三角函数及不等式练习题

合集下载

三角函数不等式练习题及解答

三角函数不等式练习题及解答

三角函数不等式练习题及解答一、简介三角函数是数学中的一类特殊函数,包括正弦函数、余弦函数和正切函数等。

在解三角函数不等式时,我们需要运用这些函数的性质和相关的数学知识。

本文将为大家提供一些三角函数不等式的练习题及解答,帮助大家更好地掌握这一内容。

二、练习题与解答1. 解不等式sin(x) > 0的解集。

解析:根据正弦函数的性质可知,当角度x在区间(0, π)和(2π, 3π)等以π为周期的区间时,sin(x) > 0。

因此,该不等式的解集为S = {x | x∈ (0, π) ∪ (2π, 3π)}。

2. 解不等式cos(2x) ≥ 0的解集。

解析:将不等式转化为等价形式,cos(2x) = 0。

则有2x = π/2 + kπ (k 为整数) 或2x = 3π/2 + kπ (k为整数)。

化简得x = π/4 + kπ/2 或x = 3π/4+ kπ/2。

因此,该不等式的解集为S = {x | x ∈ [π/4 + kπ/2, 3π/4 + kπ/2],k为整数}。

3. 解不等式tan(x) < 2的解集。

解析:tan(x) < 2可转化为tan(x) - 2 < 0。

根据正切函数的性质可知,tan(x) - 2 < 0的解集为角度x在区间(-π/4, arctan(2))和(arctan(2) + kπ, π/4+ kπ),其中k为整数。

因此,该不等式的解集为S = {x | x ∈ (-π/4, arctan(2)) ∪ (arctan(2) + kπ, π/4 + kπ),k为整数}。

4. 解不等式sin(3x) ≤ cos(2x)的解集。

解析:将不等式转化为等价形式得sin(3x) - cos(2x) ≤ 0。

对于这种类型的不等式,我们可以使用图像法和代数法来求解。

图像法解析:将sin(3x)和cos(2x)的图像绘制在同一坐标系中,找到它们的交点,即满足sin(3x) - cos(2x) ≤ 0的解集。

三角函数的方程与不等式练习题

三角函数的方程与不等式练习题

三角函数的方程与不等式练习题1. 解方程:a) 解方程sin(x) = 0.5,其中0 ≤ x ≤ π。

解答:根据 sin(x) = 0.5 的定义,可以推导得到x = π/6 或x = 5π/4。

然而,由于题目给定了0 ≤ x ≤ π 的范围限制,因此只有x = π/6 符合条件。

b) 解方程3sin(2x) + 2 = 0,其中0 ≤ x ≤ 2π。

解答:将方程转化为 sin(2x) = -2/3。

根据 sin(2x) = -2/3 的定义,可以推导得到 x = (7π/6 + 2kπ)/2 或 x = (11π/6 + 2kπ)/2,其中 k 是整数。

然而,由于题目给定了0 ≤ x ≤ 2π 的范围限制,需要筛选符合条件的解。

将 k 代入方程中,可得x = (7π/6, 11π/6, 19π/6, 23π/6)。

其中,只有x = 7π/6 和x = 11π/6 在0 ≤ x ≤ 2π 的范围内。

因此,方程3sin(2x) + 2 = 0 的解为x = 7π/6 和x = 11π/6。

2. 解不等式:a) 解不等式sin(x) > 0.5,其中0 ≤ x ≤ 2π。

解答:首先,解方程sin(x) = 0.5,得到x = π/6 或x = 5π/6。

然后,通过画图或查表可以确定 sin(x) > 0.5 的解在0 ≤ x ≤ 2π 范围内为(π/6, π/2) 和(5π/6, 3π/2)。

因此,不等式sin(x) > 0.5 的解为 x 属于开区间(π/6, π/2) 和(5π/6, 3π/2)。

b) 解不等式2cos(3x) ≤ 1,其中0 ≤ x ≤ 2π。

解答:将不等式转化为cos(3x) ≤ 1/2。

根据cos(3x) ≤ 1/2 的图像或查表可以得到,解在整个定义域内为 (-∞, π/3] ∪ [5π/3, +∞)。

然而,由于题目给定了0 ≤ x ≤ 2π 的范围限制,需要筛选符合条件的解。

高一数学 不等式、基本不等式与三角函数复习题(解析版)

高一数学 不等式、基本不等式与三角函数复习题(解析版)

