ANSYS 热辐射实例教程解析
(最新整理)ANSYS热分析详解

(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。
ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
ansys辐射分析

6.9.4计算并验证形状系数选项然后可以计算形状系数,并验证和得到平均值。
计算并存储形状系数:命令:VFCALCGUI:Main Menu>Radiation>Compute可用如下命令列出所选择单元对的形状系数并计算平均系数:命令:VFQUERYGUI:Main Menu>Radiation>Query用如下命令可将平均系数提取出来:*GET,Par,RAD,VFAVG6.9.5设定载荷选项如果模型有均匀的温度,本步将设定初始温度。
还需要定义载荷步并将边界条件的变化形式设定为渐变。
对所有节点设定初始的均匀温度命令:TUNIFGUI:Main Menu>Solution>Settings>Uniform Temp设定载荷步数量或时间步命令: SUBST或DELTIMGUI:Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequenc>Freq and Substps or Time and Substps Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequenc>Time-Time Step由于热辐射是高度非线性的,应设定渐变的边界条件命令: KBCGUI:Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequency>Time-Time Step6.10静态热辐射分析的几点建议对于只有热流密度(HFLUX)或热流率(HEAT)边界条件的热辐射问题,或热辐射作为热传递主导方式的问题(即低导热系数),应采用“伪瞬态”求解方法来求解静态问题。
主要有如下三个步骤:1.在定义材料属性时,定义材料的密度和比热为常值。
设定这两个材料值的大小并不重要,因为最终是求解稳态问题;2.将求解类型设定为瞬态问题命令:ANTYPTGUI:Main Menu>Solution>New Analysis3.将准静态辐射分析求解为稳态问题命令:QSOPTGUI:Main Menu>Preprocessor>-Load StepOptions->Time/Frequency>Quasi-Static只有当SOLCONTROL,ON时,QSOPT命令才有效。
ANSYS热分析指南——ansys热辐射分析-47页精选文档

ANSYS热分析指南(第六章)第六章热辐射分析6.1热辐射的定义热辐射是一种通过电磁波传递热能的方式。
电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。
热辐射只在电磁波的频谱中占小部分的带宽。
由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。
物体表面的辐射遵循Stefan-Boltzmann定律:式中:—物体表面的绝对温度;—Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为5.67×10-86.2基本概念下面是对辐射分析中用到的一些术语的定义:黑体黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体;通常的物体为“灰体”,即ε< 1;在某些情况下,辐射率(黑度)随温度变化;辐射率(黑度)物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。
式中:-辐射率(黑度)-物体表面辐射热量-黑体在同一表面辐射热量形状系数形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。
表面I与表面J之间的形状系数为:形状系数是关于表面面积、面的取向及面间距离的函数;由于能量守恒,所以:根据相互原理:由辐射矩阵计算的形状系数为:式中:-单元法向与单元I,J连线的角度-单元I,J重心的距离有限单元模型的表面被处理为单元面积dAI 及dAJ,然后进行数字积分。
辐射对在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。
在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。
Radiosity 求解器当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。
ansys热分析实例教程

Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。
ANSYS热分析详解解析

A N S Y S热分析详解解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT kq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
ANSYS热辐射解析

第六章热辐射分析6.1热辐射的定义热辐射是一种通过电磁波传递热能的方式。
电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。
热辐射只在电磁波的频谱中占小部分的带宽。
由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。
物体表面的辐射遵循Stefan-Boltzmann定律:式中:—物体表面的绝对温度;—Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为5.67×10-8 6.2基本概念下面是对辐射分析中用到的一些术语的定义:黑体黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体;通常的物体为“灰体”,即ε< 1;在某些情况下,辐射率(黑度)随温度变化;辐射率(黑度)物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。
式中:-辐射率(黑度)-物体表面辐射热量-黑体在同一表面辐射热量形状系数形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。
表面I与表面J之间的形状系数为:形状系数是关于表面面积、面的取向及面间距离的函数;由于能量守恒,所以:根据相互原理:由辐射矩阵计算的形状系数为:式中:-单元法向与单元I,J连线的角度-单元I,J重心的距离有限单元模型的表面被处理为单元面积dA I及dA J,然后进行数字积分。
辐射对在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。
在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。
Radiosity 求解器当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。
ANSYS热分析指南

