冰蓄冷复习小结
冰蓄冷资料

三、 静态制冰、动态制冰优缺点及适用场合
制冰方式
主要优点
主要缺点
适用场合
1、 冷剂盐水含量高(25%),用量大,成 本增加。
2、 制冷机蒸发温度低(-10~-23℃),制冷
盘管 或冰 球等
1、 控制简单,容易实现。 2、 可直接选用成品蓄冰设备,商品化程度
高。
效率低。 3、 不可直接取用,需要二次换热,会增
加能量损失。 4、 取冷率低,不可以集中大量取冷。
1、 空调 2、 冷藏陈列柜供冷
静 态 制
5、 取冷温度高。 6、 盐水泄漏会污染被冷却介质。 7、 价格高,设备初投资较高。
冰
1、 制冷机蒸发温度低(-15~-18℃),制冷 1、 陆用鱼贝类冷藏
管冰 或片 冰等
1、 结构简单,体积小 2、 控制简单,容易实现。 3、 可直接选用成品蓄冰设备,商品化程
制冰方式 静态制冰
工况
制冷量
轴功率
COP
35/-16
510.3
164.7
3.1
动态制冰
盐水溶液
35/-6
753.1
169.9
4.43
过冷水
35/-3
840.4
170.8
4.92
五、 相同冷量常规空调与蓄冷空调运行费用比较
对于不同的客户,要求不同,选择制冷机会有不同。不考虑主机配置成本,单就系统
运行费用差异比较。
附动态制冰照片
制出冰浆
冰层沉积
过冷水制冰系统
目前的冰蓄冷工程中,制冰方式主要有静态制冰和动态制冰两种型式。 1、静态制冰 常用的静态制冰主要有冰盘管式、封装式(如冰球等)或管冰、片冰、板冰等。 冰盘管式或封装式静态制冰在制冰过程中,载冷剂如乙二醇溶液、盐水溶液等冷却到 0℃以下并送入蓄冰槽内,在盘管内或冰球外流动,与盘管外的水或冰球内的溶液进行热交 换,使之降温结冰。管冰、片冰、板冰等静态制冰在制冰过程中,制冷剂与换热器另一侧 流动的水进行热交换,使水结成一定厚度的冰,然后采用热气融霜或机械方法将制成的片 状冰块或管状冰柱剥离换热表面。 上述各种静态制冰运行时,冰本身始终处于相对静止状态,都同样存在随着冰层的增 加,水与冷媒之间的热阻增大的问题,制冰过程必须克服随厚度增加而带来的越来越大的 冰层热阻,从而导致制冷机蒸发温度随之降低,制冷机制冰效率大大降低。 2、动态制冰 动态制冰目前使用的主要有过冷水制冰和盐水溶液制冰两种。 过冷水动态制冰在制冰过程中,水在过冷却器(即制冰机或蒸发器)内与制冷剂进行热交 换,被冷却至过冷状态(低于 0℃)而不结冰,保持水流动状态,再经过过冷解除装置,完 全释放过冷度成为 0℃的冰浆进入蓄冰槽中。在蓄冰槽中冰水分离,水被再次输送到过冷却 器继续循环,直至蓄冰槽中冰量达到要求。 盐水溶液动态制冰在制冰过程中,低浓度的盐水溶液或海水在制冰机中与管外流动的 制冷剂进行热交换,水被制成冰晶析出,成为冰浆进入蓄冰槽,制冰机内换热表面无冰层 附着。在蓄冰槽中冰与溶液分离,盐水溶液被再次输送到制冰机继续循环。 上述各种动态制冰运行时,冰浆始终处于运动状态,不存在冰层热阻的问题,制冰机 内始终保持水或盐水溶液与冷媒的换热,制冷机运行工况恒定,制冰效率在整个制冰过程 中没有衰减。
冰蓄冷课程设计

冰蓄冷课程设计一、课程目标知识目标:1. 学生能够理解冰蓄冷技术的基本原理和其在建筑节能中的应用。
2. 学生能够描述冰蓄冷系统的组成及其工作过程。
3. 学生能够掌握冰蓄冷系统的主要性能参数及其影响因素。
技能目标:1. 学生能够运用所学的知识,分析冰蓄冷系统在不同工况下的运行特性。
2. 学生能够设计简单的冰蓄冷系统,并进行初步的性能评估。
3. 学生能够运用图表、数据等工具,对冰蓄冷系统的节能效果进行定量分析。
情感态度价值观目标:1. 培养学生对冰蓄冷技术及其在节能减排中重要性的认识,激发学生对环保节能技术的兴趣。
2. 培养学生团队协作、积极主动参与探究的学习态度,增强学生的实践和创新能力。
3. 引导学生关注新能源和可再生能源的发展,树立绿色、可持续发展观念。
课程性质:本课程为高二年级物理学科选修课程,结合新能源技术在建筑节能领域的应用,提高学生的实际操作能力和创新能力。
学生特点:高二年级学生对物理知识有一定的掌握,具备基本的图表分析能力和实验操作能力。
教学要求:注重理论与实践相结合,通过案例分析、实验操作、小组讨论等形式,使学生掌握冰蓄冷技术的基本知识和应用能力。
同时,关注学生的情感态度价值观培养,提高学生的环保意识和创新能力。
