结构设计常用参数及抗震数据介绍

合集下载

结构设计常用数据

结构设计常用数据

结构设计常用数据结构设计常用数据1. 引言结构设计是指按照一定的规范和要求,对各种建筑和工程结构进行合理设计的过程。

在结构设计过程中,需要使用许多常用数据来进行计算和分析。

本文将介绍一些在结构设计中常用的数据。

2. 材料力学性能数据2.1 强度指标- 抗拉强度(Tensile strength): 材料在拉伸过程中能够抵抗外力而不发生断裂的最大应力。

- 屈服强度(Yield strength): 材料开始发生塑性变形时所能承受的最大应力。

- 剪切强度(Shear strength): 材料在受到切割力时可以抵抗剪断发生的最大应力。

- 抗压强度(Compressive strength): 材料在受压状态下能够承受的最大应力。

2.2 强度设计值强度设计值是指在建筑和工程结构设计中所能使用的材料强度的一种安全系数处理表达式。

常见的强度设计值有塑性抗力设计值、单调分力设计值等。

3. 结构荷载数据3.1 自重自重是指建筑物本身的重量。

在结构设计中,自重常用于计算结构的强度和稳定性。

3.2 活载活载是指在建筑物使用过程中可变的加载,如人员、家具、设备等产生的荷载。

在结构设计中,活载常用于计算结构的变形和挠度。

3.3 风荷载风荷载是指风对建筑物表面的作用力。

在结构设计中,风荷载常用于计算结构的稳定性和振动。

3.4 地震荷载地震荷载是指地震引起的地面运动对建筑物的作用力。

在结构设计中,地震荷载常用于计算结构的抗震性能。

4. 结构几何数据4.1 长度长度是指建筑物在各个方向上的线性尺寸。

在结构设计中,长度常用于计算结构的变形和位移。

4.2 面积面积是指建筑物平面尺寸的大小。

在结构设计中,面积常用于计算结构的荷载分布和应力分布。

4.3 体积体积是指建筑物在三维空间中所占的空间大小。

在结构设计中,体积常用于计算结构的质量和惯性矩。

5. 结构断面数据5.1 面积断面的面积是指断面平面内的面积大小。

在结构设计中,面积常用于计算结构的承载能力。

建筑物结构设计规范要求中的抗震设计参数选取

建筑物结构设计规范要求中的抗震设计参数选取

建筑物结构设计规范要求中的抗震设计参数选取建筑物结构设计中,抗震设计参数的选取是至关重要的。

在建设过程中,合理选择适合的抗震参数能够提高建筑的抗震性能,保障人员的生命安全。

根据建筑物结构设计规范要求,本文将对抗震设计参数的选取进行探讨,并分析其对结构安全性的影响。

1. 地震烈度参数地震烈度参数是一个非常重要的抗震设计参数,用于评估地震对建筑物的影响程度。

烈度参数一般通过地震动参数和场地条件确定。

根据现行规范,地震动参数通常选取地震加速度反应谱中的设计地震加速度值,以及地震周期。

这些参数的选取与地震烈度有关,需要考虑地理位置、地质条件和历史地震数据等综合因素。

2. 设计基准地震设计基准地震是指根据地震破坏性能目标和建筑物所在地的地震烈度特征,选取合适的地震动波进行结构设计。

设计基准地震分为不同等级,包括常规地震、重大地震、历史地震等。

在选择设计基准地震时需要考虑建筑物的用途、重要性和地震灾害风险等因素,以确保结构的抗震性能满足要求。

3. 结构抗震性能目标结构抗震性能目标是指建筑物在受到地震荷载作用时所表现的性能要求。

根据建筑物的不同用途和重要性,抗震性能目标可以分为不同等级,如设计基准地震的确定、结构的位移限值、倾覆限值、应力限值等。

合理选择结构抗震性能目标能够提高建筑物的抗震能力,确保其在地震中的安全性能。

4. 结构材料参数结构材料参数是指建筑物所采用的材料在地震作用下的力学性能参数。

对于不同类型的结构材料,如钢结构、混凝土结构和木结构等,需要选择合适的抗震设计参数。

包括钢材的强度、混凝土的抗压强度和抗拉强度等。

具体选取过程需要参考相应的材料规范和试验数据,确保结构的稳定性和抗震能力。

综上所述,建筑物结构设计规范要求中的抗震设计参数选取是一个综合性、科学性的过程。

