(新课标版)备战2018高考数学二轮复习思想3.1函数与方程思想教学案
高考数学专题复习函数与方程思想教案

高考数学专题复习——函数与方程思想一、教学目标1. 理解函数与方程的关系,掌握函数与方程的基本思想。
2. 熟练运用函数与方程解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 函数与方程的概念及关系2. 函数与方程的性质3. 函数与方程的解法4. 函数与方程在实际问题中的应用5. 典型例题分析与练习三、教学重点与难点1. 函数与方程的关系及其性质2. 函数与方程的解法3. 实际问题中函数与方程的运用四、教学方法1. 采用讲解、讨论、练习相结合的方式进行教学。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 注重启发式教学,引导学生主动探索、积极思考。
五、教学过程1. 导入:回顾函数与方程的基本概念,引导学生思考函数与方程之间的关系。
2. 讲解:详细讲解函数与方程的性质,结合实际例子阐述函数与方程的解法。
3. 讨论:分组讨论实际问题中的函数与方程应用,分享解题心得。
4. 练习:布置针对性的练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调函数与方程在数学中的重要性。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估1. 课后作业:布置相关的习题,巩固课堂所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作意识、交流能力等。
七、教学拓展1. 引入高等数学中的函数与方程理论,提高学生的数学素养。
2. 组织数学竞赛或讲座,激发学生对函数与方程的兴趣。
3. 推荐相关书籍或网络资源,引导学生深入研究函数与方程。
八、教学反思1. 反思教学内容:是否全面讲解了函数与方程的基本概念、性质和解法。
2. 反思教学方法:是否有效地引导学生思考、探索和解决问题。
3. 反思教学效果:学生对函数与方程的理解程度以及实际应用能力的提升。
九、教学案例1. 案例一:讲解一次函数与一元一次方程的关系,引导学生理解函数与方程的解法。
新课标版备战2018高考数学二轮复习难点2.5函数性质与方程不等式等相结合问题教学案理2018040

函数性质与方程、不等式等相结合问题函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段.本文就高中阶段学生存在的困惑加以类型的总结和方法的探讨.1函数与方程关系的应用函数与方程是两个不同的概念,但它们之间有着密切的联系,方程()0f x =的解就是函数()y f x =的图像与x 轴的交点的横坐标,函数()y f x =也可以看作二元方程()0f x y -=通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.(2)当0,1a b ==-时,函数()()()22H x x m f x g x ⎡⎤=--⎣⎦有唯一零点,求正数m 的值.的最小值,函数()()()22H x x m f x g x ⎡⎤=--⎣⎦有唯一零点即函数()H x 的最小值为零.点评:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.【答案】2【解析】由图可得关于x 的方程()f x t =的解有两个或三个(1t =时有三个,1t ≠时有两个),所以关于t 的方程20t bt c ++=只能有一个根1t =(若有两个根,则关于x 的方程()()20f x bf x c ++=⎡⎤⎣⎦有四个或五个根),由()1f x =,可得1x ,2x ,3x 的值分别为0,1,2,1223130112022x x x x x x ++=⨯+⨯+⨯=,故答案为2.点评:本题主要考查分段函数的图象和解析式;2、函数零点与方程根之间的关系及数形结合思想的应用,属于难题. 判断方程()y f x =零点个数 的常用方法:① 直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .本题判定方程()f x t =的根的个数是就利用了方法③. 2 函数与不等式关系的应用函数与不等式都是高中数学的重要内容,也都是高考的重点,在每年的高考试题中这部分内容所占的比例都是很大的.函数是高中数学的主线,方程与不等式则是它的重要组成部分.在很多情况下函数与不等式也可以相互转化,对于函数()y f x =,当0y >时,就转化为不等式()0f x >,借助于函数图像与性质解决有关问题,而同时研究函数的性质,也离不开解不等式的应用.的取值范围为( )【答案】B点睛:研究函数有解问题常常与研究对应方程的实根问题相互转化,根据不等式有解求参数取值范围,通常采用分离参数法,构造不含参数的函数,研究其单调性、极值、最值,从而求出a的范围着重考查了转化与化归思想的应用,同时考查了学生分析问题和解答问题的能力.值范围.点评:本题主要考查利用导数研究函数的单调性、利用导数求函数的最值及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是利用方法①求得实数k 的取值范围的.3 函数、方程和不等式关系的应用 函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念.也体现了函数图像与方程、不等式的内在联系,在高中阶段,应该让学生进一步深刻认识和体会函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学习的基本指导思想,这也是高中数学最为重要的内容之一.而新课程标准中把这个联系提到了十分明朗、鲜明的程度.因此,要高三的复习中,对这部分内容应予以足够的重视.(1)当2a =时,比较()f x 与1的大小;时,点评:本题考查函数的函数的极值、函数的零点、函数与不等式,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想和转化化归思想的应用.综合上面三种题型,可以采取以下几种技巧和方法:①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后在研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。
(新课标)2018届高考数学二轮复习 第二部分 思想方法 剖析指导 第3讲 函数与方程思想讲义 理

-16-
证明: (1)令 g(x)=(1+x)2(1-2x+3x2-4x3),x∈[0,1], 则 g'(x)=-20(1+x)x3≤0,当且仅当 x=0 时取等号,
∴g(x)在[0,1]上单调递减,故 g(x)≤g(0)=1, ∴(1+x)2(1-2x+3x2-4x3)≤1, ∴(1+1������)2+4x3≥1-2x+3x2,
∵x∈[1,e],ln x≤1≤x,且等号不能同时取得,
∴ln x<x,即 x-ln x>0.
