传感器实验报告

合集下载

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。

二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。

2、数字万用表、示波器。

3、实验连接导线若干。

三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。

常见的有应变式电阻传感器和热敏电阻传感器。

应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。

2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。

主要有变极距型、变面积型和变介质型电容传感器。

其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。

3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。

包括自感式和互感式传感器。

自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。

4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。

常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。

四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。

(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。

2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。

(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。

3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。

传感器实验实验报告

传感器实验实验报告

传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。

它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。

本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。

实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。

我们选择了一款热敏电阻温度传感器进行测试。

实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。

通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。

这表明该传感器具有良好的灵敏度和稳定性。

实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。

我们选择了一款光敏电阻光照传感器进行测试。

实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。

结果显示,传感器输出电阻随光照强度的增加而减小。

这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。

实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。

我们选择了一款电容式湿度传感器进行测试。

实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。

通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。

结果显示,传感器的输出电容随湿度的增加而增加。

这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。

实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。

我们选择了一款气敏电阻气体传感器进行测试。

实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。

结果显示,传感器的输出电阻随气体浓度的增加而减小。

这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。

结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。

温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。

霍尔传感器实验报告

霍尔传感器实验报告

一、实验目的1. 了解霍尔效应的原理及其在电量、非电量测量中的应用。

2. 熟悉霍尔传感器的工作原理及其性能。

3. 掌握开关型霍尔传感器测量电流和电压的方法。

4. 通过实验验证霍尔传感器在实际测量中的应用效果。

二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上会产生一个与电流和磁场方向都垂直的电压。

这种现象称为霍尔效应。

霍尔电压的大小与电流、磁场强度以及导体材料的霍尔系数有关。

霍尔传感器利用霍尔效应将磁场变化转换为电压信号,从而实现磁场的测量。

根据霍尔元件的输出特性,可以将霍尔传感器分为开关型霍尔传感器和线性霍尔传感器。

三、实验器材1. 霍尔传感器2. 信号源3. 电流表4. 电压表5. 直流稳压电源6. 磁场发生器7. 电阻箱8. 连接线四、实验步骤1. 将霍尔传感器、信号源、电流表、电压表、直流稳压电源、磁场发生器和电阻箱等器材连接成实验电路。