在选取过程中,需要综合考虑地震烈度、设计基准地震、结构抗震性能目标和结构材料参数等因素。

合理选取抗震设计参数能够提高建筑物的抗震性能,确保其在地震中的安全可靠性。

[设计院]结构专业技术设计常用参数

[设计院]结构专业技术设计常用参数

设计院结构设计数据结构专业技术统一口径1、采用规范及选用图集(1)建筑结构荷载规范GB50009-2001;(2)建筑抗震设计规范GB50011-2001;(3)混凝土结构设计规范GB50010-2002;(4)高层建筑混凝土结构技术规程JGJ3-2002;(5)建筑地基基础设计规范GB50007-2002;(6)建筑桩基技术规范JGJ94-94;(7)《混凝土结构施工图平面整体表示方法制图规则和构造详图》(现浇砼框架、剪力墙、框剪、框支剪力墙结构03G101-1;现浇砼板式楼梯03G101-2)。

(8)框架轻质填充墙构造图集(西南G701(一)(二)(三));(9)钢筋砼过梁(西南G301(一)(二))。

2、荷载(1)恒载a、楼面板:80厚板(用于卫生间)(3.5KN/m2);100厚板(4.0KN/m2);120(4.5KN/m2);转换层板厚180(6KN/m2)(不包括回填层)。

屋面板:120厚板(7.0KN/m2),130厚板(8.0KN/m2);地下室顶板:板厚150(6.0KN/m2)。

b、卫生间板:8.0KN/m2(包括回填层)。

(2)活载a、住宅客厅、卧室、书房、餐厅、过道等:2.0KN/m2b、公共楼梯、消防疏散楼梯、住宅楼梯:3.5KN/m2c、厨房、卫生间:2.5KN/m2d、阳台:2.5KN/m2e、露台:3.5KN/m2f、上人屋面:2.0KN/m2,不上人屋面:0.5KN/m2g、花园:5.0KN/m2h、消防控制室:7.0KN/m2i、电梯机房:7.0KN/m2j、发电机房:10.0KN/m2k、车库:4.0KN/m2l、消防车道:20.0KN/m2(当有1.2~1.5米覆土时,消防荷载取8KN/M2)m、商场:3.5KN/m2n、公共卫生间:2.5KN/m2(3)基本风压:高度小于60米,为0.4KN/m2;高度大于60米,0.45KN/m2 ;地面粗糙度类别:C 类(市区内)(4)填充墙体:200厚墙7.3KN/m2,100厚墙5.5KN/m2,阳台3KN/m23、抗震设防类别及抗震等级丙类建筑,6度设防。

混凝土抗震等级及规格

混凝土抗震等级及规格

混凝土抗震等级及规格混凝土抗震等级及规格概述建筑物的抗震性能是一个重要的指标,特别是在地震频繁的地区。

混凝土作为建筑结构的主要材料之一,其抗震性能对建筑物的安全性能起着至关重要的作用。

混凝土抗震等级是衡量混凝土结构在地震中承受破坏的能力的指标,也是设计混凝土结构时必须考虑的重要因素之一。

本文将从混凝土抗震等级的定义、分类、规格等方面进行详细的介绍。

一、混凝土抗震等级的定义混凝土抗震等级是指混凝土结构在地震作用下的抗震能力。

通俗地说,就是指混凝土结构在地震中承受破坏的能力。

混凝土抗震等级是评价混凝土结构抗震性能的重要指标之一,也是设计混凝土结构时必须考虑的重要因素之一。

二、混凝土抗震等级的分类按照《建筑抗震设计规范》(GB 50011-2010)的规定,混凝土抗震等级分为A、B、C、D四个等级,其中:(1)A级混凝土抗震等级:适用于重要的特种建筑、大型公共建筑、重要的民用建筑等场所。

(2)B级混凝土抗震等级:适用于一般的民用建筑、一般的公共建筑等场所。

(3)C级混凝土抗震等级:适用于一般的工业建筑、一般的农业建筑等场所。

(4)D级混凝土抗震等级:适用于临时性建筑、非正式建筑等场所。

三、混凝土抗震等级的规格混凝土抗震等级的规格包括以下几个方面:(1)混凝土的抗压强度等级:按照《混凝土结构设计规范》(GB 50010-2010)的规定,混凝土的抗压强度等级分为C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80、C85、C90、C95、C100共18个等级。

