自适应图像去振铃效应滤波器

合集下载

自适应滤波应用分类及应用举例

自适应滤波应用分类及应用举例

自适应滤波应用分类及应用举例自适应滤波是一种强大的数据处理技术,能够实时地调整自身的参数以最小化误差,从而更好地适应动态变化的环境。

以下是对自适应滤波应用的分类及一些具体应用举例:1. 信号去噪在信号处理中,常常需要通过去噪来提取有用的信息。

自适应滤波器可以通过对信号进行平滑处理,有效去除噪声。

例如,在电力系统的故障检测中,自适应滤波器可以用来消除电力信号中的噪声,以便更准确地检测出故障。

2. 系统辨识系统辨识是通过输入输出数据来估计系统的内部动态行为。

自适应滤波器可以用来辨识未知的系统,通过调整自身的参数以最小化预测误差。

这种技术在控制系统、通信系统等领域都有广泛的应用。

3. 回声消除在电话、视频会议等通信系统中,回声是一个常见的问题。

自适应滤波器可以用来消除这种回声,提高通信质量。

例如,在长途电话中,自适应滤波器可以消除由于信号反射引起的回声。

4. 语音处理语音处理是自适应滤波的一个重要应用领域。

例如,在语音识别中,自适应滤波器可以用来提取语音信号的特征,以便后续的识别处理。

此外,在语音编码中,自适应滤波器也可以用来降低信号的复杂性,以便更有效地传输信号。

5. 图像处理图像处理是自适应滤波的另一个重要应用领域。

例如,在图像去噪中,自适应滤波器可以通过对图像的局部区域进行平滑处理,去除噪声。

此外,在图像增强中,自适应滤波器也可以用来突出图像的某些特征,提高图像的质量。

6. 雷达信号处理在雷达信号处理中,自适应滤波器可以用来抑制干扰信号并提取有用的目标信息。

例如,在雷达制导系统中,自适应滤波器可以用来从复杂的雷达回波中提取目标信息,实现对目标的精确跟踪。

7. 医学图像处理在医学图像处理中,自适应滤波器可以用来提高图像的质量和清晰度。

例如,在CT扫描中,自适应滤波器可以用来降低噪声并增强图像的边缘信息,以便更准确地诊断病情。

此外,在脑电信号处理中,自适应滤波器也可以用来消除噪声并提取有用的电生理信号。

如何实现图像去噪处理

如何实现图像去噪处理

如何实现图像去噪处理图像去噪处理是图像处理中的一项重要任务,它的目标是消除图像中的噪声,恢复出更加清晰和真实的图像。

噪声是由各种因素引入图像中的非理想信号,例如传感器噪声、环境干扰和信号传输过程中的干扰等。

因此,实现图像去噪处理可以提高图像的可视质量,同时对于图像分析、计算机视觉和机器学习等应用也具有重要意义。

在实现图像去噪处理的过程中,可以采用多种方法和技术。

下面将介绍几种常用的图像去噪处理方法:1. 统计滤波法:统计滤波法是一种基于统计学原理的图像去噪方法,它利用图像中的统计特性进行噪声估计和去除。

其中最常见的统计滤波方法是均值滤波和中值滤波。

均值滤波是利用图像中像素点的平均灰度值进行噪声消除,对于高斯噪声有较好的效果;而中值滤波则是利用像素点周围领域窗口中像素点的中值进行噪声消除,对于椒盐噪声和脉冲噪声有较好的效果。

2. 自适应滤波法:自适应滤波法是一种根据图像局部特性调整滤波器参数的图像去噪方法。

它通过对图像的不同局部区域采用不同的滤波参数,能够更好地保留图像细节。

自适应滤波方法包括自适应加权中值滤波和双边滤波等。

其中自适应加权中值滤波根据邻域像素点的中值和加权均值的差异来调整滤波器参数,能够对不同类型的噪声有针对性的去除;而双边滤波方法在滤波的同时,根据像素点之间的相似性进行权重调整,能够在保持边缘信息的同时去除噪声。

3. 小波变换法:小波变换法是一种基于频域分析的图像去噪方法,它能够提供图像在不同频段上的特征信息。

小波变换将图像分解成不同尺度的频带,利用频带之间的相关性进行噪声消除。

小波变换方法包括离散小波变换(DWT)和小波包变换(DWP)等。

离散小波变换将图像分解成低频分量和高频分量,其中低频分量包含图像的基本信息,高频分量包含图像的细节信息和噪声信息;小波包变换则对图像进行多层次分解,更加灵活地进行滤波处理。