在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 冰蓄冷技术原理:介绍冰蓄冷的基本概念、工作原理及在建筑节能中的应用。
教材章节:第二章第三节《新能源技术在建筑节能中的应用》2. 冰蓄冷系统组成:分析冰蓄冷系统的各个组成部分及其功能。
教材章节:第二章第四节《冰蓄冷系统的组成与分类》3. 冰蓄冷系统工作过程:讲解冰蓄冷系统在不同工况下的运行过程及其特性。
教材章节:第二章第五节《冰蓄冷系统的工作过程与运行特性》4. 冰蓄冷系统性能参数:介绍冰蓄冷系统的主要性能参数,包括蓄冷量、制冷量、COP等,并分析影响这些参数的因素。
教材章节:第二章第六节《冰蓄冷系统性能参数及其影响因素》5. 冰蓄冷系统设计:讲解冰蓄冷系统的设计方法,包括负荷计算、设备选型等。
冰蓄冷

一.名词解释相变蓄能(潜热蓄能):利用蓄热材料在发生相变时,吸收或放出热量来蓄能或释能。
显热蓄能:蓄能材料在蓄存和释放热能时,只是材料自身发生的温度的变化,而不发生其他的变化。
部分蓄冷:在夜间非用电高峰期时制冷设备运行,储存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分则由制冷设备承担。
全部蓄冷:在夜间非用电高峰期,启动制冷机进行制冷,当所蓄冷量达到空调所需的全部冷量时,制冷机停机;在白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不运行。
主机在蓄冷槽上游:空调回水先经主机,使主机能在较高的蒸发温度下运行,提高了压缩机的容量和效率,使能耗降低。
蓄冷槽在较低温度下运行,释冷速度放低。
主机下游:空调回水先经蓄冷槽,使蓄冷槽的放冷速度提高,但为了防止过快的消耗蓄冷量,需要控制蓄冷槽出口温度。
而主机在较低的温度下工作,使能耗增加。
蓄冷密度:m3 /(kw·h)动态蓄冰:冰的制备和存储不在同一位置,制冰机和蓄冷槽相对独立。
静态蓄冰:冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构。
自然分层型蓄冰槽:利用密度的影响将热水和冷水分隔开。
水的密度与温度有关,温度越低,密度越大。
间接供冷水系统:在供冷回路中采用换热器与用户间形成间接连接。
换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路。
蓄能:TES:Thermal Energy StorageIPF :Ice Packing FactorFOM:Figure of MeritGSHP:Ground Source heat pump二.书本知识点P9 1.蓄冷空调:在夜间电网低谷期,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网用电高峰期,再将冷量释放出来,满足高峰负荷的需要。
水蓄冷——是利用蓄冷温度在4~7°C之间的显热进行蓄冷。
使用常规的制冷机组,可实现蓄冷和蓄热的双重用途。
蓄冷、释冷运行时冷水温度相近,制冷机组在这两种运行工况下均能维持额定容量和效率。
冰蓄冷技术

冰蓄冷技术周明一、冰蓄冷空调技术及其发展背景蓄冰空调系统即是在电力负荷很低的夜间用电低谷期,采用电制冷机制冷,将冷量以冰的形式贮存起来。
在电力负荷较高的白天也就是用电高峰期,把储存的冷量释放出来,以满足建筑物空调负荷的需要。
同时在空调负荷较小的春秋季减少电制冷机的开启,尽量融冰释冷,提供空调负荷。
蓄冰空调系统是“转移用电负荷”或“平衡用电负荷”的有效方法。
电力工业是国民经济的基础产业,目前我国的发电装机容量已居世界第二位,但仍不能满足电力消费量;同时电力消费出现夏季冬季差值持续加大的现象,而同一天的上午和晚上电力消费量亦较其他时段达到高峰。
过去国家实行供电侧调节,主要靠新建电厂和建设蓄能电站,但仍满足不了每年用电量以5~7%增长的需要,同时电力系统峰谷差也急剧增加,电网负荷率明显下降,极大影响了发电的成本和电网的安全运行。
由于电能本身不易储存,因此近年来国家从电用户方面考虑并制定了一系列的移峰填谷和节约用电政策加强对用电需求侧的管理(DSM),由于高峰用电量中空调用电一般占了30%以上,建筑物用电的40~60%左右,采用蓄冰空调后可大大缓解由于空调用电负荷在用电峰谷时段的不均衡而造成的电网不均衡。
因此现在全国有许多城市的电力部门都适时推出了分时电价结构和许多相关的优惠政策,以鼓励人们使用蓄冰空调。