0,a,b
的等比中项为
2,则
a
+
1 b
+
b
+
1的最小值为(
a

A.3
B.4
C.5
D.4 2
【答案】C
【详解】
∵ a + 1 + b + 1 = (a + b) + a+b = (a + b)(1 + 1 ) = 5 (a + b) ≥ 5 ⋅ 2 ab = 5,
b
a
ab
ab 4
4
等号成立当且仅当 a = b = 2,∴原式的最小值为 5.
(1)∵
a
1
sin
x,
sin
x

b
cos
x,1
∴ f x 1 sin x cos x sin x sin x cos x sin x cos x 1 sin 2x
2 ∴ T 2 .
2
(2) g x (1 sin x)cos x sin x sin x cos x sin x cos x
4
8
由图可得 x1 与 x2 关于 x
3 8
对称,
x1 x2
2 3 8
3 4
故选:A
9.已知
sin
6
3 5
,则
cos
4 3


4
A.
5
【答案】B
3
B.
5
C. 4 5
【详解】
D.- 3 5
cos
4 3
cos(3 2
(
6
)]
sin(
6

综合算式专项练习题三角函数与不等式组

综合算式专项练习题三角函数与不等式组

综合算式专项练习题三角函数与不等式组在数学中,三角函数与不等式组是高中阶段的重要知识点,它们广泛应用于几何、代数和数学分析等领域。

通过综合算式专项练习题,我们能够更好地理解和掌握三角函数与不等式组的概念和解题方法。

本文将为大家带来一些综合算式专项练习题,帮助读者加深对此类题型的理解。

练习题一:求解三角函数的值1. 若角A的终边经过点(3,4),则sinA、cosA、tanA的值分别为多少?解析:根据勾股定理可知,当一个角A的终边经过点(3,4)时,其对应的直角三角形的斜边为5(3²+4²=5²)。

因此,sinA=4/5,cosA=3/5,tanA=4/3。

练习题二:解三角方程2. 解方程sinx+cosx=1的解集。

解析:将方程sinx+cosx=1转化为tan(x/2)的方程,有tan(x/2+π/4)=1。

根据解三角方程的一般步骤,解得x=2nπ+π/2和x=2nπ+7π/4,其中n为整数。

练习题三:求解不等式组3. 求解不等式组{sinx>0, cosx≤0}的解集。

解析:首先求解sinx>0的解集,得到x∈(2kπ, (2k+1)π),其中k为整数。

其次求解cosx≤0的解集,得到x∈[(2k+1)π/2, 2kπ+(3π/2)],其中k 为整数。

最后求解不等式组的解集,即求解两个不等式的交集,得到x∈(2kπ, (2k+1)π/2],其中k为整数。

练习题四:变量替换求解4. 求解不等式组{sin^2x+2cos^2x≤1, sinx≥0}的解集。

解析:首先,将sin^2x+2cos^2x≤1转化为2cos^2x≤1-sin^2x,再将其化简为cos^2x+sin^2x≥1/2。

由于cos^2x+sin^2x=1,所以不等式组化简为1≥1/2,因此该不等式组的解集为全体实数。

练习题五:综合运用三角函数与不等式组5. 求解不等式组{tanx<1, cosx>0}的解集。

基本不等式三角函数客观题

基本不等式三角函数客观题

考点一线性规划求目标函数最大值或最小值的步骤:作可行域、画平行线、解方程组、求最值.例题1 设z=2x+y中x,y满足下列条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩求z的最大值和最小值.解:作出二元一次不等式组43 35251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩所表示的平面区域(如图阴影部分所示)即可行域.考虑z=2x+y,将它变形为y=-2x+z,这是斜率为-2,随z变化的一簇平行直线,z是直线在y轴上的截距,当直线截距最大时,z的值最大.当然直线要与可行域相交,即在满足约束条件时目标函数z=2x+y取得最大值;当直线截距最小时,z的值最小,即在满足约束条件时目标函数z=2x+y取得最小值.由图可见,当直线z=2x+y经过可行域上的点A时,截距最大,即z最大.解方程组43035250x yx y-+=⎧⎨+-=⎩得A的坐标为(5,2).∴zmax=2×5+2=12.当直线z=2x+y经过可行域上的点B时,截距最小,即z最小.解方程组4301x yx-+=⎧⎨=⎩得B的坐标为(1,1).∴zmin=2x+y=2×1+1=3.习题1设实数,x y满足不等式组250270,x yx yx+-⎧⎪+-⎨⎪⎩>>≥,y≥0,若,x y为整数,则34x y+的最小值是A.14 B.16 C.17 D.19 【答案】B习题2 设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为A .(1,1 B .(1+∞)C .(1,3 )D .(3,+∞)【答案】A习题3 若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6考点二 基本不等式1、均值定理: 若0a >,0b >,则a b +≥,即2a b+≥. ()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭; 2a b+称为正数a 、ba 、b 的几何平均数. 2、均值定理的应用:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值. 注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。