∴a≤������������2-l-n2������������恒成立,即 a≤
������2-2������ ������-ln������
-
1 2
=2n-2,
故 xn≤2���1���-2.
综上,2���1���-1≤xn≤2���1���-2(n∈N*).
-14-
热点考题诠释 高考方向解读
函数与方程思想的实质就是用联系和变化的观点描述两个量之 间的依赖关系,刻画数量之间的本质特征,在提出数学问题时,抛开 一些非数学特征,抽象出数量特征,建立明确的函数关系,并运用函 数的知识和方法解决问题.有时需要根据已知量和未知量之间的制 约关系,列出方程(组),进而通过解方程(组),求得未知量.函数与方程 思想是相互联系、相互作用的.
即 f(x)≥1-2x+3x2.
-17-
命题热点一 命题热点二 命题热点三 命题热点四
(2)由(1)知 f(x)≥1-2x+3x2=3
������-
1 3
2
+
2 3
≥
23,
【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三数学:应用函数与方程的思想解决问题

2 2 m m 由①、②得 2 或 2 n 2 n 2
故直线 l 的方程为 y=
2 2 x 2。 x 2或y 2 2
点拨: 本题利用方程将曲线有切点的几何问题转化为方程有实数解的代数问题。 一般地, 当给出方程的解的情况求参数的范围时可以考虑应用“判别式法”, 其中特别要注意解的范 围。
年
级
高三
学
科
数学
版
本
通用版
课程标题 编稿老师
应用函数与方程的思想解决问题 黄志坚 一校 黄楠 二校 林卉 审核 宋树庆
一、应用函数思想解决问题主要从以下四个方面着手: 1. 根据方程与函数的密切关系,可将方程转化为函数来解决; 2. 根据不等式与函数的密切关系,可将不等式问题转化为函数问题,利用函数图象和性 质进行处理; 3. 在解决实际问题中,常涉及到最值问题,通常通过建立目标函数,利用求函数最值的 方法加以解决; 4. 中学数学的某些数学模型(如数列的通项公式或前 n 项和公式,含有一个未知量的二 项式等)可转化为函数问题,利用函数相关知识或借助处理函数问题的方法进行解决。 二、运用方程思想解决问题主要从以下四个方面着手: 1. 把问题中的已知量与未知量建立等量关系,通过解方程来解决; 2. 从问题的结构入手找出主要矛盾,抓住一个关键变量,将等式看成关于这个主变量的 方程,利用方程的特征来解决; 3. 根据几个变量间的关系符合某些方程的性质和特征(如利用根与系数的关系构造方程 等) ,通过研究方程所具有的性质和特征来解决; 4. 中学数学中常见的数学模型(如函数、曲线等) ,常转化为方程问题去解决。
高中数学高考二轮复习函数与方程思想教案

第一讲 函数与方程思想对应学生用书P1251函数与方程思想的含义(1)函数思想函数思想是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程思想方程思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题得以解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决,方程问题也可以转化为函数问题加以解决,如解方程f (x )=0,就是求函数y =f (x )的零点,解不等式f (x )>0(或f (x )<0),就是求函数y =f (x )的正(或负)区间,再如方程f (x )=g (x )的解的问题可以转化为函数y =f (x )与y =g (x )的交点问题,也可以转化为函数y =f (x )-g (x )与x 轴的交点问题,方程f (x )=a 有解,当且仅当a 属于函数f (x )的值域,函数与方程的这种相互转化关系十分重要.类型一 求最值或参数的范围LEIXING 例1[2015·山东高考]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析 由题意知,f (a )=⎩⎪⎨⎪⎧3a -1,a <12a ,a ≥1. 由f (a )<1,解得a <23.所以f (f (a ))=⎩⎪⎨⎪⎧3f (a )-1,f (a )<12f (a ),f (a )≥1 =⎩⎪⎨⎪⎧3(3a -1)-1,a <2323a -1,23≤a <122a ,a ≥1故当a <23时,方程f (f (a ))=2f (a )化为9a -4=23a -1,即18a -8=23a .如图,分别作出直线y =18x -8与函数y =23x =8x 的图象,根据图象分析可知,A 点横坐标为23,故a <23不符合题意.当23≤a <1时,方程f (f (a ))=2f (a )化为23a -1=23a -1,显然方程恒成立.当a ≥1时,方程f (f (a ))=2f (a )化为22a =22a ,显然方程恒成立.所以a 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞.四类参数范围(或最值)的求解方法(1)求字母(式子)的值的问题往往要根据题设条件构建以待求字母(式子)为元的方程(组),然后由方程(组)求得.(2)求参数的取值范围是函数、方程、不等式、数列、解析几何等问题中的重要问题,解决这类问题一般有两种途径:其一,充分挖掘题设条件中的不等关系,构建以待求字母为元的不等式(组)求解;其二,充分应用题设中的等量关系,将待求参数表示成其他变量的函数,然后,应用函数知识求值域.(3)当问题中出现两数积与这两数和时,是构建一元二次方程的明显信息,构造方程后再利用方程知识可使问题巧妙解决.(4)当问题中出现多个变量时,往往要利用等量关系去减少变量的个数,如最后能把其中一个变量表示成关于另一个变量的表达式,那么就可用研究函数的方法将问题解决.模拟演练1 已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d >0,所以(2+2d )2=(2+d )(3+3d ),得d =2或d =-1(舍去),所以数列{a n }的通项公式a n =2n .(2)因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n +3, 令f (x )=2x +1x (x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数,故当x =1时,[f (x )]min =f (1)=3,即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立,则须使k ≥(b n )max =16,所以实数k 的最小值为16.