ANSYS 热分析指南第一章简介1.1 热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。
通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。
1.2ANSYS中的热分析ANSYS/Multiphysics 、ANSYS/Mechanical、ANSYS/Professional 、ANSYS/FLOTRAN种产品中支持热分析功能。
ANSY洪分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Referenee》。
ANSY使用有限元法计算各节点的温度,并由其导出其它热物理参数。
ANSY创以处理所有的三种主要热传递方式:热传导、热对流及热辐射。
1.2.1 对流热对流在ANSYS^作为一种面载荷,施加于实体或壳单元的表面。
首先需要输入对流换热系数和环境流体温度,ANSYS各计算出通过表面的热流量。
如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。
1.2.2 辐射ANSYS1供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单元(SURF151-2D或SURF152-3D在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。
1.2.3特殊的问题除了前面提到的三种热传递方式外,ANSY埶分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。
例如,可使用热质点单元MASS7模拟随温度变化的内部热生成。
1.3热分析的类型ANSYSfc持两种类型的热分析:1 •稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • • •
手工定义8个关键点和3个面。 镜象生成需要的模型。 使用quad PLANE55单元划分网格。 使用带有附加结点的SURF151 单元划分叶片外表面。 施加热流,对流和温度载荷。 运行初始运算,不带辐射效果。
8-5
辐射例题
使用辐射矩阵单元的热沉分析 • 定义单元类型 PLANE55 和SURF151, 设置关键选项。
8-13
辐射例题
使用辐射矩阵单元的热沉分析 • 平面效果单元划分的线,要施加对流载荷。
8-14
辐射例题
使用辐射矩阵单元的热沉分析 • • 将线上的结点分离以生 成平面效果单元。 使用*get命令得到模型 中最大结点号,指定名 字为 “nn” 。 生成 “附加结点”; 指 定结点号 “nn+1”。
•
8-15
辐射例题
使用辐射矩阵单元的热沉分析 • 指定缺省属性为类型2, SURF151并生成带有附加结点的单元。
8-16
辐射例题
使用辐射矩阵单元的热沉分析 • 绘制带有附加结点的 SURF151 单元。
8-17
辐射例题
使用辐射矩阵单元的热沉分析 • 绘制施加的载荷和边界条件: 对流和附加结点上的温度。
辐射例题
使用辐射矩阵单元的热沉分析
问题描述:
情况1 - 铝合金热沉底座 (1/2 对称模型) 承受热流载荷。叶片通过与空
气的对流冷却。 情况2 - 在情况1上添加辐射效果,使用hidden方法生成的辐射矩阵。 情况3 - 在情况1上添加辐射效果,使用non-hidden 方法生成的辐射矩 阵。
ANSYS 情况2和情况3 的输 入文件 见附录B
注:不是所有菜单和步骤在后面详细说明。
8-24
辐射例题
使用辐射矩阵单元的热沉分析 • 重新进入前处理器。定义单元类型3, LINK32。
•
划分网格之前,设置属性为TYPE=3。
8-25
辐射例题
使用辐射矩阵单元的热沉分析 • 将辐射面上的结 点分离以生成覆 盖的LINK32 单元 。 生成LINK32 单元 使用 ESURF 命 令。 生成空间结点, 指定结点号为 “nn+2”。