专题十七 与三角函数结合之证明不等式问题解析版

专题十七 与三角函数结合之证明不等式问题解析版

专题十七与三角函数结合之证明不等式问题1.已知函数f(x)=e x sin x﹣ax.(Ⅰ)当a=0时,求曲线y=f(x)在(0,f(0))处的切线方程;(Ⅱ)当a≤0时,判断f(x)在上的单调性,并说明理由;(Ⅲ)当a<1时,求证:,都有f(x)≥0.【分析】(Ⅰ)根据题意,当a=0时,f(x)=e x sin x,计算其导数进而可得f'(0)=1,又由f(0)=e0sin0=0,由直线的点斜式方程计算可得答案;(Ⅱ)根据题意,求出f(x)的导数,由a的范围,结合函数的单调性与函数导数的关系分析可得结论;(Ⅲ)根据题意,分a≤0与0<a<1两种情况讨论,利用导数分析函数的单调性与最小值,综合即可得答案.【解答】解:(Ⅰ)当a=0时,f(x)=e x sin x,则有f′(x)=e x sin x+e x cos x,则f'(0)=1.又f(0)=e0sin0=0,所以曲线y=f(x)在(0,f(0))处的切线方程为y=x;(Ⅱ)因为f(x)=e x sin x﹣ax,所以f'(x)=e x(sin x+cos x)﹣a=,因为,所以.所以.所以当a≤0时,f'(x)≥0,所以f(x)在区间单调递增;(Ⅲ)证明:由(Ⅱ)可知,当a≤0时,f(x)在区间单调递增,所以时,f(x)≥f(0)=0.当0<a<1时,设g(x)=f'(x),则g'(x)=e x(sin x+cos x)+e x(cos x﹣sin x)=2e x cos x,g (x ),g '(x )随x 的变化情况如下表:xg '(x ) + 0 ﹣ g (x )1﹣ag (x )递增极大值g (x )递减﹣a所以f '(x )在上单调递增,在上单调递减,因为f '(0)=1﹣a >0,,所以存在唯一的实数,使得f '(x 0)=0,且当x ∈(0,x 0)时,f '(x )>0,当时,f '(x )<0, 所以f (x )在[0,x 0]上单调递增,f (x )在上单调递减. 又 f (0)=0,,所以当0<a <1时,对于任意的,f (x )≥0. 综上所述,当a <1时,对任意的,均有f (x )≥0.【点评】本题考查函数导数的应用,涉及利用导数求切线方程以及最值问题,属于综合题. 2.已知函数.(Ⅰ)求曲线y =f (x )在x =0处的切线方程; (Ⅱ)求f (x )在(0,π)上的单调区间;(Ⅲ)当m >1时,证明:g (x )在(0,π)上存在最小值. 【分析】(I )利用导数的几何意义求出切线的斜率,即可求解; (II )令f ′(x )=0,即,x ∈(0,π),得,然后分析当x 变化时,f ′(x ),f (x )变化关系即可;(III )结合函数的导数与单调性的关系判断g (x )在(0,π)上单调性,即可证明 【解答】解:(Ⅰ)因为f (x )=x ﹣2sin x +1,所以f ′(x )=1﹣2cos x则f(0)=1,f′(0)=﹣1,所以切线方程为y=﹣x+1……………………(4分)(Ⅱ)令f′(x)=0,即,x∈(0,π),得当x变化时,f′(x),f(x)变化如下:xf′(x)﹣0+f(x)减最小值增所以函数f(x)的单调递减区间为,单调递增区间为…………………(8分)(Ⅲ)因为,所以g′(x)=x﹣m sin x令h(x)=g′(x)=x﹣m sin x,则h′(x)=1﹣m cos x……………(9分)因为m>1,所以所以h′(x)=1﹣m cos x=0,即在(0,π)内有唯一解x0当x∈(0,x0)时,h′(x)<0,当x∈(x0,π)时,h′(x)>0,所以h(x)在(0,x0)上单调递减,在(x0,π)上单调递增.……………(11分)所以h(x0)<h(0)=0,又因为h(π)=π>0所以h(x)=x﹣m sin x在(x0,π)⊆(0,π)内有唯一零点x1……………(12分)当x∈(0,x1)时,h(x)<0即g′(x)<0,当x∈(x1,π)时,h(x)>0即g′(x)>0,……………(13分)所以g(x)在(0,x1)上单调递减,在(x1,π)上单调递增.