除了上述几种常用的图像去噪方法之外,还有一些其他的方法也被广泛应用于图像去噪处理,例如基于局部图像统计的方法、基于总变差的方法、基于深度学习的方法等。

自适应中值滤波器的原理

自适应中值滤波器的原理

自适应中值滤波器的原理自适应中值滤波器是一种用于图像处理的滤波器,其原理是根据图像的局部特性来自动调整滤波器的尺寸和滤波器中值的选取,以达到更好的去噪效果。

在数字图像中,噪声是无法避免的。

噪声会导致图像细节丢失、边缘模糊等问题,影响图像的质量和分析结果。

因此,去除图像中的噪声是图像处理的一个重要任务。

滤波器是一种常用的图像去噪方法,其中中值滤波器是一种常见的非线性滤波器。

中值滤波器的原理是将滤波器窗口内的像素按照灰度值进行排序,然后选择中间值作为输出像素的灰度值。

这种方法能够有效地去除椒盐噪声等噪声类型,但对于高斯噪声等其他噪声类型的去除效果并不理想。

为了解决这个问题,自适应中值滤波器被提出。

自适应中值滤波器的核心思想是根据图像局部特性来动态调整滤波器的尺寸和选择滤波器中值的方法。

具体来说,自适应中值滤波器会根据滤波器窗口内的像素灰度值的范围来判断是否存在噪声。

如果存在噪声,滤波器会扩大尺寸,重新计算滤波器中值,并将其作为输出像素的灰度值;如果不存在噪声,滤波器会保持原来的尺寸和滤波器中值。

自适应中值滤波器通常包括以下几个步骤:1. 设定滤波器窗口的初始尺寸和滤波器中值的初始值。

2. 遍历图像的每个像素,以当前像素为中心构建滤波器窗口。

3. 按照灰度值对滤波器窗口内的像素进行排序。

4. 判断滤波器窗口内的像素灰度值范围是否超过预设阈值,如果超过则执行下一步,否则将滤波器中值作为输出像素的灰度值。

5. 扩大滤波器窗口的尺寸,并重新计算滤波器中值。

6. 重复步骤3-5,直到滤波器窗口的尺寸达到最大值。

7. 将滤波器中值作为输出像素的灰度值。

通过自适应中值滤波器的动态调整滤波器尺寸和滤波器中值的方法,可以更好地适应不同图像区域的噪声特性,提高图像去噪的效果。

同时,自适应中值滤波器还可以保留图像的细节信息,不会造成图像的模糊。

自适应中值滤波器是一种根据图像局部特性动态调整滤波器尺寸和滤波器中值的滤波器。

自适应均值滤波方法原理

自适应均值滤波方法原理

自适应均值滤波方法原理
自适应均值滤波是一种图像处理方法,用于去除图像中的噪声。

它的原理是基于图像的局部统计特性来调整滤波器的大小,从而适
应不同区域的噪声强度。

具体的原理如下:
1. 首先,选择一个固定大小的滑动窗口,将其应用于图像的每
个像素点。

滑动窗口的大小可以根据具体的应用需求进行调整。

2. 在每个滑动窗口中,计算窗口内像素的均值和标准差。

均值
表示窗口内像素的平均灰度值,标准差表示像素值的离散程度。

3. 判断当前像素是否为噪声点。

通常情况下,如果像素值与窗
口内的均值相差较大(超过某个阈值),则该像素被认为是噪声点。

4. 对于被判断为噪声点的像素,将其替换为窗口内像素的均值。

这样可以有效地减小噪声对图像的影响。

5. 重复步骤2到步骤4,对图像中的每个像素都进行处理,直
到整个图像都被滤波。

自适应均值滤波方法的优点是能够根据图像的局部特性进行自
适应调整,从而更好地去除噪声,并且能够保留图像的细节信息。

然而,它也存在一些限制,例如对于边缘部分的处理可能会导致细
节的模糊,以及对于噪声较大的图像可能效果不佳。

因此,在应用
自适应均值滤波方法时,需要根据具体情况进行参数的选择和调整,以达到最佳的滤波效果。

自适应滤波算法原理及其应用

自适应滤波算法原理及其应用

自适应滤波算法原理及其应用自适应滤波算法是一种能够自动调整滤波参数的信号处理方法。

它根据当前的输入信号和噪声情况,通过不断迭代计算更新滤波器的系数,使得滤波器能够适应不同的输入信号并实现有效的噪声抑制。