冰蓄冷空调技术是实现电网削峰填谷主要方法之一,目前该项技术在世界上属于成熟的技术,正被世界各国广泛的应用于各个领域。
根据权威机构99年的资料显示,蓄冰工程已有1.5万个在全球各地正常运行,仅我国台湾省到2000年末就有近500个蓄冰空调系统正在运行。
国内目前也有150个蓄冰空调系统工程在运行或建设之中,发展势头十分迅猛。
国家电力公司也在有关文件中提出积极推广蓄冰空调技术,转移高峰电力,提高电网经济运行和资源综合利用水平,以达到节能和环境保护的目的。
二、冰蓄冷空调系统主要特点冰蓄冷空调系统相对于常规空调系统具有以下一些特点:1. 冷水机组高效率运行,系统运行灵活,冷量一比一的配置对负荷变化的适应性很强。
冰蓄冷知识点总结

冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。
当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。
2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。
在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。
二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。
2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。
3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。
4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。
5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。
三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。
2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。
3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。
4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。
四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。
2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。
3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。
4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。
冰蓄冷储能 示范作用-概述说明以及解释

冰蓄冷储能示范作用-概述说明以及解释1.引言1.1 概述概述冰蓄冷储能作为一种新兴的储能技术,在能源管理和节能领域发挥着重要的作用。
它利用低峰时段的电能,将电能转化为冷能,然后储存起来,在高峰用电时释放出冷能,从而实现了能源的高效利用和需求的灵活调节。
冰蓄冷储能系统具有大容量、高效性、可靠性等优点,因此在建筑物空调、工业制冷、能源供应管理等领域具有广泛应用前景。
本文将对冰蓄冷储能的原理、应用领域以及其示范作用进行详细探讨。
首先,我们将介绍冰蓄冷储能的基本原理,包括冰蓄冷储能的工作原理和基本组成部分。
然后,我们将探讨冰蓄冷储能在建筑物空调、工业制冷以及能源供应管理中的应用领域,包括其在节能减排、电力峰谷填谷、可再生能源利用等方面的价值和潜力。
通过对冰蓄冷储能的示范作用的分析,我们将探讨其在能源领域中的重要作用。
冰蓄冷储能可以通过平衡电网负荷、提高节能效果、增强电力系统的稳定性等方面,为未来能源供应提供重要支持。
同时,我们也将对未来冰蓄冷储能技术的发展前景进行展望,包括其在能源管理、可再生能源发展等方面的应用前景。
综上所述,冰蓄冷储能作为一种新型的节能技术,具有广泛的应用前景和示范作用。
通过深入研究和应用冰蓄冷储能技术,我们可以实现能源的高效利用、电力系统的可靠稳定以及减少对传统能源的依赖,进一步推动可持续能源的发展。