模拟演练2 如果方程cos 2x -sin x +a =0在⎝ ⎛⎦⎥⎤0,π2上有解,则a 的取值范围为________.答案 (-1,1]解析 把方程变形为a =-cos 2x +sin x .设f (x )=-cos 2x +sin x ,x ∈⎝⎛⎦⎥⎤0,π2.显然当且仅当a 属于f (x )的值域时,a =f (x )有解. f (x )=-(1-sin 2x )+sin x =⎝ ⎛⎭⎪⎫sin x +122-54, 且由x ∈⎝ ⎛⎦⎥⎤0,π2知sin x ∈(0,1]. 易求得f (x )的值域为(-1,1],故a 的取值范围是(-1,1]. 类型二 解决图象交点或方程根等问题LEIXING例2 记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min{x 1,x 2,…,x n },则max{min{x +1,x 2-x +1,-x +6}}=( )A.34 B .1C .3 D.72解析 在同一坐标系内画出函数y =x +1,y =x 2-x +1,y =-x +6的图象.如图所示:min{x +1,x 2-x +1,-x +6}的图象为深色部分,即为取在下方的图象部分,则max{min{x +1,x 2-x +1,-x +6}}为图象中的最高点的纵坐标.由⎩⎪⎨⎪⎧y =x +1y =-x +6,可得y =72.解决图象交点及方程根等问题的方法函数图象的交点问题转化为方程根的问题是重要的方程思想,同时方程根的判断问题常转化为函数的零点问题又是重要的函数思想,在解决此类问题时要注意灵活应用.。
高考数学专题复习函数与方程思想教案

高考数学专题复习函数与方程思想教案第一章:函数与方程引论【教学目标】1. 理解函数与方程的概念及其相互关系。
2. 掌握函数与方程的基本性质和常用解法。
【教学内容】1. 函数与方程的定义及例子。
2. 函数与方程的性质分析。
3. 函数与方程的解法探讨。
【教学过程】1. 引入新课:通过实例介绍函数与方程的重要性。
2. 讲解概念:讲解函数与方程的基本概念,引导学生理解其相互关系。
3. 分析性质:分析函数与方程的性质,如单调性、奇偶性等。
4. 解法探讨:介绍常用的函数与方程解法,如代入法、消元法等。
【作业布置】1. 复习函数与方程的基本概念和性质。
2. 练习解简单的函数与方程题目。
第二章:一次函数与一元一次方程【教学目标】1. 掌握一次函数的图像和性质。
2. 学会解一元一次方程。
【教学内容】1. 一次函数的图像和性质。
2. 一元一次方程的解法。
【教学过程】1. 引入新课:通过实际问题引入一次函数和一元一次方程。
2. 讲解概念:讲解一次函数的图像和性质,如斜率、截距等。
3. 解法讲解:讲解一元一次方程的解法,如加减法、乘除法等。
4. 练习巩固:学生练习解一次函数和一元一次方程的题目。
【作业布置】1. 复习一次函数的图像和性质。
2. 练习解一元一次方程。
第三章:二次函数与一元二次方程【教学目标】1. 掌握二次函数的图像和性质。
2. 学会解一元二次方程。
【教学内容】1. 二次函数的图像和性质。
2. 一元二次方程的解法。
【教学过程】1. 引入新课:通过实际问题引入二次函数和一元二次方程。
2. 讲解概念:讲解二次函数的图像和性质,如开口方向、顶点等。
3. 解法讲解:讲解一元二次方程的解法,如因式分解法、求根公式法等。
4. 练习巩固:学生练习解二次函数和一元二次方程的题目。
【作业布置】1. 复习二次函数的图像和性质。
2. 练习解一元二次方程。
第四章:函数与方程的应用【教学目标】1. 学会运用函数与方程解决实际问题。
2. 培养学生的数学应用能力。
(新课标版)备战2018高考数学二轮复习思想3.3数形结合思想教学案
思想3.3 数形结合思想数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数的值域(最值)及求变量的取值范围等.对这类内容的选择题、填空题,数形结合特别有效.数形结合的重点是研究“以形助数”,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,还会有解答题,在考查的数量上,会有多个小题考查数形结合的思想方法.复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系.是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2.运用数形结合思想分析解决问题时,要遵循三个原则:(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线.3.数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.4.数形结合思想在高考试题中主要有以下六个常考点(1)集合的运算及Venn图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线;(5)对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;(6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.5.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域;(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解;(3)在解答题中数形结合思想是探究解题的思路时使用的,不可使用形的直观代替相关的计算和推理论证. 【热点分类突破】类型一 利用数形结合思想讨论方程的根、函数的零点例1.设定义域为R 的函数|1|251,0,()44,0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m =( ) A .6B .4或6C .6或2D .2分析:首先方程22()(21)()0f x m f x m -++=有7个不同的实数解,根据)(x f 的解析式画出)(x f 的图像,可得方程22(21)0t m t m -++=有两个不等实根,其中一根为4,另一根在(0,4)从而可解决问题. 【答案】D建不等式求解.【规律总结】用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.利用数形结合求方程解(或函数的零点)应注意两点:(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.【举一反三】【2018安徽阜阳一中二模】若点分别是函数与的图像上的点,且线段的中点恰好为原点,则称为两函数的一对“孪生点”,若,,则这两个函数的“孪生点”共有()A. 对 B. 对 C. 对 D. 对【答案】B类型二利用数形结合思想解不等式或求参数范围例2.【2018安徽阜阳一中二模】已知,若关于的方程恰好有个不相等的实数根,则实数的取值范围是______________.【答案】【解析】∵,∴,∴,∴当或时,,当时,,∴在上单调递增,在上单调递减,在上单调递增,可作出大致函数图象如图所示:令,则当时,方程有一解;当时,方程有两解;时,方程有三解,∵关于的方程,恰好有4个不相等实数根,∴关于的方程在和上各有一解,∴,解得,故答案为。