所以函数g(x)在x=x1处取得最小值即m>1时,函数g(x)在(0,π)上存在最小值……………………………………(14分)【点评】本题主要考查了函数导数与单调性的关系的应用,导数的几何意义的应用,属于综合试题3.已知函数f(x)=x﹣sin x.(Ⅰ)求曲线y=f(x)在点(,f())处的切线方程;(Ⅱ)求证:当x∈(0,)时,0<f(x)<x3.【分析】(Ⅰ)求出f′(x)=1﹣cos x,利用导数的几何意义能求出曲线y=f(x)在点(,f())处的切线方程.(Ⅱ)由f′(x)=1﹣cos x>0,得f(x)是增函数,从而f(x)>f(0)=0﹣sin0=0,构造函数g(x)=x﹣sin x﹣x3=x﹣﹣sin x,g′(x)=1﹣﹣cos x,g''(x)=﹣x+sin x<0,利用导数性质能证明当x∈(0,)时,0<f(x)<x3.【解答】解:(Ⅰ)∵函数f(x)=x﹣sin x,∴f′(x)=1﹣cos x,∴f′()=1,f()=﹣1,∴曲线y=f(x)在点(,f())处的切线方程为:y﹣+1=(x﹣),整理得:x﹣y﹣1=0.证明:(Ⅱ)先证明f(x)>0,∵f′(x)=1﹣cos x>0,∴f(x)是增函数,∴f(x)>f(0)=0﹣sin0=0,构造函数g(x)=x﹣sin x﹣x3=x﹣﹣sin x,g′(x)=1﹣﹣cos x,g''(x)=﹣x+sin x<0,∴g′(x)递减,即g′(x)<g′(0)=0,∴g(x)递减,g(x)<g(0)=0,∴x﹣sin x<,∴当x∈(0,)时,0<f(x)<x3.【点评】本题考查曲线的切线方程的求法,考查不等式的证明,考查导数的几何意义、导数性质、函数的单调性、最值等基础知识,考查运算求解能力、推理论证能力,是中档题.4.已知函数,(1)求函数f(x)的极小值(2)求证:当﹣1≤a≤1时,f(x)>g(x)【分析】(1)f′(x)=﹣=,(x∈(0,+∞)).对a分类讨论,利用导数研究单调性极值即可得出结论.(2)令F(x)=f(x)﹣g(x)=lnx+﹣=,x∈(0,+∞).当﹣1≤a≤1时,要证f(x)>g(x),即证F(x)>0,即xlnx﹣a sin x+1>0,即证xlnx>a sin x﹣1.对a分类讨论,利用导数研究单调性极值通过放缩即可证明结论.【解答】解:(1)f′(x)=﹣=,(x∈(0,+∞)).当a﹣1≤0时,即a≤1时,f′(x)>0,函数f(x)在x∈(0,+∞)上单调递增,无极小值;当a﹣1>0时,即a>1时,f′(x)<0,解得0<x<a﹣1,函数f(x)在(0,a﹣1)上单调递减.f′(x)>0,解得x>a﹣1,函数f(x)在(a﹣1,+∞)上单调递增.∴x=a﹣1时,函数f(x)取得极小值,f(a﹣1=1+ln(a﹣1).综上所述,当a≤1时,f(x)无极小值;当a>1时,f(x)极小值=1+ln(a﹣1).(2)令F(x)=f(x)﹣g(x)=lnx+﹣=,x∈(0,+∞).当﹣1≤a≤1时,要证f(x)>g(x),即证F(x)>0,即xlnx﹣a sin x+1>0,即证xlnx>a sin x﹣1.①当0<a≤1时,令h(x)=x﹣sin x,h′(x)=1﹣cos x≥0,所以h(x)在x∈(0,+∞)上单调递增,故h(x)>h(0)=0,即x>sin x.∴ax﹣1>a sin x﹣1,令u(x)=xlnx﹣x+1,u′(x)=lnx,当x∈(0,1),u′(x)<0,u(x)在(0,1)上单调递减;x∈(1,+∞),u′(x)>0,u(x)在(1,+∞)上单调递增.故u(x)≥u(1)=0,即xlnx≥x﹣1.当且仅当x=1时取等号.又∵0<a≤1,∴xlnx≥x﹣1≥ax﹣1.由上面可知:xlnx≥x﹣1≥ax﹣1>a sin x﹣1,所以当0<a≤1,∴xlnx>a sin x﹣1.②当a=0时,即证xlnx>﹣1.令v(x)=xlnx,v′(x)=lnx+1,可得v(x)在(0,)上单调递减,在(,+∞)上单调递增,v(x)min=v()=﹣>﹣1,故xlnx>﹣1.