1.2文章结构文章结构部分的内容可以描述整篇文章的框架和主要内容安排,为读者提供一个清晰的大纲,使其能够更好地理解文章的组织结构和内容安排。
在介绍文章结构时,可以使用下述内容:本文将按照以下结构来组织论述内容:第一部分是引言部分,主要包括三个方面的内容:概述、文章结构和目的。
在概述中,将简要介绍冰蓄冷储能的背景和概念,引发读者对该技术的兴趣。
随后,将详细介绍本文的结构,包括各个部分的标题和主要内容,以便读者能够清晰地了解全文的组织结构。
最后,明确本文的目的,即通过论述冰蓄冷储能的示范作用和未来发展前景,提高读者对冰蓄冷储能技术的认识和了解。
冰蓄冷课程设计说明书

冰蓄冷课程设计说明书一、教学目标本课程旨在让学生了解和掌握冰蓄冷技术的基本原理和应用,培养学生的科学思维和创新能力,提高学生的环保意识和实践能力。
具体目标如下:1.知识目标:学生能够理解冰蓄冷技术的原理、设备和应用场景,掌握相关的物理和化学知识。
2.技能目标:学生能够运用冰蓄冷技术解决实际问题,如设计简单的冰蓄冷空调系统,进行能效分析和优化。
3.情感态度价值观目标:学生能够认识到冰蓄冷技术在节能减排和可持续发展方面的重要性,培养学生的社会责任感和使命感。
二、教学内容本课程的教学内容主要包括冰蓄冷技术的基本原理、设备和应用。
详细的教学大纲如下:1.冰蓄冷技术的基本原理:介绍冰蓄冷技术的概念、工作原理和优点,分析冰蓄冷过程中的热力学现象和能量转换。
2.冰蓄冷设备:讲解冰蓄冷设备的种类、结构和性能,包括冰盘管、冰球、冰砖等,以及各自的优缺点和适用场景。
3.冰蓄冷应用:介绍冰蓄冷技术在空调、制冷、储能等领域的应用,分析冰蓄冷系统的设计和运行原理。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过讲解冰蓄冷技术的基本原理、设备和应用,使学生掌握相关知识。
2.讨论法:学生针对冰蓄冷技术的热点问题和实际案例进行讨论,培养学生的思考和分析能力。
3.案例分析法:分析具体的冰蓄冷项目案例,使学生了解冰蓄冷技术在实际工程中的应用和效果。
4.实验法:安排学生进行冰蓄冷实验,让学生亲手操作,培养学生的实践能力和创新能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的冰蓄冷技术教材,为学生提供系统的理论知识。
2.参考书:提供相关的科研论文和工程案例,拓展学生的知识视野。
3.多媒体资料:制作冰蓄冷技术的多媒体课件和视频,提高学生的学习兴趣。
4.实验设备:配置冰蓄冷实验所需的设备器材,让学生进行实践活动。
五、教学评估本课程的评估方式将采用多元化的形式,以全面、客观地评价学生的学习成果。
冰蓄冷的原理

冰蓄冷的原理一、引言冰蓄冷技术是一种通过利用冰的融化吸收热量来实现空调制冷的技术。
这种技术在工业、商业和家庭等领域得到广泛应用,具有节能环保、运行稳定等优点。
本文将详细介绍冰蓄冷的原理。
二、冰蓄冷的基本原理1.相变潜热物质在相变时会吸收或释放大量的热量,这种热量称为相变潜热。
水从液态转变为固态时,需要吸收相当于其自身质量乘以80%的热量,而从固态转变为液态时,则需要释放同样数量的热量。
2.传导换热传导是物质之间由高温向低温传递能量的过程。
在冰蓄冷系统中,通过传导将室内空气中的热量传递到储存了大量冰块的蓄冰槽内,使得室内温度得到降低。
3.循环系统循环系统是指将制冷剂通过压缩、膨胀、液化和汽化等过程循环使用,从而实现制冷的过程。
在冰蓄冷系统中,循环系统是将制冷剂通过蒸发器、压缩机、冷凝器和节流阀等部件进行循环使用。
三、冰蓄冷的工作原理1.储存阶段在储存阶段,制冷剂通过压缩机被压缩成高温高压气体,然后通过冷凝器散发热量,变成高温高压液体。
接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。
这时,蓄冰槽内的水开始结成大块的冰块,并吸收室内空气中的热量。
2.放电阶段在放电阶段,当室内温度达到预设值时,控制系统会切断制冷剂的供应,并启动水泵将储存在蓄冰槽中的大块冰块带入蒸发器。
此时,室内空气通过风机被吹过蒸发器并与储存在其中的大块冰块接触。
由于相变潜热的作用,冰块在融化的过程中吸收了室内空气中的热量,从而使得室内温度得到降低。
3.再生阶段在再生阶段,当储存在蓄冰槽中的大块冰块全部融化后,控制系统会启动制冷机组进行再生。