2018年高考数学二轮复习考前数学思想领航一函数与方程思想讲学案理
一、函数与方程思想方法一点坐标代入函数(方程)法模型解法点坐标代入函数(方程)法是指把点“放到”函数图象中去“入套”,通过构造方程求解参数的方法.此方法适用于已知函数或函数图象,给出满足条件的点坐标,求其中的参数问题.破解此类题的关键点:①点代入函数,把所给点坐标代入已知函数的解析式中,得到关于参数的方程或不等式.②解含参方程,求解关于参数的方程或不等式.③检验得结论,得出参数的值或取值范围,最后代入方程或不等式进行检验.典例1 函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( )A .2B .3C .2或12 D.12解析 因为函数y =a x (a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),且y =log a x 的图象过点(a ,a ),所以a =log a a ,所以a a =a ,所以a =12,检验易知当a =12时,函数有意义.故选D. 答案 D思维升华 应用此方法的易错点是忘记检验,在解出方程后,一定要回头望,把所求的解代入原函数中检验是否有意义.跟踪演练1 函数y =log a x (a >0,且a ≠1)的反函数的图象过点(a ,3a ),则a 的值为_____.答案 13解析 因为函数y =log a x (a >0,且a ≠1)的反函数y =a x (a >0,且a ≠1)的图象过点(a ,3a ),所以3a =a a, 即13a =a a ,所以a =13.经检验知a =13符合要求. 方法二 平面向量问题的函数(方程)法模型解法平面向量问题的函数(方程)法是把平面向量问题,通过模、数量积等转化为关于相应参数的函数(方程)问题,从而利用相关知识结合函数或方程思想来处理有关参数值问题.破解此类题的关键点:①向量代数化,利用平面向量中的模、数量积等结合向量的位置关系、数量积公式等进行代数化,得到含有参数的函数(方程).②代数函数(方程)化,利用函数(方程)思想,结合相应的函数(方程)的性质求解问题. ③得出结论,根据条件建立相应的关系式,并得到对应的结论.典例2 已知a ,b ,c 为平面上的三个向量,又a ,b 是两个相互垂直的单位向量,向量c 满足|c |=3,c·a =2,c·b =1,则对于任意实数x ,y ,|c -x a -y b |的最小值为______. 解析 由题意可知|a |=|b |=1, a·b =0,又|c |=3,c·a =2,c·b =1,所以|c -x a -y b |2=|c |2+x 2|a |2+y 2|b |2-2x c·a -2y c·b +2xy a·b=9+x 2+y 2-4x -2y =(x -2)2+(y -1)2+4,当且仅当x =2,y =1时,|c -x a -y b |2min =4,所以|c -x a -y b |的最小值为2.答案 2思维升华 平面向量中含函数(方程)的相关知识,对平面向量的模进行平方处理,把模问题转化为数量积问题,再利用函数与方程思想来分析与处理,这是解决此类问题一种比较常见的思维方式.跟踪演练2 已知e 1,e 2是平面上两相互垂直的单位向量,若平面向量b 满足|b |=2,b·e 1=1,b·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.答案 2解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b·e 1-2y b·e 2+2xy e 1·e 2=22+x 2+y 2-2x -2y=(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值,此时|b -(x e 1+y e 2)|取得最小值 2.方法三 不等式恰成立问题函数(方程)法模型解法含参不等式恰成立问题函数(方程)法是指通过构造函数,把恰成立问题转化为函数的值域问题,从而得到关于参数的方程的方法.破解此类题的关键点:①灵活转化,即“关于x 的不等式f (x )<g (a )在区间D 上恰成立”转化为“函数y =f (x )在D 上的值域是(-∞,g (a ))”;“不等式f (x )>g (a )在区间D 上恰成立”转化为“函数y =f (x )在D 上的值域是(g (a ),+∞)”.②求函数值域,利用函数的单调性、导数、图象等求函数的值域.③得出结论,列出参数a 所满足的方程,通过解方程,求出a 的值.典例3 关于x 的不等式e x -x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立,则a 的取值集合为________.解析 关于x 的不等式e x -x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立⇔函数g (x )=e x -12x 2-1x 在⎣⎢⎡⎭⎪⎫12,+∞上的值域为⎣⎢⎡⎭⎪⎫a -94,+∞. 因为g ′(x )=e x (x -1)-12x 2+1x 2,令φ(x )=e x (x -1)-12x 2+1,x ∈⎣⎢⎡⎭⎪⎫12,+∞, 则φ′(x )=x (e x-1).因为x ≥12,所以φ′(x )>0, 故φ(x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 所以φ(x )≥φ⎝ ⎛⎭⎪⎫12=78-e 2>0. 因此g ′(x )>0,故g (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 则g (x )≥g ⎝ ⎛⎭⎪⎫12=e 12-18-112=2e -94, 所以a -94=2e -94,解得a =2e , 所以a 的取值集合为{2e}.答案 {2e}思维升华 求解此类含参不等式恰成立问题时注意与含参不等式恒成立问题区分开,含参不等式恰成立问题一般转化为求函数的值域,得参数的方程;而含参不等式恒成立问题一般转化为最值问题.跟踪演练3 关于x 的不等式x +4x-1-a 2+2a >0在(2,+∞)上恰成立,则a 的取值集合为__________.