③当﹣1≤a<0时,当x∈(0,1]时,a sin x﹣1<﹣1,由②知v(x)=xlnx≥﹣,而﹣>﹣1,故xlnx>a sin x﹣1.当x∈(1,+∞)时,a sin x﹣1≤0,由②知v(x)=xlnx>v(1)=0,故xlnx>a sin x﹣1;所以,当x∈(0,+∞)时,xlnx>a sin x﹣1.综上①②③可知,当﹣1≤a≤1时,f(x)>g(x).另证:xlnx﹣a sin x+1>0另一种方法:可设其为h(a),﹣1≤a≤1.h'(a)=﹣sin x.分两类讨论都可以证出结论.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.5.已知函数f(x)=,0<x<π.(Ⅰ)若x=x0时,f(x)取得极小值f(x0),求实数a及f(x0)的取值范围;(Ⅱ)当a=π,0<m<π时,证明:f(x)+mlnx>0.【分析】(Ⅰ)根据x=x0时,f(x)取得极小值f(x0),可得f'(x0)=0,解方程得a=sin x0﹣x0cos x0,将a代入f(x)进一步求出f(x0)的范围;(Ⅱ)证明f(x)+mlnx>0成立,即证明mlnx>sin x﹣π成立,构造函数g(x)=mlnx,h(x)=sin x﹣π,根据g(x)和h(x)的图象和最值可证该不等式成立.【解答】解:(Ⅰ)由函数f(x)=,0<x<π,得f'(x)=,∵当x=x0时,f(x)取得极小值f(x0),∴f'(x0)=0,∴a=sin x0﹣x0cos x0,∴f(x0)=,∵0<x<π,∴cos x0∈(﹣1,1),∴f(x0)∈(﹣1,1),即f(x0)的取值范围为:(﹣1,1).(Ⅱ)当a=时,f(x)=,要证f(x)+mlnx=成立,即证mxlnx>sin x﹣π成立,令g(x)=mxlnx,h(x)=sin x﹣π,则g'(x)=m(lnx+1),h(x)=sin x﹣π∈(﹣π,1﹣π],令g'(x)=0,则x=,∴当0<x<时,g'(x)<0,此时g(x)递减;当时,g'(x)>0,此时g(x)递增,∴g(x)min=g()=,显然∀m∈(0,π),>1﹣π,∴0<m<π,g(x)>h(x),即0<m<π时,f(x)+mlnx>0【点评】本题考查了利用导致研究函数的极值,考查了运算求解能力和化归与转化思想,属难题.6.(1)求证:x≥0时,cos x≥1﹣x2恒成立;(2)当a≥1时,∀x∈[0,+∞),证明不等式xe ax+x cos x+1≥(1+sin x)2恒成立.【分析】(1)令f(x)=cos x﹣1+x2,x∈[0,+∞),f(0)=0.利用导数研究其单调性即可证明.(2)由(1)可得:cos x≥1﹣x2,x≥sin x,在x∈[0,+∞)上恒成立.又当a≥1时,∀x∈[0,+∞),xe ax≥xe x.因此当a≥1时,∀x∈[0,+∞),证明不等式xe ax+x cos x+1≥(1+sin x)2恒成立⇔xe x+x(1﹣x2)+1≥(1+x)2,x∈[0,+∞),⇔e x﹣(x2+x+1)≥0,x∈[0,+∞),令g(x)=e x﹣(x2+x+1),x∈[0,+∞),g(0)=0.利用导数研究其单调性即可证明.【解答】证明:(1)令f(x)=cos x﹣1+x2,x∈[0,+∞),f(0)=0.f′(x)=﹣sin x+x,令u(x)=x﹣sin x,x∈[0,+∞),u(0)=0.则u′(x)=1﹣cos x≥0,∴函数u(x)在x∈[0,+∞)上单调递增,∴u(x)≥u(0)=0.∴函数f(x)在x∈[0,+∞)上单调递增,∴f(x)≥f(0)=0.因此x≥0时,cos x≥1﹣x2恒成立.(2)由(1)可得:cos x≥1﹣x2,x≥sin x,在x∈[0,+∞)上恒成立.又当a≥1时,∀x∈[0,+∞),xe ax≥xe x.∴当a≥1时,∀x∈[0,+∞),证明不等式xe ax+x cos x+1≥(1+sin x)2恒成立⇔xe x+x(1﹣x2)+1≥(1+x)2,x∈[0,+∞),⇔e x﹣(x2+x+1)≥0,x∈[0,+∞),令g(x)=e x﹣(x2+x+1),x∈[0,+∞),g(0)=0.g′(x)=e x﹣x﹣1,x∈[0,+∞).