2. 调节直流稳压电源输出电压,使霍尔传感器工作在合适的工作电压范围内。

3. 调节信号源输出电流,使霍尔传感器工作在合适的工作电流范围内。

4. 改变磁场发生器的磁场强度,观察霍尔传感器输出电压的变化。

5. 测量不同磁场强度下霍尔传感器的输出电压,记录实验数据。

6. 根据实验数据,分析霍尔传感器的输出特性。

五、实验数据与分析1. 霍尔传感器输出电压与磁场强度的关系根据实验数据,绘制霍尔传感器输出电压与磁场强度的关系曲线。

从曲线可以看出,霍尔传感器输出电压与磁场强度呈线性关系。

2. 霍尔传感器输出电压与电流的关系根据实验数据,绘制霍尔传感器输出电压与电流的关系曲线。

从曲线可以看出,霍尔传感器输出电压与电流呈线性关系。

六、实验结果与结论1. 实验结果表明,霍尔传感器输出电压与磁场强度、电流均呈线性关系,符合霍尔效应的原理。

2. 霍尔传感器具有响应速度快、精度高、抗干扰能力强等优点,在实际测量中具有广泛的应用前景。

3. 通过本实验,掌握了霍尔传感器的工作原理、性能特点和应用方法。

传感器检测实验报告

传感器检测实验报告

一、实验目的1. 了解传感器的基本原理和检测方法。

2. 掌握不同类型传感器的应用和特性。

3. 通过实验,验证传感器检测的准确性和可靠性。

4. 培养动手能力和分析问题的能力。

二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。

本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。

2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。

3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。

4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。

三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。

(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。

(3)观察数字万用表和示波器显示的应变值和电压值。

(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。

2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。

(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。

(3)观察数字万用表和示波器显示的电感值和电压值。

(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。

3. 电容传感器实验(1)连接实验装置,确保电路连接正确。

(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。

(3)观察数字万用表和示波器显示的电容值和电压值。

(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。

4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。

(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。

传感器实验报告

传感器实验报告

传感器实验报告传感器实验实验⼀、电阻应变⽚传感器1.实验⽬的(1) 了解⾦属箔式应变⽚的应变效应,单臂电桥⼯作原理和性能。

(2) 了解半桥的⼯作原理,⽐较半桥与单臂电桥的不同性能、了解其特点(3) 了解全桥测量电路的原理及优点。

(4) 了解应变直流全桥的应⽤及电路的标定。

2.实验数据整理与分析由以上两趋势图可以看出,其中⼀个20.9997R =,另⼀个20.9999R =,两个的线性都较好。

其中产⽣⾮线性的原因主要有:(1)04x R e e R R ?=+?,0e 和R ?并不成严格的线性关系,只有当0R R ?<<才有04x Re e R=,所以理论上并不是绝对线性的,总会出现⼀些⾮线性。

(2)应变⽚与材料的性能有关,这也可能产⽣⾮线性。

(3)实验中外界因素的影响,包括外界温度之类的影响。

为什么半桥的输出灵敏度⽐单臂时⾼出⼀倍,且⾮线性误差也得到改善?答:单臂:04x R e e R ?=半桥:1201()2x R R e e R R ??=-灵敏度公式:U S W=;所以半桥测量时是单臂测量的灵敏度的两倍。

0k 受电阻变化影响变得很⼩改善了⾮线性误差。

3.思考题a .半桥测量时两⽚不同受⼒状态的电阻应变⽚接⼊电桥时,应放在:(1)对边(2)邻边。

解:邻边 b .桥路(差动电桥)测量时存在⾮线性误差,是因为:(1)电桥测量原理上存在⾮线性(2)应变⽚应变效应是⾮线性的(3)调零值不是真正为零。

解:(1)(2)(3)。

c .全桥测量中,当两组对边(R1、R3为对边)值R 相同时,即R1=R3,R2=R4,⽽R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

解:(1)d .某⼯程技术⼈员在进⾏材料拉⼒测试时在棒材上贴了两组应变⽚,如何利⽤这四⽚电阻应变⽚组成电桥,是否需要外加电阻。

解:可组成全路电桥实验⼆差动变压器1.实验⽬的(1)了解差动变压器的⼯作原理和特性(2)了解三段式差动变压器的结构(3)了解差动变压零点残余电压组成及其补偿⽅法(4)了解激励频率低差动变压器输出的影响2.实验数据整理与分析实验A中产⽣⾮线性误差的原因:(1)存在零点残余电压(2)零点附近波动较⼤(3)读数时的⼈为误差分析产⽣零点残余电压的原因,对差动变压器的性能有哪些不利影响。

传感器检测实验报告

传感器检测实验报告

传感器检测实验报告传感器检测实验报告一、引言传感器是一种能够将物理量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗诊断等。

