地源热泵设计(地埋管)..

合集下载

地埋管地源热泵系统

地埋管地源热泵系统
环保与舒适性
室内采用水系统,舒适性最好;氟利昂不进房间,不存在氟利昂泄漏引起的窒息等问题;室外机采用水冷,没有冷热风扰民等问题;
室内采用氟系统,舒适性一般;氟利昂进房间,存在氟利昂泄漏引起的窒息等问题;室外机采用风冷,存在冷热风扰民等问题;
安装位置
主机体积小,不用考虑排气顺畅等问题,主机安装有利于环境美观设计,但需考虑埋管的空间
同方技术
系统设计
地埋管地源热泵系统设计
阅读勘察报告,了解地质情况:岩土层结构、岩土体的热物性、岩土体初始温度、冻土层厚度、地下水的情况等
了解和估算建筑物的最大冷负荷、最大热负荷、生活热水需求量、运行时间等
根据以往的经验数据对能否采用地埋管地源热泵进行可行性分析
方案设计阶段需要了解的内容
系统设计
系统散(吸)热量计算:
循环泵
盘管
环路集管
地 表 水 体
机组
用户
机组
用户
板换
系统介绍
开式地表水地源热泵系统
水处理
换热器
用户
回水口
地表水体
取水口
热泵
热泵
地埋管地源热泵系统
地埋管地源热泵系统
垂直地埋管地源热泵系统
水平地埋管地源热泵系统
系统拓展性
可以和地板采暖系统、生活热水做成一个系统,实现初投资和运行费用的最有利化
可以和地板采暖系统、生活热水做成一个系统
系统配电
由于系统EER比较高,故建筑配电小
和地源热泵配电相当,但需要额外增加天然气
环保与舒适性
室内采用水系统,舒适性好;室外机采用水冷,没有冷热风扰民等问题;
室内采用水系统,舒适性好;主机采用水冷,存在冷却塔飘水和噪音扰民,还需要另设排烟气管道等问题

地埋管地源热泵系统的设计及优化.

地埋管地源热泵系统的设计及优化.

钻 孔 区 域 、 埋 管 形 式
其 他 便 于 利 用 的 能 源
系统投资与 运行费用
• • •
地源热泵设计任务 资料收集及现场踏勘 制定地源测试方案

建筑能耗动态模拟计算

场地勘Hale Waihona Puke 孔施工•场地勘测孔施工

岩土层结构堪查 •

岩土体热响应测试
试验成果分析和报告撰写

使用专业软件进行地下换热系统设计和热平衡模拟
工程经验修正

与建筑、结构等各专业配合


地源热泵系统初步设计
地源热泵设计工作程序框图
地埋管地源热泵系统设计的主要步骤 1、建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算方法相同,可参考有关 空调系统设计手册,在此不再赘述。
夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式计算:
上海富田空调冷冻设备有限公司 地源热泵事业部
地埋管地源热泵系统 • 地埋管地源热泵系统是利用地下 岩土(土壤、岩石等)作为热源 或热汇,它是由地埋管换热系统 与热泵机组构成。 • • 土壤温度在地面15米以下温度接 近当地全年平均气温,常年保持 恒定的温度,远高于冬季的室外 温度,又低于夏季的室外温度, 因此地源热泵是利用土壤“冬暖 夏凉“的特性来制冷/供热的节能 中央空调,和利用空气源制冷/供 热相比较,效率大大提高,且不 受环境温度影响。
水平埋管
• 垂直埋管:(已成为工 程应用中的主导形式) 1. 垂直埋管分为单U和 双U两种埋管方式
• • 优点:占地面积较小, 工作性能稳定, • 缺点:造价相对较高
垂直埋管
垂直埋管还分为单U和双U两种埋管方式

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准
地源热泵系统地埋管换热器设计需要遵循以下标准:
1. 地埋管长度:地埋管的长度应该根据项目的热负荷来确定。

