日常生活中遇到的数据: • 一个班的考试成绩及按成绩的排 名 • 公司里每位职工一个月的薪金 • 超市中各个品牌牙膏一个月的销量 • 一个年级全部男同学的身高 用几个数简明地表示一组数据整体的大小. n个数据的代表数
3
n 个数据的代表数
平均数 ~ n个数据的算术平均值. 中位数 ~ n个数据从小到大(或从大到小)排序
其他代表数 跳水比赛的评分标准 中位数80分 7位裁判的分数去掉一个最高分和一个最低分,剩下 5个分数的总和乘以动作难度系数,为最后得分.
中位数和平均数的结合
8
哪种解读更有道理
某股份制公司50名职工和5位股东近3年的利润分配
年份 2011 2012 2013
职工薪金总额/万元 300 400 500
股东分红总额/万元 100 150 200
500
400 300
职工薪金
200
100
股东分红
2011 2012 2013
a. 总额/万元
200
股东分红
150
职工薪金
100
2011 2012 2013
b. 增长率/%
40 股东分红
30 20
10 职工薪金
2011 2012 2013
c.人均/(万元/人)
500
400 300
职工薪金
200
100
股东分红
2011 2012 2013
a. 总额/万元
200 股东分红
150 职工薪金1002011 2012 2013b. 增长率/%
40 股东分红均值 30 20 10 职工薪金均值
2011 2012 2013
c. 均值/(万元/人)
xk斜率大于yk斜率 yk/y0斜率大于xk/x0斜率 斜率相差5倍
职工薪金增长快
股东分红增长快 股东人均分红增长快
11
小结与评注 • 同样的一组数据可以有不同的表述和解读办法,
取决于要说明什么问题,达到什么目的. • 3个常用的代表数:平均数、中位数和众数,
具有各自的特点和用法. • 数值随时间的变化可以用绝对增长或相对增长
表示, 二者说明同一问题的不同侧面.
12
工会负责人: 2013年职工薪金 增长到167%, 股东分红增长到 200%,应更顾 及职工利益.
职工:与股东 人均分红相比, 职工人均薪金 增长得太慢, 呼吁大幅度增 加职工的薪金.
10
哪种解读更有道理 k=0,1,2 (2011, 2012, 2013)
xk~职工薪金总额, yk~股东分红总额
平均数 :8.6千元. 公司高层对外宣传.
中位数 :6千元(第50、51人都是6000元). 税务部门调查个人所得税的起征点.
众数 : 5千元(5千元的人数最多). 工会干部为职工争取福利.
5
3个代表数的特 平均数 ~ 平等利点用每一数据的信息,反映数据整体
大小;有方便的计算公式,应用最广. 受少数特大或特小数据影响,会失去代表性.
1.2 评选举重总冠军
依靠运动员全身力量完成的体育项目 举重 拳击 赛艇 摔跤
按照运动员体重划分级别进行比赛. 每个级别都有一个冠军. 能评选出一个“总冠军”吗?
……
13
问题
1.2 评选举重总冠军
男子举重比赛按运动员体重 (上限)分为8个级别:
56kg, 62kg, 69kg, 77kg, 85kg, 94kg, 105kg, 105
15
数据收集 利用举重比赛的世界纪录建立数学模型.
• 不同级别成绩的差别基本上由运动员体重决定.
• 多年积累下来的世界记录与某一次比赛成绩相比,
更能避免偶然性.
级别 项目 纪录
抓举 153 kg 62 kg级 挺举 182 kg
位于正中的数. 若n为偶数,取位于正中的2个数的平均值. 众数 ~ n个数据中出现次数最多的那个(或几个)数. 3个代表数反映一组数据整体大小的不同侧面.
4
薪金到底是多少
某公司100位职工的月薪/千元
月薪 40 25 20 15 10 8 6 5 4 3 人数 1 2 6 8 12 17 18 24 10 2
1. 数据分析模型
现实生活中的数据:数量繁多、杂乱无章.
怎样表述、解读、分析、发现规律?
• 找出有代表性的数值或者利用图形表述,分析、
解释相关的实际现象.
• 利用统计方法通过大量数据探索、发现研究对象
的数量规律.
(本书提高篇第7章)
1
1. 数据分析模型
1.1 薪金到底是多少 1.2 评选举重总冠军 1.3 估计出租车的总数 1.4 解读CPI 1.5 NBA赛程的分析与评价——全国
每个级别设3个项目:抓举、挺举、总成绩.
每个级别、每个项目都产生一个冠军.
同一项目 (如抓举) 的8个冠军中怎样选出“总冠军”?
不同级别冠军成绩按体重 “折合”到某个标准级别, 比较折合成绩,选出最高的作为总冠军.
14
1.2 评选举重总冠军 问题分析
建立体重与举重成绩的数学模型 计算各级别冠军举重成绩的理论值 比赛产生各级别冠军成绩的实际值 计算实际值与理论值的比值 构造一个简单、合适的指标作为折合成绩 各级别冠军折合成绩最高的为总冠军
中位数 ~ 只取决于按大小排列的位置,不受特大或 特小数据影响,能反映数据的中等水平.
未充分利用信息; 数据量大时计算较繁. 众数 ~ 常作为选择 “最多” , “最佳”的依据.
未充分利用信息; “并列第一”时无法做唯一抉择.
6
如何选用代表数
• 数据:某高三年级全部男同学的身高.
与10年前同龄男生身高作对比, 估计增长量. 平均数
定制校服尺寸的参考.
众数
• 数据:生产小组15个工人每人一天生产零件的数目
与其他小组比较,作为评选先进的参考. 平均数
制定标准日产量,使多数人能超产.
中位数
7
如何选用代表数
• 数据:班上20名学生一次考试成绩:15人80分, 2人90分,1人10分,1人15分,小李75分. 与其他班级或本班以前成绩对比. 平均分74分 小李衡量自己的标准. 高于平均分! 倒数第3名!
相关文档
最新文档