令h(x)=e x﹣x﹣1,x∈[0,+∞),h(0)=0.h′(x)=e x﹣1≥0,只有当x=0时取等号,∴g′(x)≥0,在x∈[0,+∞)上恒成立.∴g(x)≥0在x∈[0,+∞)上恒成立.∴当a≥1时,∀x∈[0,+∞),证明不等式xe ax+x cos x+1≥(1+sin x)2恒成立.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.7.已知函数(e为自然对数的底数).(1)求函数f(x)的值域;(2)若不等式f(x)≥k(x﹣1)(1﹣sin x)对任意恒成立,求实数k的取值范围;(3)证明:.【分析】(1)利用导数求函数的值域即可;(2)恒成立问题转化为最值即可;(3)构造函数可解决此问题.【解答】解:(1)f'(x)=e x﹣e x(sin x+cos x)=e x(1﹣sin x﹣cos x)==,∵,∴,∴,所以f'(x)≤0,故函数f(x)在上单调递减,函数f(x)的最大值为f(0)=e0﹣e0sin0=1;f(x)的最小值为,所以函数f(x)的值域为[0,1].(2)原不等式可化为e x(1﹣sin x)≥k(x﹣1)(1﹣sin x)…(*),因为1﹣sin x≥0恒成立,故(*)式可化为e x≥k(x﹣1).令g(x)=e x﹣kx+k,则g'(x)=e x﹣k当k≤0时,g'(x)=e x﹣k>0,所以函数g(x)在上单调递增,故g(x)≥g(0)=1+k≥0,所以﹣1≤k≤0;当k>0时,令g'(x)=e x﹣k=0,得x=lnk,且当x∈(0,lnk)时,g'(x)=e x﹣k<0;当x∈(lnk,+∞)时,g'(x)=e x﹣k>0.所以当,即时,函数g(x)min=g(lnk)=2k﹣klnk=k(2﹣lnk)>0,成立;当,即时,函数g(x)在上单调递减,,解得综上,.(3)令,则.由,故存在,使得h'(x0)=0即.且当x∈(﹣∞,x0)时,h'(x)<0;当x∈(x0,+∞)时,h'(x)>0.故当x=x0时,函数h(x)有极小值,且是唯一的极小值,故函数=,因为,所以,故,.【点评】本题考查函数的值域的求法,恒成立问题和存在性问题与函数最值的转化.8.已知函数f(x)=(x﹣m)lnx(m≤0).(1)若函数f(x)存在极小值点,求m的取值范围;(2)证明:f(x+m)<e x+cos x﹣1.【分析】(1)求函数的导数,结合函数极值和导数之间的关系进行讨论求解即可.(2)求函数的导数,讨论x的取值范围,结合函数单调性和最值之间的关系进行证明即可.【解答】解:(1)函数的定义域为(0,+∞),f′(x)=+lnx=1﹣+lnx,①当m=0时,f′(x)=0得x=,当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0,∴x=是函数f(x)的极小值点,满足题意②当m<0时,令g(x)=f′(x),g'(x)=+=,令g′(x)=0,解得x=﹣m,当x∈(0,﹣m)时,g′(x)<0当x∈(﹣m,+∞)时,g'(x)>0∴g(x)min=g(﹣m)=2+ln(﹣m),若g(﹣m)≥0,即m≤﹣e﹣2时,f'(x)=g(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点,不满足题意.若g(﹣m)=2+ln(﹣m)<0,即﹣e﹣2<m<0时,g(1﹣m)=1﹣+ln(1﹣m)>0∴g(﹣m)•g(1﹣m)<0,又g(x)在(﹣m,+∞)上单调递增,∴g(x)在(﹣m,+∞)上恰有一个零点x1,当x∈(﹣m,x1)时,f'(x)=g(x)<0,当e∈(x1,+∞)时,f'(x)=g(x)>0,∴x1是f(x)的极小值点,满足题意,综上,﹣e﹣2<m≤0.