通常来说,每平方米的供热面积需要1.5到2米的地埋管长度。

2. 地下管道材料:地下管道材料应该是防腐蚀、耐压、耐高温的材料。

常见的材料有PE管、PVC管、玻璃钢管等。

3. 地下管道布局:地下管道应该布置在深度大于1米的土层中,管道间距应该不小于1米。

4. 地下管道安装:地下管道的安装应该避免出现弯曲、压扁等情况,管道与管道之间应该加装防水胶带以避免漏水。

5. 管道维护:地下管道应该有定期的维护和检测。

通常来说,每一年至少要进行一次管道的清洗和排气。

6. 管道的导热性能:地下管道应该具有较好的导热性能以保证换热效果。

7. 管道的热损失:地下管道的热损失应该较小,通常应控制在3%以内。

以上是地源热泵系统地埋管换热器设计时需要遵循的标准。

地源热泵地埋管换热器形式与布置方法

地源热泵地埋管换热器形式与布置方法

地源热泵地埋管换热器形式与布置方法摘要:地热源热泵空调供热系统的能效比可达3-5,是效益最显著的节能技术之一,地源热泵空调供热技术早在上一世纪50年代开始再欧美得到应用,在上一世纪90年代开始在中国应用。

地埋管地源热泵系统是引用最广泛的地源热泵系统形式。

但是一般建筑占地面积有限,建筑用地红线范围以内,建筑地下室之外的地埋管换热井布置面积相当有限。

要充分挖掘建筑可再生能源利用资源,必须利用建筑物下空间。

文章介绍地源热泵系统地埋管换热器形式,安全设计要点,应用案例。

指出正确的地埋管换热系统设计与施工方法,与建筑结构专业的协调配合,可以在充分利用建筑地热资源同时,不影响结构与建筑物防水安全。

一、地源热泵系统地埋管管换热器地源热泵系统是指以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。

根据热源体的性质,地源热泵系统可以分为地埋管地源热泵系统、地下水地源热泵系统与地表水地源热泵系统。

地埋管地源热泵系统是使用性最广泛的地源热泵系统形式。

地埋管地源热泵系统根据地埋管换热器布置方式不同分为水平埋管式与垂直埋管式,当可利用地表面积较大,浅层岩土体的温度及热物性受气候、雨水、埋设深度影响较小时,宜采用水平地埋管换热器。

否则,宜采用竖直地埋管换热器。

图1为常见的水平地埋管换热器形式,图2为新近开发的水平地埋管换热器形式,图3为竖直地埋管换热器形式。

a单或双环路 b 双或四环路 c三或六环路图1 几种常见的水平地埋管换热器形式A垂直排圈式 b水平排圈式 c水平螺旋式图2 几种水平地埋管换热器形式a单U形管b双U形管c小直径螺旋盘管d大直径螺旋盘管e立柱状 f蜘蛛状 g套管式图3 竖直地埋管换热器形式在没有合适的室外用地时,竖直地埋管换热器还可以利用建筑物的混凝土基桩埋设,即将U形管捆扎在基桩的钢筋网架上,然后浇灌混凝土,使U形管固定在基桩内,多称之为“能量桩”。

地埋管换热器根据换热单元不同又可分为单U型换热器、双U型换热器、W 型换热器等。

地埋管地源热泵原理及施工技术

地埋管地源热泵原理及施工技术

地埋管地源热泵原理及施工技术地埋管地源热泵是一种利用地下土壤或地下水体温度进行供暖与制冷的热泵系统。

它通过在地下安装一定长度的管道,利用地下土壤或地下水体温度相对恒定的特点,将低温的能量转化为高温热能或低温冷能。

地埋管地源热泵不仅具有环保节能的优点,而且运行稳定可靠,适用范围广泛,成为现代建筑节能技术的重要组成部分。

地源换热:地下土壤或地下水体温度相对恒定,夏季地下温度低于室内温度,冬季地下温度高于室内温度。

通过地下埋设的管道,将地下的低温或高温能量传递给热泵系统。

热泵循环:热泵通过工作介质的循环流动,将低温能量转化为高温供暖或低温制冷的热能。

在冬季,热泵将地下的低温能量通过蒸发器吸收,压缩后,通过冷凝器释放出高温的热能供暖室内;在夏季,热泵将地下的高温能量通过蒸发器吸收,压缩后,通过冷凝器释放出低温的冷能制冷室内。