自适应滤波的基本原理是通过最小均方差准则,寻找滤波器的最优系数。

它通过最小化滤波输出与原始信号之间的均方差差异,来优化滤波器的性能。

自适应滤波器将输入信号与待估计的滤波系数进行卷积运算,得到滤波输出信号。

然后根据输出信号与实际信号之间的误差,来调整滤波器的系数。

通过不断迭代,最终得到一个最佳的滤波器参数。

自适应滤波在信号处理领域有广泛的应用。

其中一个主要应用是在通信领域,用于抑制信号中的噪声和干扰。

自适应滤波能够有效地降低通信信号中的噪声,提高通信系统的性能。

另外,自适应滤波也常用于图像处理领域,用于去除图像中的噪声和增强图像的质量。

通过自适应滤波,能够减少图像中的噪点、平滑图像边缘等,使得图像更加清晰和易于分析。

此外,自适应滤波还可以应用在语音处理、雷达信号处理、生物医学信号处理等领域。

例如,在语音处理中,自适应滤波可以在语音的捕获和传输过程中,自动抑制环境噪声和回声,提高语音的清晰度和理解度。

在雷达信号处理中,自适应滤波可以去除雷达回波中的杂波和干扰,提高目标的探测和跟踪性能。

在生物医学信号处理中,自适应滤波可以去除脑电图(EEG)或心电图(ECG)等生物信号中的噪声和干扰,以提取有用的生理信息。

总之,自适应滤波算法是一种基于最小均方差准则的信号处理方法,能够根据输入信号和噪声情况自动调整滤波器的系数,从而实现有效的噪声抑制。

它在通信、图像处理、语音处理、雷达信号处理、生物医学信号处理等领域有广泛应用。

通过自适应滤波,能够提高系统的性能和提取有用信号的质量。

高斯滤波引入的振铃现象

高斯滤波引入的振铃现象

高斯滤波引入的振铃现象
高斯滤波器在图像处理中能够有效地抑制噪声,但引入了“振铃”现象。

振铃现象是指在图像处理过程中,图像的边缘或细节出现了剧烈的震荡,就像钟被敲击后产生的空气震荡一样。

高斯滤波器是一种平滑滤波器,其系统函数是平滑的,避免了振铃现象的产生。

相比之下,理想型滤波器(如理想低通滤波器)在傅里叶变换后会产生陡峭的变化,这种变化在逆变换后会产生“振铃”现象。

为了解决这个问题,可以采用巴特沃斯型滤波器。

巴特沃斯型滤波器的阶数越高,其边缘越平滑,振铃现象越不明显。

另外,高斯滤波器由于其傅里叶变换仍然是高斯函数,所以不会产生振铃现象。

总的来说,虽然高斯滤波器会引入一些振铃现象,但是通过合理选择滤波器的阶数或者采用其他合适的滤波器类型,可以有效地减轻或避免振铃现象的产生。

稳定控制回路振铃现象的消除及其关键参数的选择

稳定控制回路振铃现象的消除及其关键参数的选择

稳定控制回路振铃现象的消除及其关键参数的选择第一章:引言1.1 稳定控制回路的基本概念及其重要性1.2 振铃现象的出现及其影响1.3 研究目的和意义第二章:振铃现象的原因分析2.1 稳定控制回路的传递函数及特性2.2 振铃的定义和特点2.3 振铃产生的原因第三章:振铃现象的消除方法3.1 反馈控制方法3.2 前馈控制方法3.3 混合控制方法3.4 滤波器控制方法第四章:关键参数的选择与优化4.1 回路参数的选取方法4.2 参数的调整方法4.3 参数优化的算法与实现第五章:实验验证和结论5.1 实验方案设计5.2 实验结果分析5.3 结论与总结参考文献第一章:引言1.1 稳定控制回路的基本概念及其重要性稳定控制回路是一种广泛应用于工业、军事、航空、能源等领域的控制系统,其主要作用是对制动、加速、停车等动作进行控制,使得系统能够实现稳定的运行和高效的能耗。

稳定控制回路具有响应速度快、精度高、工作可靠、扰动抵抗能力强等特点,因此被广泛应用于现代工业生产和科学研究中,成为现代控制理论及应用的重要组成部分。

1.2 振铃现象的出现及其影响虽然稳定控制回路可以保证系统稳定运行,但是在某些场合下容易出现振铃现象,这种现象表现为系统输出随时间发生大幅度的振荡,其频率比较高,振幅又比较大,会严重影响系统的稳定性和控制精度。