其中,C15~C60为普通混凝土,C65~C100为高强混凝土。

(2)混凝土的最小配筋率:按照《混凝土结构设计规范》(GB 50010-2010)的规定,混凝土的最小配筋率应符合以下要求:①混凝土抗震等级为A、B、C时,最小配筋率分别为0.015、0.012、0.01。

②混凝土抗震等级为D时,最小配筋率为0.008。

结构设计中的七个重要参数

结构设计中的七个重要参数

1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。

轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。

轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

02周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。

一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。

刚度越大,周期越小。

抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。

结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

当第一振型为扭转时:说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。

当第二振型为扭转时:说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。

周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。

03、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。

建筑结构抗震设计第四版

建筑结构抗震设计第四版

建筑结构抗震设计第四版介绍建筑结构抗震设计是保障建筑物在发生地震时能够安全运行的重要一环。

本文将深入探讨建筑结构抗震设计的相关要求和技术,并介绍最新版的建筑结构抗震设计规范。

抗震设计的背景地震是一种常见的自然灾害,它给人类的生命财产安全造成巨大威胁。

建筑物是人类居住和工作的重要场所,因此其抗震设计尤为重要。

抗震设计的原则1. 安全性原则抗震设计的首要原则是保障人们的生命安全。

建筑物在地震发生时应该能够承受地震力量而不会倒塌。

2. 经济性原则抗震设计不仅要保证安全性,还要尽量减少施工成本。

设计师需要合理选用材料和结构形式,使得抗震设计经济合理。

3. 可行性原则抗震设计应该考虑施工操作的可行性。

设计师需要根据具体情况选择合适的方案,避免设计过于复杂难以实施。

4. 先进性原则抗震设计需要根据最新的科学技术水平进行。

设计师需要不断学习和更新自己的知识,以应对不断变化的地震活动。

建筑结构抗震设计第四版的主要内容建筑结构抗震设计第四版是基于国内外先进经验和技术研发的最新版地震设计规范。

其主要包括以下几个方面的内容:1. 地震分区根据地震活动性质和地质条件,将分区划定为多个地震分区。

各地区的抗震设计要求会有所不同。

2. 抗震设计参数建筑结构抗震设计需要确定一系列参数,如设计震级、设计地震加速度、结构的基本周期等。

这些参数将在设计过程中进行计算和确定。

3. 结构设计抗震设计要求建筑结构具有足够的抗震能力。

设计师需要根据建筑结构的类型和用途,选用合适的结构形式,并进行相应的计算和验算。

4. 材料选择抗震设计中的材料选择非常重要。

设计师需要选择合适的材料,如抗震钢筋、混凝土等,以确保建筑结构的抗震性能。

5. 施工质量控制抗震设计不仅仅停留在纸面上,实施过程中的施工质量也至关重要。

相关部门需要对施工过程进行监督和质量检查,确保设计要求的有效实施。

6. 抗震设备除了建筑结构的设计,还需要考虑抗震设备的选用和布置。

例如,设置防震支座、加固柱等设备可以提高建筑物的抗震能力。

结构设计常用数据

结构设计常用数据

建筑结构安全等级2纵向受力钢筋混凝土保护层最小厚度(mm)不同根数钢筋计算截面面积(mm2)板宽1000mm内各种钢筋间距时钢筋截面面积表(mm2)每米箍筋实配面积钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%)框架柱全部纵向受力钢筋最小配筋百分率(%)框架梁纵向受拉钢筋的最小配筋白分率(%)柱箍筋加密区的箍筋最小配箍特征值λν(ρν=λνf)受弯构件挠度限值注:1 表中lo为构件的计算跨度;2 表中括号内的数值适用于使用上对挠度有较高要求的构件;3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值;4 计算悬臂构件的挠度限值时,其计算跨度lo按实际悬臂长度的2倍取用注:1 表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢绞线及热处理钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定;2 对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值;3 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.2mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.3mm;4 在一类环境下,对预应力混凝土屋面梁、托梁、屋架、托架、屋面板和楼板,应按二级裂缝控制等级进行验算;在一类和二类环境下,对需作疲劳验算的须应力混凝土吊车梁,应按一级裂缝控制等级进行验算;5 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第8章的要求;6 对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的有关规定;7 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定;8 表中的最大裂缝宽度限值用于验算荷载作用引起的最大裂缝宽度。