建筑供能:通过供暖和制冷系统,将高温或低温的能量传递给建筑物,实现室温调节。

供暖系统可以采用地板辐射或风机盘管,将热量散发给室内空气;制冷系统可以采用空调机组或风机盘管,将冷量散发给室内空气。

地下管道的敷设是地埋管地源热泵系统的关键。

首先需要选择合适的管材和管型,一般采用耐寒、耐腐蚀的PE材料或PVC材料管道,以及不锈钢或铜镀锌管道。

其次,需要根据建筑物的需求和地下土壤的特征,设计合理的管道布局和管道长度。

一般要求管道深埋于地下1.5-2米,管道间距大约为2-3米。

最后,要保证管道的质量和安全性,防止泄漏和渗漏,避免地下管道的破损和堵塞。

热泵系统的安装包括热泵主机和附属设备的安装。

热泵主机一般由压缩机、蒸发器、冷凝器和控制系统组成,需要选择合适的机型和规格。

附属设备包括水泵、水箱、阀门等,用于热泵循环系统的补充和控制。

安装时要注意设备的位置和布局,保证通风散热和维修便利。

室内供能系统的建设包括供暖系统和制冷系统的建设。

供暖系统可以采用地板辐射或风机盘管的方式,需要按照室内空间和热量需求进行设计和布置。

地源热泵地埋管水平管间距要求

地源热泵地埋管水平管间距要求

地源热泵地埋管水平管间距要求地源热泵是一种利用地下土壤或地下水等地热源进行供暖、制冷和热水的技术。

地源热泵地埋管是地源热泵系统中的关键组成部分,它起着连接热泵与地热源之间的作用。

地源热泵地埋管的水平管间距是影响地源热泵系统性能的一个重要因素。

地源热泵地埋管的水平管间距通常是指地埋管中两个相邻水平管之间的距离。

水平管间距的合理设置直接影响到地源热泵系统的热交换效果和运行效率。

一般来说,水平管间距的选择应综合考虑以下几个因素:1. 地热源的特性:地下土壤或地下水的温度分布是不均匀的,不同地区的地热资源差异也较大。

因此,在选择水平管间距时需要考虑地下热源的温度分布情况,以充分利用地热资源。

2. 地埋管的敷设方式:地源热泵地埋管可以采用不同的敷设方式,如单回路、双回路、螺旋形等。

不同的敷设方式对水平管间距的要求也不同。

例如,螺旋形敷设方式可以增加地埋管的长度,从而提高热交换效果,但同时也增加了敷设难度和成本。

3. 热泵系统的负荷需求:地源热泵系统的负荷需求是决定水平管间距的重要因素之一。

负荷需求大的系统需要更多的热交换面积,因此水平管间距可以适当减小;负荷需求小的系统则可以适当增大水平管间距,以降低成本。

4. 地埋管的材料和直径:地源热泵地埋管可以采用不同的材料和直径,如聚乙烯、聚丙烯等。

不同材料和直径的地埋管对水平管间距的要求也不同。

一般来说,直径较大的地埋管可以增加热交换面积,从而提高系统性能。

根据以上因素的综合考虑,一般地源热泵地埋管的水平管间距可以在1.5米到3米之间选择。

如果地热资源较为丰富,地埋管的敷设方式采用螺旋形,系统负荷需求较大,可以适当减小水平管间距。

相反,如果地热资源较为有限,地埋管的敷设方式采用单回路,系统负荷需求较小,可以适当增大水平管间距。

需要注意的是,水平管间距的设置应符合国家相关标准和规范的要求。

同时,在实际工程中还需要考虑到施工条件、地埋管的敷设深度、土壤热导率等因素的影响,以确保地源热泵系统的正常运行和长期稳定性。

关于地埋管地源热泵系统的设计

关于地埋管地源热泵系统的设计

粤 } 2 ) i ) C H P — B I — z 一 1  ̄ D C H P — B I — Z - j l * 斟