制冷剂被压缩成高温高压气体,并通过冷凝器散发热量变成高温高压液体。
接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。
同时,储存在蓄冰槽中的水开始结成大块的冰块,并吸收室内空气中的热量。
四、结语通过以上介绍,我们可以看出,冰蓄冷技术是一种通过利用相变潜热和传导换热来实现空调制冷的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释
1、蓄冷密度:单位质量蓄冰介质所蓄存的能量
2、相变(潜热)蓄能:利用蓄冰介质的相变特性,蓄存相变潜热的蓄能方式
3、显热蓄能:指利用蓄能材料的温度变化来蓄存显热能量的蓄能方法
4、动态蓄冰:指冰的制备和储存不在同一位置,制冰机和蓄冷槽相对独立
5、静态蓄冰:指冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构
6、相变(潜热)蓄冷:利用介质的物态变化来蓄冷
7、显热蓄冷:通过降低蓄冷介质的温度进行蓄冷
8、飞轮蓄能:机械蓄能的一种,将电能转化成可蓄存的动能或势能:(1)电网电量富裕时,飞轮蓄能系统通过电动机拖动飞轮加速以动能形式蓄存电能(2)电网需电量时,飞轮减速并拖动发动机发电以放出电能
9、抽水蓄能:利用电力系统负荷低谷时的剩余电量,由抽水蓄能机组作水泵工况运行,将下水库的水抽至上水库,即将不可蓄存的电能转化成可蓄存的水的势能,并蓄存于上水库中
10、部分蓄冷:在夜间非用电高峰时制冷设备运行,蓄存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分由制冷设备承担。
11、全部蓄冷:其蓄冷时间与空调时间完全错开:夜间启动制冷机蓄冷,当其制冷量达到空调所需全部冷量时待机,白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不工作
12、主机上游:空调回水先流经主机,使主机能在较高的蒸发温度下进行。
13、主机下游:在串联流程中,主机在蓄冷槽之后,空调回水先回到蓄冷槽里降温,再到主机降至供冷温度
14、机组优先:在串联流程中,主机位于蓄冷槽上游,空调回水先到其中取冷
15、蓄冰优先:从空调负荷端流回的热乙二醇溶液,先经蓄冰装置冷却到某一中间温度,而后经制冷机冷却至设定温度
16、移峰填谷:指在夜间电网低谷时间,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网高峰用电时间,再将冷量释放出来满足高峰空调负荷的需要。
这样,制冷系统的大部分耗电发生在夜间用电低谷期,而在白天用电高峰期只有辅助设备在运行,从而实现用电负荷的“移峰填谷”
17、自然分层型蓄水槽:利用密度的影响将冷热水隔开,依靠稳定的斜温层
斜温层:由于冷热水间自然的导热作用而形成的一个冷热温度过渡层。
厚度0.3~1.0m 18、间接供冷水蓄冷系统:系统在供冷回路中采用换热器与用户形成间接连接换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路,这样用户侧管路可防止氧化腐蚀、有机物及菌类繁殖等影响。
适用场合:主要适用于高层、超高层空调供冷。
19、外融冰:温度较高的空调回水直接送入盘管的表面结有冰层的蓄冷槽,使盘管表面上的冰层自外向内逐渐融化;
20、内融冰:来自用户或二次换热装置的温度较高的载冷剂(或制冷剂)仍在盘管内循环,通过盘管表面将热量传递给冰层,使盘管外表面的冰层自内向外逐渐融化进行取冷
21、盘管外蓄冰:是空调系统中常见的一种蓄冰方式即直接冻结在蒸发盘管上,盘管伸入蓄冷槽内构成结冰时的主干管
22、功能热流体:是由相变材料微粒(直径为微米量级)和单向传热流体构成的一种固液多相流体
23、封装冰蓄能:是将封装在一定形状的塑料容器内的水制成冰的过程
24、TES:蓄能Thermal Energy Storage
25、IPF:制冰率Ice Packing Factor 指蓄冷槽中制冰量与制冰前蓄冷槽内水量的体积百分比
26、FOM:冷量释放系数,指从蓄冷槽移走的冷量与理论可用蓄冷量之比。
27、GSHP:地源热泵Groud Source Heat Pump是以地源能作为热泵空调夏季制冷的冷却源,冬季采暖供热的低温热源,同时是实现采暖、制冷和生活用水的一种系统
简答题
1.空调系统应用的前提条件有哪些?