(2)当m≤0时,f(x+m)=xln(x+m)≤xlnx,若xlnx<e x+cos x﹣1成立,则f(x+m)<e x+cos x﹣1必成立,①若x∈(0,1],则e x+cos x﹣1>0,xlnx≤0,∴xlnx<e x+cos x﹣1成立,∴f(x+m)<e x+cos x﹣1成立②若x>1,令h(x)=e x+cos x﹣xlnx﹣1,h'(x)=e x﹣sin x﹣lnx﹣1,令φ(x)=h’(x),φ'(x)=e x﹣﹣cos x,∵x>1,∴φ′(x)=e x﹣﹣cos x>0,∴φ(x)在(1,+∞)上单调递增φ(x)>φ(1)=e﹣sin1﹣1>0,即h′(x)>0,∴h(x)在(1,+∞)上单调递增,∴h(x)>h(1)=e+cos1﹣1>0,∴x>1时,xlnx<e x+cos1﹣1成立,∴x>1时,f(x+m)<e x+cos x﹣1成立.【点评】本题主要考查导数的综合应用,结合函数的极值,单调性和导数之间的关系,转化为导数问题,以及构造函数研究函数的单调性是解决本题的关键.综合性较强,运算量较大,有一定的难度.9.设函数f(x)=e x cos x,g(x)为f(x)的导函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x∈[,]时,证明f(x)+g(x)(﹣x)≥0;(Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ+,2nπ+)内的零点,其中n∈N,证明:2nπ+﹣x n<.【分析】(Ⅰ)求出原函数的导函数,可得当x∈(,)(k∈Z)时,f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,f′(x)>0,f(x)单调递增;(Ⅱ)记h(x)=f(x)+g(x)(),依题意及(Ⅰ),得到g(x)=e x(cos x﹣sin x),由h′(x)<0,得h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0,从而得到当x∈[,]时,f(x)+g(x)(﹣x)≥0;(Ⅲ)依题意,u(x n)=f(x n)﹣1=0,即,记y n=x n﹣2nπ,则y n∈(),且f(y n)=e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g(x)在[,]上为减函数,有g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,得==<,从而证得2nπ+﹣x n<.【解答】(Ⅰ)解:由已知,f′(x)=e x(cos x﹣sin x),因此,当x∈(,)(k∈Z)时,有sin x>cos x,得f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,有sin x<cos x,得f′(x)>0,f(x)单调递增.∴f(x)的单调增区间为[,](k∈Z),单调减区间为[,](k∈Z);(Ⅱ)证明:记h(x)=f(x)+g(x)(),依题意及(Ⅰ),有g(x)=e x(cos x﹣sin x),从而h′(x)=f′(x)+g′(x)•()+g(x)•(﹣1)=g′(x)()<0.因此,h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0.∴当x∈[,]时,f(x)+g(x)(﹣x)≥0;(Ⅲ)证明:依题意,u(x n)=f(x n)﹣1=0,即.记y n=x n﹣2nπ,则y n∈(),且f(y n)==e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g′(x)<0,∴g(x)在[,]上为减函数,因此,g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,故==<.∴2nπ+﹣x n<.【点评】本题主要考查导数的运算,不等式的证明、运用导数研究函数的性质等基础知识和方法,考查函数思想和化归与转化思想,考查抽象概括能力、综合分析问题与解决问题的能力,属难题.。