振铃现象的发生通常是由于系统参数选择不当、环节误差放大等原因导致的。

1.3 研究目的和意义对于稳定控制回路来说,振铃现象是一个严重的技术难题,解决这个问题能够提高系统的性能和可靠性,从而更好地满足工程和实际需求。

本论文的研究目的是探讨稳定控制回路振铃的原因,分析影响因素,提出相应的消除方法,并通过关键参数的选择与优化进行实验验证,为稳定控制回路的优化设计提供参考和指导。

第二章:振铃现象的原因分析2.1 稳定控制回路的传递函数及特性稳定控制回路的动态响应特性主要由其传递函数决定,传递函数是指输入与输出之间的关系,它描述了系统的动态响应特性。

改进的自适应去振铃滤波算法及其硬件实现

改进的自适应去振铃滤波算法及其硬件实现
Ke r s d rn i g f tr d e d tcig;a a t e ad re ac i tr y wo d : ei gn le ;e g — ee t i n d p i ;h r wa r ht u e v c e
0 引言
目 H 24 A S 前 . 和 V 等主流视频编码技术都使 6
和 A S中 , V 没有 涉 及 去 振 铃 滤 波 , 是 因为 在 一 般 这 场合 , 图像 已经达这类方法 还仅处 于研 究 阶段 , 所 后处理 算 法更 为 常用。
比如低码流和对图像质量有较高要求 的场合 , 去振
GONG .i g,GUO e ,Z Yit n W i HU n . i Yo g xn
(c  ̄ o Mi ol toi , hn hi i tn nvrt, 锄ga 04 , h a sh f c e c n s S ag a Ja ogU iesy r er c o i hi O2O C i ) 2 n
aa tewn o l ri api ot i lacri e e edt t gr u .T e ca c rt f dp v i w ft s p ld t h p e co n t t d —e c n e l h hr t sc o i d ie e e x d g oh g ei st ae i i
h rmi o l i ut h  ̄ i m te p e s fte f tr g rs l,t e a r h i i lme td w t o e o t f a d a e e h i e n e l t s mp e ne h a lw rc s o r w i h r .
i s a e . I te ag rtm, a wid w a e rc s t o s u e o d tc d e o e i g nd n t p p r n h o h hi l i n o b sd p o e s me d i s t ee te g f t ma e a h d h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Image Deringing with Adaptive Bilateral Filter1Zhai Guangtao, Xu Yi*, Yang Xiaokang, Zhang Wenjun, Yu Songyu Institute of Image Communication and Information Processing, Shanghai Jiao Tong University,Shanghai, China (200240)AbstractIn this paper, we tailor the bilateral filter towards the task of suppressing the ringing artifact commonly occurred on JPEG2000 images under low bitrates. The proposed adaptive bilateral filter varies from its original form as the pixel moves from a monotone area towards an edge one. Also the local spreads of the domain and range filters are tuned with the extent of texture activity. The edge detection and distance transform are used to indicate the local edge and texture activity indexes. Experimental results show that the adaptive bilateral filter can effectively smooth out the annoying ringing artifact and ameliorate the visual quality.Keywords:Bilateral Filter, Image Postprocessing, Deringing1.IntroductionRinging is a kind of Gibbs phenomenon, which is caused by heavy truncation on transform coefficients and manifests itself as spurious oscillations around strong edges. Also, ringing can come from improper image restoration operations [1]. The ringing artifact encountered in the new image coding standard JPEG2000 is much more difficult to model and/or suppress than the blockiness artifact in the last generation block-based coding standard (JPEG). Among the deringing algorithms, the postfiltering schemes are the most attractive due to their compatibility with existing standards and codecs. Based on O’Rourke and Stevenson’s work on blockiness reduction [2], Shen and Kuo [3] formulated deringing into a classical maximum a posteriori (MAP) estimation problem using a Markov random field (MRF) model, and further proposed a non-iterative nonlinear filter to approximate the global optimum solution. Oguz et al. [4] proposed to use combined binary and grayscale morphological operations to filter out ringing artifact. And they also suggested a new perceptual ringing artifact measure named visible ringing measure (VRM) [5]. Fan and Cham [6] designed an edge model under the framework of multiscale edge analysis and used it to reconstruct the corrupted edges in low bitrate wavelet coded image. Nosratinia [7] re-applied JPEG2000 compression on a redundant representation of pixel-by-pixel shifted images and finally integrated the shift-backs to generate the postfiltered image. Essentially, this approach is thought to be deeply related to translation-invariant denoising algorithms introduced in [8]. Yang et al. [9] employed a maximum likelihood estimation approach together with a k-means algorithm and a cluster-segmentation processing to suppress ringing artifact. Recently, Tan and Wu [10] designed a vision model for postfiltering JPEG2000 coded color images. Their model considers both inter and intra band visual masking effects to guarantee a HVS plausible processing result. This postfiltering algorithm, however, is designed for a specific codec designed by the authors themselves [11], and this somewhat restricted its usage. Chen et al. [12] applied grayscale morphological operation together with a voting stage to