(1)合适的电费结构及其他优惠政策(2)空调冷负荷在用电峰谷时段应有一定的不均衡性。
2、主要蓄冷系统有哪些?各有何特点?
(1)水蓄冷系统:可使用常规冷水机组,显热蓄冷,蓄冷密度小(2)冰蓄冷系统:蓄冷密度大,蒸发温度低,制冷机效率降低(3)共晶盐蓄冷系统:蓄冷密度小,蒸发密度适中,腐蚀性强。
2、空调蓄冷系统的优缺点?
优点:(1)实现电力负荷的移峰填谷(2)减少空调冷热源设备的安装容量(3)作为备用冷源在供电不足时满足建筑物的空调要求(4)扩大供冷能力(5)采用风冷热泵型制冷机组的蓄冷系统cop的提升。
缺点:(1)制冰工况蒸发温度降低导致制冷机组的性能系数降低(2)增加投资,占用空间3、各类建筑物冷负荷分布图的区别包括哪些方面?
(1)冷负荷循环周期不同(2)冷负荷延续时间不同(3)平均负荷系数不同
4、蓄冷系统的运行策略是什么?有哪两种?一般选哪种?
指蓄冷系统以设计循环周期(如设计日或周等)的负荷及其特点为基础,以电费价格结构等条件对系统以蓄冷容量、释冷供冷或以释冷连同制冷剂共同供冷作出最优的运行安排考虑。
分为全部蓄冷和部分蓄冷,一般选用部分蓄冷
5、蓄能材料的分类及特性:
(1)显热蓄能材料:水是自然界最常见最理想的蓄能单纯物质,不仅溶解潜热很大,而且比热容也很大,价格便宜,无毒无害,随处可取
(2)潜热蓄能材料:a碱:碱的比热容高,熔解热大,稳定性强,在高温下蒸气压很低,价格便宜,也是较好的蓄热物质b金属与合金:金属必须是低毒、廉价的,铝熔解热大,导热性高,蒸气压力低,是一种较好的蓄能材料c混合盐:可根据需要将各种盐类配制成120~850度温度范围内使用的蓄热材料,其溶解热大,熔融时体积变化小,传热较好。
6、蓄冷系统工作流程有哪些?各有何特点?
串联和并联,串联又分为主机上游和主机下游(1)并联的优点是可以兼顾压缩机与蓄冰槽的容量与效率,但控制复杂(2)a 主机上游串联时,空调回水先流经主机,使主机在较高的蒸发温度下运行,可提高主机的效率,使能耗降低 b 主机下游串联适用于低温空调系统
7、内外融冰各有何特点?
(1)内融冰由于冰层的自然浮升力作用,使得冰层在整个融化过程中与盘管表面的接触面积可以保持基本不变,因而保证了在整个取冷过程中,取冷水温相当稳定
(2)外融冰由于空调回水与冰直接接触,换热效果好,取热快
8、简述水蓄冷系统与非蓄冷系统的差异
(1)模式:水蓄冷是开式,非是闭式(2)运行方式:水蓄冷是制冷回路与供热回路各自运行独立性强,非是两回路必须同时进行(3)效率:水蓄冷是利用夜间电力运行移峰填谷,非是加剧高峰用电量。
9、水蓄冷有何优优缺点?