使用辐射矩阵单元的热沉分析 • 与输入的热比较 …… 17 BTU/hr-in2 * 2.2 in2 = 37.4 BTU/hr
8-22
辐射例题
使用辐射矩阵单元的热沉分析 • 绘制热沉的温度场分布。
8-23
辐射例题
使用辐射矩阵单元的热沉分析
基本过程 情况 2- 包括辐射效果; 辐射矩阵-Hidden 方法。
使用辐射矩阵单元的热沉分析 • 打开单元坐标系符号绘制 LINK32 单元。
Adiabatic Adiabatic Heat Flux on Base Surface Note: Not all menus and 步骤s are detailed in the following pages.
8-3
辐射例题
使用辐射矩阵单元的热沉分析 热载荷: • 热流入底座= 17 BTU/hr-in2。 • 热沉顶端空气温度为 90 °F。 • 叶片面上的换热系数为0.01 BTU/hr-in2-°F。 • 没有载荷的平面是绝热的。 附加假设: • 这是开放系统,因此没有被叶片平面吸收的辐射将进入空间结点。 • 辐射只在叶片平面存在 (非绝热平面)。
8-18
辐射例题
使用辐射矩阵单元的热沉分析 • 绘制施加的载荷和边界条件: 热流。
8-19
辐射例题
使用辐射矩阵单元的热沉分析 • 求解当前步。本求解只包括热流和对流载荷,辐射在后面施加。
8-20
辐射例题
使用辐射矩阵单元的热沉分析 • 检查结果。 – 列出响应解。与输入的热比较。
8-21辐射例题86辐射例题使用辐射矩阵单元的热沉分析 • 定义材料特性; 只需要KXX。
8-7
辐射例题
使用辐射矩阵单元的热沉分析 • 定义参数用于生成关键点。
8-8
辐射例题
使用辐射矩阵单元的热沉分析
•
画关键点。8个关键点可以用于生成3个面 。
8-9
辐射例题
使用辐射矩阵单元的热沉分析
•
用关键点生成的面。
8-10
• • • • • • • • • • • 进入前处理器。 定义新单元类型, LINK32。 在辐射面上分离结点。 生成 LINK32单元,检查方向。 定义空间结点。 使用辐射矩阵单元生成辐射矩阵,radheat.sub. 重新进入前处理器。 定义新单元类型, MATRIX50。 读入矩阵文件radheat.sub生成辐射单元。 在空间结点施加温度。 重新计算。
8-1
辐射例题
使用辐射矩阵单元的热沉分析
模型尺寸:
8-2
辐射例题
使用辐射矩阵单元的热沉分析 指南: • 热沉材料为铝合金,KXX = 8.5 BTU/hr-in-°F。 • 使用 BIN 单位进行分析。 • 所有叶片的对流面其 h为常数。 • 使用带有附加结点的SURF151 单元施加对流。 • 热沉端面是绝热的。
8-4
辐射例题
使用辐射矩阵单元的热沉分析
基本过程 情况 1- 热沉热分析 (无辐射)。
• 定义数值参数如下:
base = .150 hgt = 1.0 ttop = 0.05 tbot = .150 fspc = .4 Note: Use of scalar parameters is not required. It is demonstrated only as one of many possible methods of generating geometry
辐射例题
使用辐射矩阵单元的热沉分析 • 第一次镜象形成的图形。
8-11
辐射例题
使用辐射矩阵单元的热沉分析 • 多次镜象形成的最终模型。带有颜色和号码的绘制如下。
8-12
辐射例题
使用辐射矩阵单元的热沉分析 • 单元图: PLANE55 quad 单元。
注: 使用全局单元大小 为0.045 英寸。
注: 我们将平面效果单元的附加结点用做空间结点。使用两 个结点我们可以分离各效果并更容易的分析对流和辐射的分
布。
•
•
8-26
辐射例题
使用辐射矩阵单元的热沉分析
检查覆盖网格的方向…
• 打开单元坐标系绘制检查单 元法线方向。 单元法线方向很重要因为它 定义了辐射的方向 (观察方向 )。
•
8-27
辐射例题