结构设计常用数据

结构设计常用数据

结构设计常用数据在结构设计领域,准确可靠的数据是确保设计质量和安全性的基石。

无论是建筑结构、机械结构还是其他各类工程结构,都依赖于一系列关键的数据来进行合理的规划和计算。

接下来,让我们一起深入了解一下结构设计中那些常用的数据。

首先,材料的性能数据是重中之重。

不同的材料具有不同的强度、刚度、韧性等特性。

以钢材为例,其屈服强度、抗拉强度、弹性模量等数据直接影响着钢结构的承载能力和稳定性。

常见的钢材如 Q235、Q345 等,它们各自的力学性能参数都有明确的标准规定。

再如混凝土,其抗压强度、抗拉强度、弹性模量等数据对于混凝土结构的设计至关重要。

此外,木材、铝合金等材料也都有相应的性能指标需要在设计中加以考虑。

结构的荷载数据也是必不可少的。

荷载分为恒载、活载和偶然荷载三大类。

恒载指的是结构自身的重量,包括构件、墙体、楼板等的重量。

在计算恒载时,需要准确获取各种建筑材料的密度数据。

活载则是指人员、家具、设备等可移动的荷载。

例如,住宅的楼面活载标准值通常为 20kN/m²,而商场的楼面活载标准值则会更高。

偶然荷载包括地震作用、风荷载等。

地震作用的大小与地震烈度、场地类别、结构类型等因素有关。

风荷载则取决于当地的基本风压、建筑高度、体型系数等。

在结构构件的尺寸设计中,截面尺寸的数据起着关键作用。

例如,钢梁的高度和宽度、混凝土梁的截面尺寸等,需要根据跨度、荷载大小以及材料强度等因素来确定。

合理的截面尺寸既能满足承载要求,又能避免材料的浪费。

结构的连接数据同样不容忽视。

焊接、螺栓连接、铆钉连接等是常见的连接方式,每种连接方式都有相应的强度设计值和构造要求。

焊接的焊缝长度、高度,螺栓的直径、间距等数据都需要经过精确计算和设计,以确保连接的可靠性。

在进行结构分析和计算时,还需要用到一些几何数据。

比如结构的跨度、高度、长宽比等。

这些数据对于确定结构的受力模式和计算模型具有重要意义。

另外,基础设计中的数据也十分关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构设计常用数据及抗震参数
1.常用参数
1.1环境类别
注:
I:室内潮湿环境是指构件表面经常处于结露或湿润状态的环境;
2:严寒和寒冷地区的划分应符合现行国家标准《民用建筑热工设计规范》
GB 50176的有关规定;
3:海岸环境和海风环境宜根据当地情况,考虑主导风向及结构所处迎风、背风部位等因素的影响,由调查研究和工程经验确定;
4:受除冰盐影响环境是指受到除冰盐盐雾影响的环境;受除冰盐作用环境是指
被除冰盐溶液溅射的环境以及使用除冰盐地区的洗车房、停车楼等建筑。