本实验旨在通过对传感器的检测,了解其工作原理、性能参数以及应用范围。

二、实验目的1. 了解传感器的基本工作原理;2. 掌握传感器的性能参数检测方法;3. 分析传感器的应用场景。

三、实验装置与方法1. 实验装置:传感器、信号采集器、示波器等;2. 实验步骤:a. 连接传感器与信号采集器;b. 设置示波器参数;c. 对传感器进行检测。

四、实验结果与分析1. 传感器工作原理传感器通过感受外界物理量的变化,转化为电信号输出。

常见的传感器类型有温度传感器、压力传感器、光敏传感器等。

不同类型的传感器有不同的工作原理,如热敏电阻式温度传感器利用温度变化导致电阻值的变化,从而输出电信号。

2. 传感器性能参数检测a. 灵敏度:传感器对被测量物理量变化的响应能力。

通过改变被测量物理量,记录传感器输出信号的变化,计算灵敏度。

b. 线性度:传感器输出信号与被测量物理量之间的线性关系程度。

通过改变被测量物理量,记录传感器输出信号,绘制曲线,判断线性度。

c. 分辨率:传感器能够检测到的最小变化量。

通过改变被测量物理量,记录传感器输出信号的变化,计算分辨率。

d. 响应时间:传感器从感受到物理量变化到输出信号变化所需的时间。

通过改变被测量物理量,记录传感器输出信号的变化,计算响应时间。

3. 传感器应用场景a. 工业自动化:传感器在工业生产中广泛应用,如温度传感器用于监测设备温度,压力传感器用于监测管道压力等。

b. 环境监测:传感器用于监测环境中的各种物理量,如光敏传感器用于检测光照强度,湿度传感器用于检测空气湿度等。

c. 医疗诊断:传感器在医疗设备中起着重要作用,如心率传感器用于监测患者心率,血压传感器用于测量患者血压等。

五、实验总结通过本次实验,我们了解了传感器的工作原理、性能参数检测方法以及应用场景。

传感器实验总结报告范文(3篇)

传感器实验总结报告范文(3篇)

第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。

传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。

本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。

二、实验目的1. 了解传感器的定义、分类和基本原理。

2. 掌握常见传感器的结构、工作原理和特性参数。

3. 熟悉传感器在信息采集、处理和控制中的应用。

4. 培养动手操作能力和分析问题、解决问题的能力。

三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。

- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。

工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

- 实验步骤:1. 将压电传感器装在振动台面上。

2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。

3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端Vo1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。

5. 改变低频振荡器的频率,观察输出波形变化。

2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。

- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。

- 实验步骤:1. 将电涡流传感器安装在实验平台上。

2. 调整传感器与被测物体的距离,观察示波器波形变化。

3. 改变被测物体的位移,观察示波器波形变化。

3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。

温度传感实验报告

温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握温度传感器的测量方法及其应用。

3. 分析不同温度传感器的性能特点。

4. 通过实验验证温度传感器的测量精度和可靠性。

二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。

当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。

热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。

2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。

被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。

3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。

冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。

4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。

其电阻值与温度呈线性关系,常用于精密温度测量。

四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。

同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。

2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。

记录标定数据,计算误差。

3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻应变式传感器灵敏度特性的研究
——实验报告
院系:0611 姓名:张弢
学号:PB06210013 台号:1
实验要求:
● 了解电阻应变式传感器的基本原理,结构,基本特性和使用方法。

● 研究比较电阻应变式传感器配合不同转换和测量电路的灵敏度特性。

● 掌握电阻应变式传感器的使用方法和使用要求。

数据处理:
1.求单臂,半桥,全桥的灵敏度 (一)单臂电桥
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Y = A + B * X
w/kg
V/v
注:图中黑点及黑线为加砝码时测量数据,红点及红线为减砝码时测量的数据。

用逐差法计算:
S 增= 5
i+5i 1
V -V 5*5*0.02
i =∑=0.293/0.5=0.586(V/kg )
S 降=5
i+5i
1V -V 5*5*0.02
i =∑
=0.241/0.5=0.482(V/kg )
S=w V 平均=5i+5i 1V -V 5*5*0.02
i =∑=0.267/0.5=0.534(V/kg )
分析:由图可知,砝码增加时的灵敏度比砝码减少时的灵敏度高。

在读取减砝码时的数据时发现,砝码越少,数据与加砝码时差别越大,原因可能是由于旧机器使用时间长,设备老化,在拿掉砝码时,应变片的形变没有彻底恢复到放砝码前,仍有较大形变。

(二)半桥电路
0.000.050.100.150.20
0.00
0.05
0.10
0.15
0.20
w/kg
V/v
X Axis Title
注:图中黑点及黑线为加砝码时测量数据,红点及红线为减砝码时测量的数据。

由逐差法计算得:
S 增= 5
i+5i 1
V -V 5*5*0.02
i =∑= 0.464/0.5= 0.928(V/kg )
S 降=5
i+5i
1V -V 5*5*0.02
i =∑
=0.392/0.5=0.784(V/kg )
S=w V 平均=5i+5i 1V -V 5*5*0.02
i =∑= 0.428/0.5= 0.856(V/kg )
分析:由图可知,砝码增加时的灵敏度比砝码减少时的灵敏度高。