答案 {-1,3}解析 关于x 的不等式x +4x -1-a 2+2a >0在(2,+∞)上恰成立⇔函数f (x )=x +4x在(2,+∞)上的值域为(a 2-2a +1,+∞).由f (x )=x +4x,x ∈(2,+∞), 可得f ′(x )=1-4x 2=x 2-4x 2>0, 所以f (x )=x +4x在(2,+∞)上为单调递增函数, 所以f (x )>f (2)=4.又关于x 的不等式x +4x>a 2-2a +1在(2,+∞)上恰成立,所以a 2-2a +1=4,解得a =-1或a=3.方法四 解析几何问题的函数(方程)法模型解法解析几何问题的函数(方程)法是解决解析几何问题中比较常见的一种方法,通过函数(方程)法把解析几何问题代数化,利用函数或方程进行求解,其关键是根据题意,构造恰当的函数或建立相应的方程解决问题.破解此类题的关键点:①代数化,把直线、圆、圆锥曲线以及直线与圆、直线与圆锥曲线的位置关系等转化为代数问题,构造函数解析式或方程.②函数(方程)应用,利用函数的相关性质或方程思想来求解含有参数的解析几何问题. ③得出结论,结合解析几何中的限制条件和函数(方程)的结论得出最终结论.典例4 已知直线l 过定点S (4,0),与x 24+y 23=1(x ≠±2)交于P ,Q 两点,点P 关于x 轴的对称点为P ′,连接P ′Q 交x 轴于点T ,当△PQT 的面积最大时,直线l 的方程为_____. 解析 设直线l 的方程为x =ky +4(k ≠0), 联立⎩⎪⎨⎪⎧ x =ky +4,x 24+y 23=1, 消去x 得(3k 2+4)y 2+24ky +36=0, Δ=576k 2-4×36(3k 2+4)=144(k 2-4)>0,即k 2>4.设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1).由根与系数的关系,得 ⎩⎪⎨⎪⎧ y 1+y 2=-24k 3k 2+4, ①y 1y 2=363k 2+4,②直线P ′Q 的方程为y =y 2+y 1x 2-x 1(x -x 1)-y 1, 令y =0,得x =x 1y 2+x 2y 1y 1+y 2=(ky 1+4)y 2+y 1(ky 2+4)y 1+y 2=2ky 1y 2+4(y 1+y 2)y 1+y 2, 将①②代入上式得x =1,即T (1,0),所以|ST |=3,所以S △PQT =|S △STQ -S △STP |=12|ST ||y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32·⎝ ⎛⎭⎪⎫-24k 3k 2+42-4×363k 2+4 =18k 2-43k 2+4=18k 2-43(k 2-4)+16 =183k 2-4+16k 2-4≤334, 当且仅当k 2=283,即k =±2213时取等号. 故所求直线l 的方程为x =2213y +4或x =-2213y +4. 答案 x =2213y +4或x =-2213y +4 思维升华 直线与圆锥曲线的综合问题,通常借助根的判别式和根与系数的关系进行求解,这是方程思想在解析几何中的重要应用.解析几何问题的方程(函数)法可以拓展解决解析几何问题的思维,通过代数运算、方程判定等解决解析几何中的位置关系、参数取值等问题. 跟踪演练4 椭圆C 1:x 29+y 24=1和圆C 2:x 2+(y +1)2=r 2 (r >0),若两条曲线没有公共点,则r 的取值范围是______________.答案 (0,1)∪⎝ ⎛⎭⎪⎫3305,+∞ 解析 方法一 联立C 1和C 2的方程,消去x ,得到关于y 的方程-54y 2+2y +10-r 2=0, ① 方程①可变形为r 2=-54y 2+2y +10, 把r 2=-54y 2+2y +10看作关于y 的函数. 由椭圆C 1可知,-2≤y ≤2, 因此,求使圆C 2与椭圆C 1有公共点的r 的集合,等价于在定义域为y ∈[-2,2]的情况下,求函数r 2=f (y )=-54y 2+2y +10的值域. 由f (-2)=1,f (2)=9,f ⎝ ⎛⎭⎪⎫45=545, 可得f (y )的值域是r 2∈⎣⎢⎡⎦⎥⎤1,545,即r ∈⎣⎢⎡⎦⎥⎤1,3305,它的补集就是圆C 2与椭圆C 1没有公共点的r 的集合,因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫3305,+∞. 方法二 联立C 1和C 2的方程消去x ,得到关于y 的方程-54y 2+2y +10-r 2=0.① 两条曲线没有公共点,等价于方程-54y 2+2y +10-r 2=0要么没有实数根,要么有两个根y 1,y 2∉[-2,2].若没有实数根,则Δ=4-4×⎝ ⎛⎭⎪⎫-54×(10-r 2)<0, 解得r >3305或r <-3305⎝ ⎛⎭⎪⎫由于r >0,则r <-3305舍去. 若两个根y 1,y 2∉[-2,2],设φ(y )=-54y 2+2y +10-r 2,其图象的对称轴方程为y =45∈[-2,2].则⎩⎪⎨⎪⎧ φ(2)=9-r 2>0,φ(-2)=1-r 2>0,又r >0,解得0<r <1.因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫3305,+∞.。
最新高三数学第二轮专题复习函数方程思想教学设计
高三数学第二轮专题复习:函数方程思想高考要求函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决重难点归纳函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化 考生应做到(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略典型题例示范讲解例1已知函数f (x )=log m33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由命题意图 本题重在考查函数的性质,方程思想的应用知识依托 函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组错解分析 第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根技巧与方法 本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题解 (1)⇔>+-033x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)]∵0<m <1, f (x )为减函数 ∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m 