根 据空 调 负荷 计 算 , 空 调计 算 冷负 荷 为3 3 7 1 k W, 热负 荷 为2 1 3 6 k W。采用 三 台 土壤 源 热泵 机 组 。一 台为标 准 机 组 , 标 准工 态运 行 ; 两 台为 全 热 回收 机 型, 其 中一 台夏 季 热 回 收运 行 提 供 生 活热 水 ( 1 0 0 0 K W) , 另 一 台 日常 标 准 工 态
1 、 地 埋管 地源 热泵 空调 系统 概述
地 源热 泵 系 统是 以岩 土 体 、 地 下 水 或 地表 水 为 低 温 热源 , 由水 源 热泵 机 组、 地 热 能交 换 系统 、 建筑 物 内 系统组 成 的供 热 空调 系统 。 根 据地 热 能交换 系 统形 式 的 不 同 , 地 源 热泵 系 统 分 为地 埋 管 地 源热 泵 系 统 、 地 下水 地 源 热泵 系 统 和地 表水 地 源热 泵 系统 。 地埋 管 地源 热 泵系 统 的传 热介 质 是通 过 竖直 或水 平 埋管 换 热器 与 岩土 体进 行 热交 换 。
能对建筑物实现 , 这是一项同时具备节能和环保的新型可再生能源技术。
注: 1 、 冷却 塔 不运 行 , 仅 地 埋管 系 统 提供 冷 却 水 时 , 阀 门开 启状 态 为 : 关
闭 阀门 1 2 、 1 2 ’ ; 开启 阀 门 1 1 、 1 1 ‘ 。
2 、 冷 却塔 运行 时 , 有 冷 却塔 提供 部 分冷 却水 , 阀门 开启 状态 为 : 开启 阀门
1 2 、 1 2 ’ ; 关 闭 阀门 1 1 、 1 1 ’ 。

地埋管地源热泵的设计

地埋管地源热泵的设计

浅谈地埋管地源热泵的设计摘要:本文将论述地埋管地源热泵系统的设计体要点。

关键词:“卡诺循环”“制热系数”“单口井换热量”“换热热阻”中图分类号: th3 文献标识码: a 文章编号:1.引言近年来,地埋管地源热泵系统在建筑工程中得到广泛应用。

一提到地埋管地源热泵系统,人们立刻想到“节能”、“环保”、“绿色”、“减排”,但是根据工程回访(京津地区),很多业主反应地埋管地源热泵系统没有想象中的那么节能。

本文将追根溯源,讨论地埋管地源热泵系统为什么节能,怎样才能节能,提出建筑物地埋管地源热泵系统比传统空调系统经济节能是靠精细、合理、优化的设计来保证的。

2.地埋管地源热泵系统的概念地埋管地源热泵系统是一种以大地作为冷、热源,以水溶液作为媒介,通过垂直或水平封闭管路与大地交换热量,并把交换的热量提供给地源热泵机组,维持地源热泵机组正常工作,向建筑物供冷或供热的集中空调系统。

在冬季,地埋热泵系统通过埋在地下的封闭管道(亦称地下换热系统)从大地收集自然界热量,而后由环路中的循环水溶液把热量带到室内,再由室内的地源热泵系统提升热的品位,把热量释放到室内。

在夏季,为达到给室内降温目的,地源热泵系统将从室内吸收的多余热量排入水溶液环路中,再经过地下换热系统,讲多余热量释放给大地。

在一年里,对大地而言,冬季大地在放热,夏季大地在蓄热,这种独特的工况使地埋管地源热泵系统成为跨季节的蓄能空调系统。

3.热泵原理和根本优势地埋管地源热泵系统首先是一种热泵技术。

热泵技术的基本原理基于卡诺循环,它采用电能(或其它方式)驱动,耗功n,从低温热源中吸取热量q’,并通过高温热源输送热量q,我们把输送的热量与驱动热泵消耗的功之比称为制热系数,即。

我国火力发电网输送到用户的综合效率为33%左右,理论上只要工程中地源热泵制热系数>3.3 , 热泵供暖对一次能源的利用率>1.0。

实际上,大多数情况下,地源热泵制热系数是可以达到 3.0~3.5 的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.6MPa