在读取减砝码时的数据时发现,砝码越少,数据与加砝码时差别越大,原因可能是由于旧机器使用时间长,设备老化,在拿掉砝码时,应变片的形变没有彻底恢复到放砝码前,仍有较大形变。

(三)全桥电路
-0.05
0.000.050.100.150.20
0.250.300.350.40V/v
w/kg
注:图中黑点及黑线为加砝码时测量数据,红点及红线为减砝码时测量的数据。

S 增= B1=1.881(V/kg );S 降= B2=1.817(V/kg )
用逐差法计算:
S 增= 5
i+5i
1
V -V 5*5*0.02
i =∑= 0.936/0.5= 1.872(V/kg )
S 降=5
i+5i
1V -V 5*5*0.02
i =∑
=0.902/0.5=1.804(V/kg )
S=w V 平均=5i+5i 1
V -V 5*5*0.02i =∑=0.919/0.5=1.838(V/kg )
分析:由图可知,砝码增加时的灵敏度比砝码减少时的灵敏度高。

在读取减砝码时的数据时发现,砝码越少,数据与加砝码时差别越大,原因可能是由于旧机器使用时间长,设备老化,在拿掉砝码时,应变片的形变没有彻底恢复到放砝码前,仍有较大形变。

(四)比较
电压(V )
砝码(g )
单臂电桥S 1=0.534(V/kg )半桥电路S 2=0.856(V/kg )全桥电路S 3=1.838(V/kg ) 可知S 3>S 2>S 1,即全桥电路的灵敏度最高,单臂电桥的灵敏度最低
与理论值S 3=2 S 2=4S 1较好地吻合,这是因为应变片越多,可以去除非线性误差以及作温度补偿。

(五)交流全桥U-M 曲线
-0.12
-0.10-0.08-0.06-0.04
-0.020.000.02m/g
u/v
由于实验须知上的电路放大器是接反的,所以最后直线斜率为负
S 增=-B1=0.664(V/kg );S 降= B2=0.656(V/kg )
用逐差法计算:
S 增=
5
i+5i
1V -V 5*5*0.02
i =∑= 0.337/0.5= 0.674(V/kg ) S 降=5
i+5i
1
V -V 5*5*0.02i =∑
=0.343/0.5=0.686(V/kg )
S=w V 平均=5i+5i
1V -V 5*5*0.02
i =∑=0.340/0.5=0.680(V/kg )
误差分析:
(1) 放砝码前电桥不够平衡;
(2) 拿放砝码前,不能做到轻拿轻放,从而使形变不能及时和很好的恢复: (3) 电压表读数不是很稳定,从而造成读数不准:
(4)
砝码在托盘上的分布情况会影响力臂的长短,从而对形变造成影响。

思考题
1.未加负载时,如电压表的读数不为零,而又没有调零电位器,能否制成一台实用的电子秤?
答:可以。

因为电压表的读数不为零并不会影响它的灵敏度。

而电子秤称重,其实上最后是算出差值,所以只要灵敏度不变,电子秤的测量就会准确。

2.在许多物理实验中(如拉伸法测钢丝杨氏模量,金属热膨胀系数以及本实验)加载(或加热)与减载(降温)过程中对应物理量的变化有滞后效应。

试总结他们的共同之处,提出解决方案。

答:这三个实验中,在加载(加热)的过程中变化比较稳定,但在减载(降温)的过程中,变化不是很稳定。

要解决这种滞后效应,应该减少每次的变化量,即每次加载减载的重量减少,加热和降温过程加长,让这一过程变得缓慢,从而可以尽量减少滞后效应带来的影响。

实验心得
在读取减砝码时的数据时发现,砝码越少,数据与加砝码时的数据差别越大,后来又在新仪器上做了一个实验,发现准确度很高,很可能是由于实验仪器老化的缘故。

相关文档
最新文档