优点:(1)设备选择性和可用性范围广(2)适用于常规供冷系统的扩容与改造(3)两种工况下均能维持额定容量和效率(4)降低初投资(5)可以实现蓄冷和蓄热的双重功能,(6)技术要求低,维修方便
缺点:(1)蓄冷密度小,占用空间大(2)蓄冷槽体积大,需增加保温层(3)不同温度的冷冻水容易混合,影响蓄冰效率(4)开放式蓄冷槽与空气接触,不洁,增加处理费用。
按照槽内水的混合情况,水蓄冷系统可分为混合型和温度分层型。
10、水蓄冷系统与空调系统的连接形式有哪几种?
(1)简单水蓄冷空调系统(2)换热器间接供冷式水蓄冷空调系统(3)压力控制直接供冷方式水蓄冷空调系统。
11、动态制冰和静态制冰相比有何优点?
冰层热阻小,在制冰期间制冷系统的COP下降小,制冰效率高;可产生流体冰,直接输送到冷空间,节省系统辅助设备投资
12、蓄冷空调和常规空调异同?
冷源不同,其余相同。
意义:移峰填谷、平衡电力负荷、改善发电机组效率、减小环境污染
14、影响斜温层的主要因素有(1)透过斜温层的导热(2)水与水槽壁面计沿槽壁的导热
15、布水器(散流器)的作用是什么?
引导水以重力流的形式缓慢地进入蓄冷槽,减少水流对槽内的扰动,形成一个冷温水混合程度最小的斜温层并通过减小可能产生的混合作用维持斜温层的稳定,减少因冷温水混合而引起的可利用冷量的损失。
16、水蓄冷槽结构设计要注意的方面有(1)应具有一定的结构强度(2)防水和防腐蚀性能(3)
具有良好的保温效果。
考虑的因素:形状、安装位置、结构与材料、防水保温
17、水蓄冷防水和保温的目的是什么?
保温:提高蓄冷能力,减少蓄冷槽的冷损失和因冷损失引起的蓄冷槽表面结露以及为防止温度变化产生的应力使蓄冷槽损坏
防水:避免保温材料由于吸水而影响保温材料性能,并防止地下水渗入保温层。
18、动态蓄冰相对于静态蓄冰的优点在(1)冰层势阻小,制冷机组cop下降小,制冷效率高(2)
可产生流体冰,直接输送到蓄冷空调,节省系统辅助设备投资。
19、共晶盐蓄冷系统的特点:(1)与常规空调系统基本相同,可采用高效冷水机组,并入已有的
空调系统(2)适用于常规空调系统改建为蓄冰系统,适用于旧楼房空调系统的改造(3)与冰蓄冷系统相比,主机效率可以提高很多,大约为30%(4)因蓄冷系统工作在0度以上,设计时无需考虑管道系统的冻结问题(5)蓄冷能力比水蓄冷大,其蓄冷槽容积仅为水蓄冷系统的三分之一(6)蓄冷温度高于冰蓄冷系统,蓄冷槽的保温可减少,散热损失也减少(7)蓄冷槽不占用有效空间(8)在放冷过程中蓄冷槽的冷冻水供应温度为9~10度,不能为空调系统直接使用,不能采用全部蓄冷模式,必须采用部分蓄冷(9)共晶盐蓄冷材料在蓄冷和放冷过程中存在组分离析现象(10)蓄冷材料密度大,在相同的蓄冷量下,重量约为冰蓄冷系统的2~3倍20、低温送风系统的分类:
空调送风系统类型送风温度/度冷源
范围名义值冷媒温度/度冷媒形式常规送风系统12~16 13 7 冷水机组
低温送风系统
9~11 10 4~5 冷水机组、水蓄冷或直接膨胀6~8 7 2~4 蓄冰系统或直接膨胀
不大于5 4 不大于2 蓄冰系统
21、低温送风系统的特点:(1)初投资低(2)减少高峰电力需求,降低运行费用(3)节省空
间,降低建筑造价(4)适用于改建工程(5)提高空调的舒适性。