choose an optimal postfiltering for deringing JPEG2000 images on the encoder side. Consequently this algorithm needs extra bitrate overhead of the morphological filter details to be transmitted to the decoder, and thus is not compatible with the existing standards. And more1 This work was supported by National Natural Science Foundation of China (60332030, 60502034, 60625103,60703044), Shanghai Rising-Star Program (05QMX1435), Hi-Tech Research and Development Program of China 863 (2006AA01Z124), NCET-06-0409, the 111 Project and the specialized Research Fund for the Doctoral Program of Higher Education under grant No. 20040248047.recently, Li [13] introduced a POCS based decoding process exploiting both the quantization and geometric constraints to suppress the ringing artifact.Bilateral filter (BF), which consists of a geometrical domain filter and photometrical range filter, is a kind of non-iterative edge-preserving nonlinear filter proposed by Tomasi and Manduchi [14]. It is known that the BF has a fundamental connection with anisotropic diffusion and adaptive smoothing [15]. In essence, BF can be interpreted as a single iteration of some iterative algorithms emerged from the Bayesian framework [16]. Due to its low computational complexity and high effectiveness in noise suppression/edge preservation, BF is widely used in various image filtering schemes, such as color TV signal crawling dot pattern reduction [17], image detail removal for enhanced compression ratio [18], color demosaicking [19], denoising [20], contrast reducing [20] and picture resizing [21]. In this paper, we adapt the BF towards deringing for JPEG2000 images. The proposed adaptive BF varies its forms from a pure edge preserving range filter for edge areas to a pure noise reduction domain filter for monotone areas. The local spreads of the domain and range filters are also tuned by the local image detail activities. Comparison with the state-of-the art deringing postfilters justifies the effectiveness of the proposed filter.The rest of the paper is organized as follows: Section II reviews the BF, Section III defines the edge and texture activity indexes, Section IV introduces the adaptive bilateral filter, Section V shows some experimental results, and finally Section VI concludes the paper.2. Bilateral filteringThe 2D bilateral filter gives a weighted sum of the neighboring pixels in a local window, and the pixels with nearer geometrical or photometrical distances are assigned with higher weights. This process is defined as()()()()()()[][]()()()()[][],,,,,,,,,,,,,,,,,,i w w j w w i w w j w w f x y S x y x i y j C f x y f x i y j f x y S x y x i y j C f x y f x i y j ∈−∈−∈−∈−++++⎡⎤⎡⎤⎣⎦⎣⎦′=++++⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑∑ (1)where w controls the span of the filter, (),x y is the pixel index,(),f x y is the original image and (),f x y ′is the filtered image. In a local window of size ()()2121w w +×+, for the two neighboring pixels (),f x y and (),f x i y j ++, ()(),,,S x y x i y j ++⎡⎤⎣⎦ and ()(),,,C f x y f x i y j ++⎡⎤⎣⎦ measure the geometric and photometric similarity respectively, and they are referred to as the domain filter and range filter. With Gaussian kernel, these filters can be defined as:()()()222,,,exp 2d i j S x y x i y j σ⎡⎤+⎢⎥++=−⎡⎤⎣⎦⎢⎥⎣⎦ (2)()()()()22,,,,,exp 2r f x y f x i y j C f x y f x i y j σ⎧⎫−++⎡⎤⎪⎪⎣⎦++=−⎡⎤⎨⎬⎣⎦⎪⎪⎩⎭(3) where d σand r σare the standard deviations (SD) for the filters. Though other kernels can also be employed, Gaussian kernel remains as the most popular choice [22] [23].I. Edge and texture activity indexAs abovementioned, ringing artifact is a kind of edge related distortion, and in order to smooth out which while preserving image details, edge detection is often employed in deringing algorithms to differentiate major edges [4]. In this paper, we choose Canny edge detector due to its robustness and efficiency. We first detect the major edges in the image with a threshold 1T to get the binary edge map ()1,E x y 2. A morphological operation is then applied to eliminate the small edge regions to make the following computation more stable. The 2D Euclidian distance transform is employed to produce the distance map, the process of which is()(),1,,0e if E x y D x y otherwise ≠=⎪⎩ (4)where ()','x y is the nearest nonzero neighbor point of (),x y , and is determined as:()()()}','','arg min ','1x y x y E x y == (5)This distance map