三角函数与不等式练习题

三角函数与不等式练习题

三角函数与不等式练习题三角函数与不等式是高中数学中的重要内容,通过练习题可以帮助我们巩固和提升对这些概念的理解和运用。

本文将为大家提供一些三角函数与不等式练习题,并对解题方法和思路进行分析。

题目一:求解sin(x) > 0的解集。

解析:首先,我们需要知道sin(x) > 0在何时成立。

根据三角函数的图像和性质,sin(x) > 0是在0到π之间的区间内成立的。

因此,sin(x) > 0的解集为x ∈ (0, π)。

题目二:求解cos(2x) > 1/2的解集。

解析:我们需要利用三角函数的相关性质,将cos(2x)转化为cos(x)的表示形式。

利用余弦函数的倍角公式:cos(2x) = 2cos^2(x) - 1,我们可以得到:2cos^2(x) - 1 > 1/2进一步整理得到:cos^2(x) > 3/4根据平方根的性质,我们可以得到两个不等式:cos(x) > √(3/4) 或 cos(x) < -√(3/4)利用余弦函数的图像和周期性质,我们可以知道:cos(x) > √(3/4)在0到π/6和5π/6到2π之间成立;cos(x) < -√(3/4)在π/3到2π/3之间成立。

因此,cos(2x) > 1/2的解集为x ∈ (0, π/6) ∪ (5π/6, 2π)。

题目三:求解tan(x) ≤ 1的解集。

解析:我们需要注意tan(x)的定义域,即x不可以是π/2 + kπ,其中k为整数。

对于tan(x) ≤ 1,我们可以根据其图像和周期性质进行分析。

在一个周期内,tan(x) > 1的区间为(π/4, 3π/4),而tan(x) < 1的区间为(3π/4, π)。

由于tan(x)的周期为π,我们可以得到tan(x) ≤ 1的解集为x ∈ (2kπ + π/4, 2kπ + 3π/4],其中k为整数。

题目四:求解sin(x)cos(x) > 0的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题
1.将函数sin (0)y x ωω=>的图象向左平移6π个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是 A .sin()6y x π=+ B .sin()6y x π
=-
C .sin(2)3y x π=+
D .sin(2)3y x π
=-
2.设0a >,对于函数()sin (0)sin x a
f x x x π+=<<,下列结论
正确的是
A .有最大值而无最小值
B .有最小值而无最大值
C .有最大值且有最小值
D .既无最大值又无最小值
3.函数y =1+cos x 的图象
(A )关于x 轴对称 (B )关于y 轴对称
(C )关于原点对称 (D )关于直线x =2π
对称
4.已知函数f (x )=2sin ϖx(ϖ>0)在区间[3π
-,4π
]上的最小值是-2,则ϖ的最小值等于
A.32
B.23
C.2
D.3
5.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π
,则)(x f 的最小正周期是
A .2π
B . π C. 2π D . 4π
6.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( )
(A )0 (B )1 (C )-1 (D )±1
7为了得到函数R x x
y ∈+=),63sin(2π
的图像,只需把函数R x x y ∈=,sin 2的图像上所有的

(A )向左平移6π
个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(B )向右平移6π
个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(C )向左平移6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
(D )向右平移6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
8.已知函数1
1
()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是
(A)[]1,1- (B) ,12⎡
⎤-⎢⎥⎣⎦ (C) 1,2⎡-⎢⎣⎦ (D) 1,2⎡--⎢⎣
⎦ 9.函数1|sin(3)|2y x =+的最小正周期是( ) A.π2 B.π C.2π D.4π
10.函数()tan 4f x x π⎛
⎫=+ ⎪⎝⎭
的单调增区间为 A .,,22k k k Z ππππ⎛
⎫-+∈ ⎪⎝⎭
B .()(),1,k k k Z ππ+∈
C .3,,44k k k Z ππππ⎛
⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭
11.(1)将函数1sin(2)24
y x π=-的图象向______平移_______个单位得到函数1sin 22
y x =的 图象(只要求写出一个值) (2)要得到1cos(2)24y x π=-的图象,可以把函数sin()cos()66
y x x ππ=--的图象向______平移_______个单位(只要求写出一个值). 例 4.设x R ∈,函数21()cos ()2f x x ωϕ=+-
(0,)2o πωϕ><<,已知()f x 的最小正周期为π,且1()84
f π
=. (1)求ω和ϕ的值; (2)求的单调增区间. 12 已知函数()2sin(2)4f x x π
=-
(1)求函数的定义域; (2) 求函数的值域; (3) 求函数的周期;
(4)求函数的最值及相应的x 值集合; (5)求函数的单调区间;
(6)若3[0,]4
x π∈,求()f x 的取值范围; (7)求函数()f x 的对称轴与对称中心;
(8)若()f x ϕ+为奇函数,[0,2)ϕπ∈,求ϕ;若()f x ϕ+为偶函数,[0,2)ϕπ∈,求ϕ。

13.、定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论;
1.下列各式中,最小值等于2的是( )
A .x y y x +
B .4
522++x x C .1tan tan θθ+ D .22x x -+
2.若,x y R ∈且满足32x y +=,则3271x y ++的最小值是( )
A .
B .1+
C .6
D .7
3.设0,0,1x y x y A x y +>>=++, 11x y B x y
=+++,则,A B 的大小关系是( ) A .A B = B .A B <
C .A B ≤
D .A B >
4.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是( )
A .2
B
C .1
D .12
5.函数46y x x =-+-的最小值为( )
A .2
B
C .4
D .6
6.不等式3529x ≤-<的解集为( )
A .[2,1)[4,7)-U
B .(2,1](4,7]-U
C .(2,1][4,7)--U
D .(2,1][4,7)-U
二、填空题
1.若0a b >>,则1()
a b a b +-的最小值是_____________。

2.若0,0,0a b m n >>>>,则
b a , a b , m a m b ++, n b n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。

4.设1010101111112212221
A =
++++++-L L ,则A 与1的大小关系是_____________。

5.函数212()3(0)f x x x x =+>的最小值为_____________。

相关文档
最新文档