即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf m m m m m ∴0<m <432-故当0<m <432-时,满足题意条件的m 存在 例2已知函数f (x )=x 2–(m +1)x +m (m ∈R )(1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角 求证 m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3; (3)在(2)的条件下,若函数f (sin α)的最大值是8,求m命题意图 本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围知识依托 一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式错解分析 第(1)问中易漏掉Δ≥0和ta n(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键技巧与方法 深挖题意,做到题意条件都明确,隐性条件注意列 列式要周到,不遗漏(1)证明 f (x )+4=0即x 2–(m +1)x +m +4=0 依题意⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角∴2π<A +B <π∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--0310********m m m m m m ∴m ≥5 (2)证明 ∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解 ∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8 即1+(m +1)+m =8,∴m =3例3关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为解析 设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值 答案 (–∞,–1)∪(2,+∞)例4对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点 已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值解 (1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3故当a =1,b =–2时,f (x )的两个不动点为–1,3(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根∴Δ=b 2–4ab +4a >0(b ∈R )恒成立 于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称 ∴k =–1 设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根 ∴x ′=y ′=abx x 2221-=+, 又点M 在直线1212++-=a x y 上有121222++=-a ab a b , 即aa a ab 121122+-=+-=∵a >0,∴2a +a 1≥22当且仅当2a =a 1即a =22∈(0,1)时取等号, 故b ≥–221,得b学生巩固练习1 已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A (0,41] B (0,41) C [41,1) D (41,21)2 函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A [45,+∞) B (1,45] C [47,+∞) D (1,47]3 关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a4 如果y =1–sin 2x –m cos x 的最小值为–4,则m5 设集合A ={x |4x –2x +2+a =0,x ∈R }(1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围参考答案1 解析 考查函数y 1=x 和y 2=(2a )x 的图象,显然有0<2a <1由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案 答案 A2 解析 由题意可得f (–x +1)=–f (x +1) 令t =–x +1,则x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x )当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞) 答案 C3 解析 显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10 又x =a -1029>3可得a 31 答案 31<a <10 4 解析 原式化为4)2(cos 22m m x y --= 当2m <–1,y min =1+m =–4⇒m =–5当–1≤2m ≤1,y min =42m -=–4⇒m =±4不符当2m>1,y min =1–m =–4⇒m =5 答案 ±55 解 (1)令2x =t (t >0),设f (t )=t 2–4t +a由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4验证t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立 即g (a )=(x –2)a–(x 2–6x )>0恒成立 只须175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2。
新课标版备战2018高考数学二轮复习难点2.5函数性质与方程不等式等相结合问题教学案理20180408527