is then normalized within the range of []0,1 and further processed to give the edge activity index as()()(){}1,1,/max ,e e e A x y D x y D x y γ=−⎡⎤⎣⎦. (6)It can be observed from (4) that the edge points correspond to 1 in the edge activity map to indicate the highest local edge activity. And the value drops as the pixel moves away from the edges.The other two edge maps ()2,E x y and ()3,E x y are then computed with detection thresholds 2T and 3T (123T T T >>) to yield texture information. Note that since 23T T >, the edge points in ()2,E x y is included in ()3,E x y . By taking a binary “XOR”, the overlap between ()2,E x y and ()3,E x y , which corresponds to the heavier edges in ()2,E x y , is cancelled out. And we then get the texture map, which consists of slight edges as()()()23,,,T x y E x y xor E x y =⎡⎤⎡⎤⎣⎦⎣⎦ (7) We employ morphological operations to eliminate the remaining edge regions which are too large or too small. Since we choose 1T ,2T and 3T empirically, there may be some major edges left in the texture map (),T x y , and these major edges usual occupy a large span. To if a connected edge cluster covers a width more than half the image dimension, they are removed in (),T x y . The clusters made up of less than 16 pixels are also eliminated to make the following distance transform stable.Similar as the process in(4), the distance map for (),T x y is computed and denoted as (),t D x y . This distance map is further manipulated to generate the texture activity map as2 Canny edge detector in fact needs a higher and a lower thresholds, the thresholds given hereinafter are all the higher ones, while the lowers thresholds are defined as a quarter of the higher ones in this work.()()(){}2,1,/max ,t t t A x y D x y D x y γ=−⎡⎤⎣⎦ (8)Fig.1 shows the edge and texture activity indexes computed on “Lena” image compressed at 0.1 bpp with Kakadu software [24].II. Adaptive bilateral filter (ABF)The geometric and photometric SD d σand r σdetermine the spread the BF, while w defines the size of the filter support. It is easy to understand that bigger local d σ,r σ and/or widow size w cause heavier truncation to the high frequency component in a local window, and therefore brings smoother resultant image. However, unlike blockiness, ringing is a kind of long range distortion, which means that it can occupy a broad spatial range. To effectively suppress the artifact, a wide window size that fully covers the ringing extension is preferable. So in this paper, we adjust d σand r σwhile keeping a large w to guarantee a sufficient filtering. Before applying BF to ringing reduction, we have the following observations:1. The edge-preserving property of BF comes from the range filter.2. The ringing artifact, being local gray level oscillations, can be smoothed out by a wide domain filter.3. The domain filter with a large spread tends to smear the image details.Based on the above observations, the idea here is to tune the BF towards a pure range filter on edge areas and towards a pure domain filter on monotone areas. Also the filter spreads areattenuated in texture areas to protect image details. This adaptation process is as followsda dσσ=(9) ra σσ= (10)substituting (9) and (10) into (2) and (3), we have()()()2221,,,exp 21e a t i j A S x y x i y j A σξ⎡⎤+−⎢⎥++=−⎡⎤⎣⎦+−⎢⎥⎣⎦ (11)()()()()22,,,,,exp 21e r t f x y f x i y j A C f x y f x i y j A σξ⎧⎫−++⎡⎤⎪⎪⎣⎦++=−⎡⎤⎨⎬⎣⎦+−⎪⎪⎩⎭.(12) We add a small constant ξ to prevent division by zero. Note that as the edge activity index e A goes to 1, the domain filter tends to be uniformly distributed. And as e A approaches 0, the range filter tends to be uniformly distributed. The evolution process of the proposed adaptive BF (ABF) is shown in Fig.2. By substituting (11) and (12) into (1), we can get the final form of the ABF.3. Experimental resultsThe processing results of the BF and the proposed ABF are shown in Fig. 3. The parameters used are 5w =, 3d σ=, 30r σ=, 10.6T =, 10.4T =, 10.3T =, 116γ=, 24γ= andξ=. It can be observed that for the ringing artifacts, such as areas around the shoulder0.001and hat, the BF and the ABF achieve the comparable processing result. However, the adaptive processing algorithm preserves more image details from being smeared out, e.g. texture on the hat and hair.We compare the processing result of the proposed filter with BF and some state of the art deringing postfilters, namely, Shen et. al’s [3] nonlinear