- 3.0+0.5/PE100 3.7+0.6/PE100 4.6+0.7/PE100 5.8+0.9/PE100 6.8+1.1/PE100 8.2+1.3/PE100 10.0+1.5/PE100 11.4+1.8/PE100 12.7+2.0/PE100 14.6+2.2/PE100 16.4+3.2/PE100 18.2+3.6/PE100 20.5+4.0/PE100 22.7+4.5/PE100 25.4+5.0/PE100 28.6+5.7/PE100 32.2+6.4/PE100 36.3+7.2/PE100
地源热 泵系统
地源热泵系统的组成
地源热泵机组 地下热交换器
水循环系统 控制系统
1 40
30
20
土壤温度随深度变化示意图
月份 2 3 4 5 6 7 8 9 10 11 12
地表 2 FT(0.6m) 5 FT (1.5m) 12 FT (3.6m)
10
0
0 40 80 120 160 200 240 280 320 360 天数
比热容
C
(kJ/kg.K) 0.89 0.84 0.91 0.84 0.92 0.92
0.00517
0.84
35
大理石+花岗岩

36
花岗岩

37
石灰质凝灰岩

38
灰质页岩

2800 2700 1300 1760
3.45 3.14 0.52 0.83
0.00487 0.0046 0.00157 0.00166
公称外径dn
20 25 32 40 50 63 75 90 110 125 140 160 180 200 225 250 280 315 355 400
表2 聚乙烯(PE)管外径及公称壁厚(mm)
平均外径 最小 最大
1.0MPa
公称壁厚/材料等级 公称压力 1.25 MPa
20
20.3
25
25.3
V
1.75
Py Pd L
式中 Py ——计算管段的沿程阻力(Pa); Pd ——计算管段单位管长的沿程阻力(Pa/m);
L ——计算管段的长度(m)。
7) 计算管段的局部阻力:
Pj Pd L j
式中 Pj——计算管段的局部阻力(Pa);
L
——计算管段管件的当量长度(m)。
j
管件的当量长度可按表4计算。

2.3+0.5/PE80 3.0+0.5/PE80 3.7+0.6/PE80 4.6+0.7/PE80 4.7+0.8/PE100 5.6+0.9/PE100 6.7+1.1/PE100 8.1+1.3/PE100 9.2+1.4/PE100 10.3+1.6/PE100 11.8+1.8/PE100 13.3+2.0/PE100 14.7+2.3/PE100 16.6+3.3/PE100 18.4+3.6/PE100 20.6+4.1/PE100 23.2+4.6/PE100 26.1+5.2/PE100 29.4+5.8/PE100
导热系数
(W/m.K)
0.63 1.26 1.79 1.45 1.61 1.41 1.2 1.66 1.63
导温系数

(m2/h) 0.00129 0.00158 0.00264 0.00178 0.00222 0.00164 0.00152 0.00171 0.00197
比热容
(kJ/kg.K) 1.11 1.5 1.15 1.59 1.35 1.56 1.42 1.71 1.41
比热容
C
(kJ/kg.K) 1.41 1.64 1.4 1.51 1.53 1.02 1 0.84 1.01 0.95 0.99 1.06 0.93 0.84 1.39 1.52 0.88 0.93
表1 岩土热物性参数
序号
28 29 30 31 32 33 34
岩土名称
卵石+砂 砂岩
石灰岩 石灰岩 石灰岩 石灰岩
天然含水量

(%) 9.8 - - - - -
密度

(kg/m3) 1840 2250 2700 2250 2000 1700
大理石+花岗岩 -
3000
导热系数

(W/m.K) 1.62 1.84 3.14 1.28 1.16 0.93
3.6
导温系数

(m2/h) 0.00358 0.0035 0.0046 0.00245 0.00227 0.00214
1 2 3 4 5 6 7 8 9
岩土名称
粉土 粉土 粉土 粉土 粉土 粘性土 粘性土 粘性土 粘性土
表1 岩土热物性参数
天然含水量