函数性质与方程、不等式等相结合问题 函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段.本文就高中阶段学生存在的困惑加以类型的总结和方法的探讨.1函数与方程关系的应用函数与方程是两个不同的概念,但它们之间有着密切的联系,方程()0f x =的解就是函数()y f x =的图像与x 轴的交点的横坐标,函数()y f x =也可以看作二元方程()0f x y -=通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.(2)当0,1a b ==-时,函数()()()22H x x m f x g x ⎡⎤=--⎣⎦有唯一零点,求正数m 的值.()()()22H x x m f x g x ⎡⎤=--⎣⎦有唯一零点即函数()H x 的最小值为零.点评:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.【答案】2【解析】由图可得关于x 的方程()f x t =的解有两个或三个(1t =时有三个,1t ≠时有两个),所以关于t的方程20t bt c ++=只能有一个根1t =(若有两个根,则关于x 的方程()()20f x bf x c ++=⎡⎤⎣⎦有四个或五个根),由()1f x =,可得1x ,2x ,3x 的值分别为0,1,2,1223130112022x x x x x x ++=⨯+⨯+⨯=,故答案为2.点评:本题主要考查分段函数的图象和解析式;2、函数零点与方程根之间的关系及数形结合思想的应用,属于难题. 判断方程()y f x =零点个数 的常用方法:① 直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .本题判定方程()f x t =的根的个数是就利用了方法③.2 函数与不等式关系的应用 函数与不等式都是高中数学的重要内容,也都是高考的重点,在每年的高考试题中这部分内容所占的比例都是很大的.函数是高中数学的主线,方程与不等式则是它的重要组成部分.在很多情况下函数与不等式也可以相互转化,对于函数()y f x =,当0y >时,就转化为不等式()0f x >,借助于函数图像与性质解决有关问题,而同时研究函数的性质,也离不开解不等式的应用.为( )【答案】B点睛:研究函数有解问题常常与研究对应方程的实根问题相互转化,根据不等式有解求参数取值范围,通常采用分离参数法,构造不含参数的函数,研究其单调性、极值、最值,从而求出a 的范围着重考查了转化与化归思想的应用,同时考查了学生分析问题和解答问题的能力.点评:本题主要考查利用导数研究函数的单调性、利用导数求函数的最值及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是利用方法①求得实数k 的取值范围的.3 函数、方程和不等式关系的应用函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念.也体现了函数图像与方程、不等式的内在联系,在高中阶段,应该让学生进一步深刻认识和体会函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学习的基本指导思想,这也是高中数学最为重要的内容之一.而新课程标准中把这个联系提到了十分明朗、鲜明的程度.因此,要高三的复习中,对这部分内容应予以足够的重视.(1)当2a =时,比较()f x 与1的大小;在()0,+∞上是增函数⇒故当1x >时,()()11f x f >=;当1x =时,()()11f x f ==;当1x <时,点评:本题考查函数的函数的极值、函数的零点、函数与不等式,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想和转化化归思想的应用.综合上面三种题型,可以采取以下几种技巧和方法:①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后在研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思想3.1 函数与方程思想1. 函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的思想是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2. 和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化.对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段的长、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决. 【热点分类突破】类型一 函数与方程思想在数列中的应用例1 .【2018河南林州一中调研】设{}n a 是公比大于1的等比数列, n S 为数列{}n a 的前n 项和,已知37S =,且123,,1a a a - 成等差数列. (1)求数列{}n a 的通项公式;(2)若421log ,1,2,3......n n b a n +== ,求和例2 知数列{}n a中,11a =,且点()()*1n n P a a n N +∈,在直线10x y -+=上.⑴求数列{}n a 的通项公式; ⑵若函数()123123nnf n n a n a n a n a =++++++++…(n N ∈,且2n ≥),求函数()f n 的最小值; ⑶设1n nb a =,n S 表示数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得()()12311n n S S S S S g n -++++=-⋅…对于一切不小于2的自然数n 恒成立?若存在,写出()g n 的解析式,并加以证明;若不存在,试说明理由.试题分析:(1)将点)(1,+n n a a P 代入直线01=--y x 得到11=-+n n a a ,∴数列}{n a 是以1为首项,1为公差的等差数列,再由11=a 得到}{n a 的通项公式;(2)由(1)可得nnn n n f 22211)(+++++=, ∴22112213221)1(+++++-+++++=+n n n n n n n n n f ,0)()1(≥-+∴n f n f ,)(n f ∴是单调递增的,故)(n f 的最小值是65)2(=f ;(3)由(1)及nS n b n n 1312111++++=⇒= ,)2(11≥=-∴-n nS S n n ,即1)1(11+=----n n n S S n nS ,1,,1)2()1(112221+=-+=---∴---S S S S S n S n n n n ,,1-n 1211++++=-∴-n n S S S S nS )2()1(121≥⋅-=-=+++∴-n n S n nS S S S n n n ,最后将该式整理即可得出n n g =)(.