filter, Oguz et al.’s morphological filter [4] and Nosratinia’s [7] shift filter. The visual processing results are demonstrated in Fig.4. Shen et al.’s filter protects image details but leaves some ringing untouched. This can be explained as that the filter span used in Shen et al.’s algorithm is very small, so the ringing artifact cannot be sufficiently smoothed. Oguz et al.’s filter also keeps image details and the ringing reduction result is somewhat better than that of Shen et al.’s. Nosratinia’s filter suppresses the ringing artifact, however, it also smears the image details. The BF gives better ringing reduction result, but severely blurs image texture. The proposed ABF has similar performance in ringing suppression, yet with better texture protection.We also compare the numerical performance of the deringing filters with PSNR and VRM [5] as quality measures, and list the result in Table I. VRM averages the local variance in visual saliency edge areas as a perceptual ringing measure (a smaller value corresponding to better deranging). It can be found that though sometimes slightly lower than BF or Shen et al.’s method, the proposed ABF has the most competitive PSNR performance in the test. The VRM performance confirms an effectively ringing reduction of the proposed algorithm. We noted that the BF has a little better VRM performance, due to its smoother result. However, as we analyzed, BF tends to blur image details as well.4.ConclusionIn this paper, we have extended the bilateral filter into an adaptive form for deringing JPEG2000 images. The adaptive bilateral filter evolves from an edge preserving range filter into a Gaussian averaging mask as the pixel moves form edge areas to monotone areas. The filter spans are also attenuated in texture regions to prevent oversmoothing. The edge and texture activity indexes are computed with efficient edge detection and distance transform. Comparison with both the non-adaptive bilateral filter and the existing deringing postfilters confirms the effectiveness of the proposed algorithm, in terms of overall signal fidelity and ringing removal.References[1] R. L. Lagendijk, J. Biemond, and D. E. Boekee, "Regularized iterative image restoration with ringing reduction," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 12, pp. 1874-1888, 1988.[2] T. P. O'Rourke and R. L. Stevenson, "Improved image decompression for reduced transform coding artifacts," Ieee Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 490-499, 1995. [3] S. Mei-Yin and C. C. J. Kuo, "Artifact reduction in low bit rate wavelet coding with robust nonlinear filtering," in 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175) Redondo Beach, CA, USA: IEEE, 1998, pp. 480-485.[4] S. H. Oguz, Y. H. Hu, and T. Q. Nguyen, "Image coding ringing artifact reduction using morphological post-filtering," in 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175) Redondo Beach, CA, USA: IEEE, 1998, pp. 628-633.[5] S.H.Oguz, "Morphological post-filtering of ringing and lost data concealment in generalized lapped orthogonal transform based image and video coding," Ph. D dissertation, University of Wisconsin, Madison, 1999.[6] G. Fan and W. K. Cham, "Model-based edge reconstruction for low bit-rate wavelet-compressed images," Ieee Transactions on Circuits and Systems for Video Technology, vol. 10, no. 1, pp. 120-132, 2000.[7] A. Nosratinia, "Postprocessing of JPEG-2000 images to remove compression artifacts," IEEE Signal Processing Letters, vol. 10, no. 10, pp. 296-299, 2003.[8] R.R.Coifman and D.L.Donoho, "Translation-invariant denoising," in Wavelet and statistics. A.Antoniadis and G.Oppenheim, Eds. Berlin: Springer Verlag, 1995, pp. 125-150.[9] S. Yang, Y. H. Hu, T. Q. Nguyen, and D. L. Tull, "Maximum-likelihood parameter estimation for image ringing-artifact removal," Ieee Transactions on Circuits and Systems for Video Technology, vol. 11, no. 8, pp. 963-973, 2001.[10] C. S. Tan and H. R. Wu, "Vision model based perceptual post filtering of JPEG2000 coded colour images," in Proceedings of SPIE - The International Society for Optical Engineering, 5960 ed Beijing, China: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2005, pp. 1235-1245.