5:暴露的环境是指混凝土结构表面所处的环境。

1.2保护层厚度
注:
I:混凝土强度等级不大于C25时,表中保护层厚度数值应增加5mm;
2:钢筋混凝土基础宜设置混凝土垫层,基础中钢筋的混凝土保护层厚度应从垫层顶面算起,且
不应小于40mm;
8.2.2当有充分依据并采取下列措施时,可适当减小混凝土保护层的厚度;
I:构件表面有可靠的防护层;
2:采用工厂化生产的预制构件;
3:在混凝土中掺加阻锈剂或采用阴极保护处理等防锈措施;与土壤接触一侧钢筋的保护层厚
度可适当减少,但不应小于25mm;
8.2.3:当梁、柱、墙中纵向受力钢筋的保护层厚度大于50mm时,宜对保护层采取有效的构造
措施;当在保护层内配置防裂、防剥落的钢筋网片时,网片钢筋的保护层厚度不应小于25mm
1.3地面粗糙度
1.4钢筋砼设计值
1.5民用活载
表5.1.1 民用建筑楼面均布活荷载标准值(kN/m2)及其组合值、频遇值和准永久值系数
续表
1 本表所给各项活荷载适用于一般使用条件,当使用荷载较大、情况特殊或有专门要求时,应按实际情况采用;
2 第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高度不小于2.5kN/m2确定;
3 第8项中的客车活荷载仅适用于停放载人少于9人的客车;消防车活荷载适用于满载总重为300kN的大型车辆;当不符合本表的要求时,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载;
4 第8项消防车活荷载,当双向板楼盖板跨介于3m×3m~6m×6m之间时,应按跨度线性插值确定;
5 第12项楼梯活荷载,对预制楼梯踏步平板,尚应桉1.5kN集中荷载验算;
6 本表各项荷载不包括隔墙自重和二次装修荷载;对固定隔墙的自重应按永久荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的自重应取不小于1/3的每延米长墙重(kN/m)作为楼面活荷载的附加值(kN/m2))计入,且附加值不应小于1.0kN/m2。

1.6 pkpm调整系数
注:
1:ψc为有彻体填充墙框架榀数与框架总榀数之比;
2:无括号的数值用于一片填充墙长为6m左右时,括号内数值用于一片填充墙长为5m左右时.
1.7裂缝限值
注:
I:对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值
可采
用括号内的数值;
2:在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限
值应取为0.20mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.30mm; 3:在一类环境下,对预应力混凝土屋架、托架及双向板体系,应按二级裂缝控制等级进行
验算;对一类环境下的预应力混凝土屋面梁、托梁、单向板,应按表中二a级环境的要
求进行验算;在一类和二a类环境下需作疲劳验算的预应力混凝土吊车梁,应按裂缝控
制等级不低于二级的构件进行验算;
4:表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截
面的
验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第7章的有关规定; 5:对于烟囱、筒仓和处于液体压力下的结构,其裂缝控制要求应符合专门标准的有关规定
6:对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 7:表中的最大裂缝宽度限值为用于验算荷载作用引起的最大裂缝宽度。

1.8 挠度限值
注:
1:表中LO为构件的计算跨度;计算悬臂构件的挠度限值时,其计算跨度LO按实际悬臂长度的2倍取用;
2:表中括号内的数值适用于使用上对挠度有较高要求的构件;
3:如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的
挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值;4:构件制作时的起拱值和预加力所产生的反拱值,不宜超过构件在相应荷载组合作用下的计算挠度值。

1.9 位移限值
1.10 轴压比
注:
1:轴压比指柱地震作用组合的轴向压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;
2:当混凝土强度等级为C65、C70时.轴压比限值宜按表中数值减小0.05;混凝土强度等级为C75、C80时,轴压比限值宜按表中数值减小0.10;
3:表内限值适用于剪跨比大于2、混凝土强度等级不高于C60的柱;剪跨比不大于2的柱轴压比限值应降低0.05;剪跨比小于1. 5的柱;轴压比限值应专
门研究并采取特殊构造措施;
4:沿柱全高采用并字复合箍.且箍筋间距不大于100mm、肢距不大于 200mm、
直径不小于12mm,或沿柱全高采用复合螺旋箍,且螺距不大于 100mm、肢距不大于200mm、直径不小于12mm,或沿柱全高采用连续复合矩形螺旋箍,且螺旋净距不大于80mm、肢距不大于200mm、直径不小于1Omm时,轴压比限值均可按表中数值增加0.10;
5:当柱截面中部设置由附加纵向钢筋形成的芯柱,且附加纵向钢筋的总截面面积不少于柱截面面积的0.8%时,轴压比限值可按表中数值增加0.05;此项措施与注4的措施同时采用时,轴压比限值可按表中数值增加0. 15,但箍筋的配箍特征值Av仍应按轴压比增加0.10的要求确定;
6:调整后的柱轴压比限值不应大于1. 05.
2 抗震数据
2.1建筑抗震设防分类及标准
2.2建筑结构最大高度
2.3 建筑结构最大高宽比
2.4 建筑结构抗震等级
2.5抗争设防烈度及特征周期
2.6房屋抗震墙最大间距
2.7 伸缩缝/沉降缝/抗震缝。

相关文档
最新文档