试题解析:⑴ 点)(1,+n n a a P 在直线01=--y x 上,即11=-+n n a a ,且11=a ,∴数列}{n a 是以1为首项,1为公差的等差数列,)2(1)1(1≥=⋅-+=∴n n n a n ,11=a 也满足,n a n =∴,⑵ n n n n n f 22211)(+++++=,∴22112213221)1(+++++-+++++=+n n n n n n n n n f , 0)()1(≥-+∴n f n f ,)(n f ∴是单调递增的,故)(n f 的最小值是65)2(=f .⑶ n S n b n n 1312111++++=⇒= ,)2(11≥=-∴-n nS S n n ,即1)1(11+=----n n n S S n nS ,1,,1)2()1(112221+=-+=---∴---S S S S S n S n n n n ,,1-n 1211++++=-∴-n n S S S S nS )2()1(121≥⋅-=-=+++∴-n n S n nS S S S n n n ,n n g =∴)(.故存在关于n 的整式n n g =)(,使等式对于一切不小于2的自然数n 恒成立.【规律总结】(1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意用函数的思想求解. 【举一反三】已知等比数列{}n a 的公比1q >,12a =且1a ,2a ,38a -成等差数列.数列{}n b 的前n 项和为n S ,且28n S n n =-.(1)分别求出数列{}n a 和数列{}n b 的通项公式; (2)设n n nb c a =,若n c m £,对于n *"蜰恒成立,求实数m 的最小值.类型二 函数与方程思想在方程中的应用例3已知函数()f x 是定义在R 上的偶函数,若方程()2123f x x x +=+-的零点分别为12,,...,n x x x ,则12n x x x +++=( )A .nB .n - C.2n - D .3n - 【答案】B【解析】函数()f x 是定义在R 上的偶函数,所以函数()f x 的图象关于y 轴对称,函数()1f x +的图象是由函数()f x 的图象向左平移1个单位得到的,所以函数()1f x +的对称轴为直线1x =-,且函数2()23g x x x =+-的对称轴也是直线1x =-,所以方程()2123f x x x +=+-零点关于直线1x =-对称,所以有12n x x x n +++=-,故选B.【规律总结】研究此类含参数的三角、指数、对数函数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.【举一反三】 定义域为R 的函数|1|251,0,()44,0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m =( )A .6B .4或6C .6或2D .2【答案】D类型三 函数与方程思想在不等式中的应用例4【2018河南名校联考】已知函数()xf x e ax =-.(1)当2a =时,求函数()f x 的单调区间;(2)若存在[],0,2m n ∈,且试题分析:(1)求函数的单调区间,转化为求函数导数值大于零或小于零的不等式的解;(2)根据题意对a 进行分类讨论,当0a ≤时显然不行, 0a >时,不能有(),ln ,m n a ∈+∞,设02m n ≤<≤,则由0ln 2m a n ≤<<≤即可,利用单调性即可证出.因为()f x 在(),ln m a 上单调递减,在()ln ,a n 上单调递增,且所以当m x n ≤≤时, ()()()f x f m f n ≤=.由02m n ≤<≤,,可得[]1,m n ∈,故()()()1f f m f n ≤=, 又()f x 在(),ln a -∞上单调递减,且0ln m a ≤<,所以()()0f m f ≤, 所以()()10f f ≤,同理()()12f f ≤,即21{2e a e a e a-≤-≤-,解得21e a e e -≤≤-,体现了导数的工具性以及函数、方程的数学思想. 【举一反三】已知函数()ln f x ax x =+,其中a ∈R . (Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范围; (Ⅱ)当e a =-时,证明:()20f x +≤; (Ⅲ)当e a =-时,试判断方程类型四 函数与方程思想在解析几何中的应用例5【2018广西柳州摸底联考】已知过抛物线2:2(0)C y px p =>的焦点F 于()()112212,,,()A x y B x y x x <两点,且6AB =. (1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且M D M E ⊥,判断直线DE 是否过定点?并说明理由.试题分析:(1)利用点斜式设直线直线AB 的方程,与抛物线联立方程组,结合韦达定理与弦长公式求AB ,再根据6AB =解得2p =.(2)先设直线DE 方程x my t =+, 与抛物线联立方程组,结合韦达定理化简MD ME ⊥,得48t m =+或44t m =-+,代入DE 方程可得直线DE 过定点()8,4-()()()2212121212343216y y y y y y y y =-++-++ 22161232160t m t m =--+-=即2212321616t t m m -+=+,得: ()()226421t m -=+,∴()6221t m -=±+,即48t m =+或44t m =-+,代人①式检验均满足0∆>,∴直线DE 的方程为: ()4848x my m m y =++=++或()44x m y =-+.∴直线过定点()8,4-(定点()4,4不满足题意,故舍去).【规律总结】1、在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量;2. 当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.【举一反三】【20182.(1)求椭圆C 的标准方程;(2)设直线:l y kx m =+与椭圆C 交于,M N 两点, O 为坐标原点,若,求原点O 到直线l 的距离的取值范围.,∵原点O到直线l 的距离,∴原点O到直线l 的距离的取值范围是函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决;方程思想的实质就是将所求的量设成未知数,根据题中的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决;函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的.函数思想重在对问题进行动态的研究,方程思想则是在动中求解,研究运动中的等量关系.。