[11] C. S. Tan, D. M. Tan, and H. R. Wu, "Perceptual coding of digital colour images based on a vision model," in Proceedings - IEEE International Symposium on Circuits and Systems, 5 ed Vancouver, BC, Canada: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2004, p. 441. [12] Y. Y. Chen, S. C. Tai, C. X. Wang, and K. W. Lin, "Design of a filter against artifacts for JPEG2000," Journal of Electronic Imaging, vol. 14, no. 4 2005.[13] X.Li, "Improved wavelet decoding via set theoretic estimation," IEEE Transaction on Circuits and System for Video Technology, vol. 15, no. 1, pp. 108-112, 2005.[14] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Journal of Engineering and Applied Science Bombay, India: IEEE, Piscataway, NJ, USA, 1998, pp. 839-846.[15] D. Barash, "A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 844-847, 2002.[16] M. Elad, "On the origin of the bilateral filter and ways to improve it," IEEE Transactions on Image Processing, vol. 11, no. 10, pp. 1141-1151, 2002.[17] S. Kim and K. Hong, "Composite video artifact removal by nonlinear bilateral filtering," in Proceedings of SPIE - The International Society for Optical Engineering, 5960 ed Beijing, China: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2005, pp. 306-315.[18] T. Q. Pham and L. J. van Vliet, "Separable bilateral filtering for fast video preprocessing," in 2005 IEEE International Conference on Multimedia and Expo Amsterdam, Netherlands: IEEE, 2005, p. 4.[19] R. Ramanath and W. E. Snyder, "Demosaicking as a bilateral filtering process," in Proc. SPIE - Int. Soc. Opt. Eng. (USA), 4667 ed San Jose, CA, USA: SPIE-Int. Soc. Opt. Eng, 2002, pp. 236-244.[20] W. C. Kao and Y. J. Chen, "Multistage bilateral noise filtering and edge detection for color image enhancement," IEEE Transactions on Consumer Electronics, vol. 51, no. 4, pp. 1346-1351, 2005.[21] S. Yang and K. Hong, "Bilateral interpolation filters for image size conversion," in Proceedings - International Conference on Image Processing, ICIP, 2 ed Genova, Italy: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005, pp. 986-989.[22] F. Durand and J. Dorsey, "Fast bilateral filtering for the display of high-dynamic-range images," in ACM Transactions on Graphics, 21 ed United States: Association for Computing Machinery, 2002, pp. 257-266. [23] J. J. Francis and G. De Jager, "The bilateral median filter," Transactions of the South African Institute of Electrical Engineers, vol. 96, no. 2, pp. 106-111, 2005.[24] D.Taubman and M.Marcellin, JPEG 2000: image compression fundamentals, standards and practices. Kluwer Academic Publisher, 2002.List of figures(a)(b)Figure 1. Edge and texture activity indexes (Darker pixel indicating higher activity value).(a) Edge activity map. (b) Texture activity map.Domain Ffilter Range Filter Bilateral FilterFigure 2. Evolution of the adaptive bilateral filter(a)(b)(c)(d)Figure 3. Performance comparison of BF and ABF for Lena. (a) Original “Lena”, 512*512. (b) JPEG2000 compressed at 0.1 bpp. PSNR=29.6 dB. (c) Processing result with BF, PSNR=29.2 dB. (d) Processing result withABF, PSNR=29.9 dB.-11-(a) JPEG2000 compressed (b) Shen’s nonlinear filter [3] (c) Oguz’s morphological filter [4](d) Nosratinia’s shift filter [7] (e) Bilateral filter (f) Adaptive bilateral filterFigure 4. Visual comparison of the deringing postfilters, with hat part of Lena-12-List of tableTable I Objective performance of the deringing postfiltersImage Lena Barbara Peppers Baboon MetricsBitrate 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 JPEG2000 26.88 29.63 31.2832.5422.7324.5625.8627.01 26.2129.4231.0232.0020.3521.1621.9022.60 Shen [3] 26.87 29.59 31.2232.4522.7324.5425.8426.97 26.1929.3730.9531.9120.3521.1521.8922.58 Oguz [4] 26.80 29.11 30.2231.0422.6624.2625.1926.08 26.1829.1730.4931.2820.3221.0521.6422.19 Nosratinia[7]26.89 29.41 30.6831.3822.6623.2523.6524.04 25.9628.3729.3229.7220.2420.9521.4921.74 BF 27.18 29.53 30.6531.4622.8024.4625.5626.51 26.6129.8531.1031.7920.3421.0621.5822.22 PSNRABF 27.18 29.94 31.4532.6422.7924.4625.4926.44 26.4629.9031.3532.1920.3921.1821.8722.55JPEG2000 13.14 13.27 12.6511.7111.7911.5611.11 10.47 10.1510.2310.3110.1117.0215.2615.2111.98Shen [3] 9.67 13.25 12.7911.5711.5911.3110.8310.58 10.1810.3010.4110.1516.9715.2115.3012.03 Oguz [4] 11.00 9.71 9.84 9.31 8.70 8.16 8.36 8.25 8.44 8.61 8.37 8.77 12.509.65 10.548.43 Nosratinia[7]10.22 10.80 10.0010.229.07 8.68 9.07 8.97 9.14 9.13 9.21 9.27 10.7710.279.81 8.80 BF 11.39 9.91 8.92 9.08 9.03 8.46 8.40 7.60 8.23 8.04 7.98 8.02 10.7610.1110.057.58 VRMABF 13.14 11.09 9.91 9.48 10.509.65 9.46 8.72 8.84 8.65 8.51 8.63 12.7411.8510.879.86。

相关文档
最新文档