(%) 16.3 22.9 26.9 25.3
26 26.3
19 29.8 30.1
密度

(kg/m3) 1590 1920 2130 1850 1930 1990 2000 2050 2110
表3 聚丁烯(PB)管外径及公称壁厚(mm)
公称外径dn 20 25 32 40 50 63 75 90 110 125 140 160
最小
20 25 32 40 49.9 63 75 90 110 125 140 160
平均外径
最大
20.3 25.3 32.3 40.4 50.5 63.6 75.7 90.9 111 126.2 141.3 161.5
三、地埋管水力计算
1. 地埋管换热系统设计时应根据实际选用的传热介质的水力特性进行水力 计算。国内目前塑料管的比摩阻均是以水为传热介质,对添加防冻剂的
水溶液均无相应数据,水力计算时可按《地源热泵工程技术指南》
(Ground-source heat pump engineering manual)推荐的方法进行。
间接地下水换热系统 由抽水井取出的地下水经中间换热器
热交换后返回地下同一含水层的地下水换 热系统。
一、岩土热物性参数
• 岩土体类型、热特性、热传导性、含水率、密度、温度等是影响地埋管换热 系统性能的主要因素。就地表而言,垂直地表土方向的导热性大于水平方向 的导热性,岩土的热物性参数可参见表1。
序号
序号
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
岩土名称
粘性土 粘性土 粘性土 粘性土 细砂 细砂 细砂 细砂 细砂 中砂 中砂 粗砂 砾砂 砾砂 粗砾砂 粗砾砂 圆砾 圆砾
表1 岩土热物性参数
天然含水量

(%) 27 29 31.4 20 22.1 11.1 5.5 8 16.1 7 13.8 12.4 8.9 5.3 23.3 21.9 9.5 10.5
的高位电能输入,实现 既能供热又能制冷、低 位热能向高位热能转移 的一种技术。
地下水换热系统(ground water system) 与地下水进行热交换的地热能交换系统,分为直接地下
水换热系统和间接地下水换热系统。投资最小、需回灌、有污垢
直接地下水换热系统 由抽水井取出的地下水,经处理后直
接流经水源热泵机组热交换后返回地下同 一含水层的地下水换热系统。
导温系数

(m2/h) 0.00183 0.00184 0.00223 0.00136 0.00209 0.00165 0.00176 0.00196 0.0021 0.00201 0.00255 0.00285 0.00281 0.0028 0.00228 0.00188 0.00318 0.00198
1) 确定管内流体的流量、公称直径和流体特性。
2) 根据公称直径,确定地埋管的内径。
3) 计算地埋管的断面面积:
式中
A


4

d
2 j
A ——地埋管的断面面积( m2);
d j——地埋管的内径(m)。
三、地埋管水力计算
4) 计算管内流体的流速:
V G 3600 A
式中 V ——管内流体的流速(m/s); G ——管内流体的流量(m3 / h)。
公称壁厚 1.9+0.3 2.3+0.4 2.9+0.4 3.7+0.5 4.6+0.6 5.8+0.7 6.8+0.8 8.2+1.0 10.0+1.1 11.4+1.3 12.7+1.4 14.6+1.6
二、地埋管管材
4. 埋地管道应采用热熔或电熔连接。聚乙烯管道的连接应符合国家现 行标准《埋地聚乙烯给水管道工程技术规程》(CJJ101)的有关规 定。
5. 地埋管宜根据设计中选用的管材长度由厂家成捆供货,以减少埋管 接头数量。竖直地埋管U形管的组对长度应能满足插入钻孔后与水平 环路集管连接的要求。组对好的U形管的两接头部位应及时密封。
6. 竖直地埋管换热器的U形管接头,宜选用定型的U形弯头成品件,不 宜采用直管道煨制弯头,有条件时宜由生产厂家将弯头或定型连接 件与U形管连接好,成套供货。
3. 地埋管质量应符合国家现行标准中的各项规定。聚乙烯管应符合 《给水用聚乙烯(PE)管材》GB/J13663的要求;聚丁烯管应符合 《冷热水用聚丁烯(PB)管道系统》GB/T194732的要求。管材的公 称压力及使用温度应满足设计要求,且管材的公称压力不宜小于 1.0MPa。地埋管外径及壁厚可按表2、表3的规定选用。
相关文档
最新文档