灵敏度
灵敏度分析

灵敏度分析灵敏度分析是一种用来评估模型鲁棒性的技术,它可以帮助我们了解模型输出对于输入参数的变化的反应程度。
通过灵敏度分析,我们可以识别出哪些参数对于模型输出具有重要影响,从而优化模型的性能和可靠性。
本文将介绍灵敏度分析的基本概念、方法和应用,并探讨其在科学研究和工程领域的重要性。
首先,让我们来了解一下灵敏度分析的基本概念。
灵敏度分析是通过对模型输入参数进行逐一变化,并观察模型输出的变化情况来评估模型的鲁棒性。
在进行灵敏度分析时,我们通常会选择一个基准点作为参考,比如模型输入参数的平均值或某个特定值。
然后,通过改变输入参数的值,并观察模型输出的变化情况,来评估模型对于输入参数的变化的敏感程度。
灵敏度分析有多种方法和指标可以使用,常见的方法包括一元灵敏度分析、总变差分析和区间分析等。
一元灵敏度分析是最简单的方法,它通过改变单个参数的值,观察模型输出的变化情况来评估参数的影响程度。
总变差分析则是通过改变所有参数的值,观察模型输出的总变差情况来评估参数的综合影响程度。
区间分析则是通过将参数的取值范围划分为多个子区间,观察模型输出在不同子区间的变化情况来评估参数的影响程度。
灵敏度分析在科学研究和工程设计中具有广泛的应用。
在科学研究中,灵敏度分析可以帮助我们理解模型的复杂性和不确定性,从而提高模型的可信度和预测能力。
在工程设计中,灵敏度分析可以帮助我们识别出对于系统性能具有关键影响的输入参数,并进行优化和控制,从而提高系统的稳定性和可靠性。
此外,灵敏度分析还可以帮助我们进行风险评估和决策分析。
通过评估不同参数对于模型输出的影响程度,我们可以识别出可能导致系统失败或风险增加的敏感参数,并制定相应的风险控制策略。
同时,灵敏度分析还可以提供决策支持,帮助我们在不同参数取值的情况下,评估和比较不同决策方案的优劣。
综上所述,灵敏度分析是一种可以评估模型鲁棒性的重要技术。
通过灵敏度分析,我们可以识别出对于模型输出具有重要影响的参数,并优化模型的性能和可靠性。
医学灵敏度名词解释

医学灵敏度名词解释
在医学中,灵敏度(sensitivity)是指在给定的条件下,一个
医学测试能够正确识别出患者真实患病情况的能力。
换句话说,灵敏度衡量了一个测试在存在实际疾病的患者中,能够正确诊断出疾病的能力。
灵敏度常用于评估诊断测试的质量,特别是用于筛查患有某种疾病的人群。
一种具有高灵敏度的测验意味着当一个人真的患有疾病时,该测验能够准确地检测出来,对于早期发现和治疗某些疾病非常重要。
灵敏度通常以百分比的形式呈现,范围从0%到100%。
100%
的灵敏度意味着测试能够在所有患有疾病的人中完全识别出来。
然而,即使具有高灵敏度的测试也可能存在“假阳性”结果,即测试在没有实际患病的人中,错误地显示为阳性。
因此,灵敏度通常与特异度(specificity)一起评估,特异度衡量了测试
能够在健康人中正确排除疾病的能力。
综合考虑灵敏度和特异度可以更好地评估一个医学测试的可靠性和准确性。
试剂灵敏度 国标要求

试剂灵敏度国标要求试剂的灵敏度是衡量其性能的重要指标,它直接影响到检测结果的准确性和可靠性。
根据国标要求,试剂的灵敏度应该达到一定的标准,以确保检测的准确性和可靠性。
一般来说,试剂的灵敏度是指其能够检测出微小浓度变化的敏感性。
对于化学试剂来说,灵敏度越高,意味着能够检测出更小的浓度变化,从而能够更准确地反映物质的真实情况。
对于生物试剂来说,灵敏度则是指能够检测出微量的病毒、细菌、抗体等物质的敏感性。
根据国标要求,试剂的灵敏度应该达到一定的标准。
具体来说,对于化学试剂,一般要求试剂的检测限达到一定的数值,例如在一定的浓度范围内能够达到线性响应,即随着浓度的增加,检测信号能够线性增加。
对于生物试剂来说,则要求试剂能够准确地检测出微量的病毒、细菌、抗体等物质,并且具有较高的特异性、灵敏度和稳定性。
为了达到国标要求的灵敏度标准,试剂生产厂家需要采取一系列措施。
首先,需要选择高质量的原材料,确保试剂的质量和稳定性。
其次,需要采用先进的生产工艺和技术,提高试剂的生产效率和质量控制水平。
此外,还需要对试剂进行严格的检测和质量控制,确保试剂的质量和性能符合国标要求。
在实际应用中,试剂的灵敏度对于检测结果的准确性和可靠性具有至关重要的影响。
如果试剂的灵敏度不够高,就难以准确地检测出微小的浓度变化,从而导致误诊或漏诊等情况的发生。
因此,在实际应用中,需要选择具有较高灵敏度的试剂,以确保检测结果的准确性和可靠性。
总之,根据国标要求,试剂的灵敏度应该达到一定的标准,以确保检测结果的准确性和可靠性。
为了达到这一标准,需要选择高质量的原材料、采用先进的生产工艺和技术、对试剂进行严格的检测和质量控制等措施。
在实际应用中,需要选择具有较高灵敏度的试剂,以确保检测结果的准确性和可靠性。
灵敏度名词解释

灵敏度名词解释
灵敏度是指一个系统或设备对于外界刺激、信号或变化的反应程度或敏感程度。
灵敏度被广泛运用于多个领域,包括物理、化学、生物、医学、工程等。
在物理和工程领域中,灵敏度通常指的是设备或仪器对于输入信号的感知程度。
例如,光学传感器的灵敏度是指其对光强度的感知程度,温度传感器的灵敏度是指其对温度变化的感知程度。
这些设备的灵敏度通常用输入变化引起的输出变化的幅度来衡量。
较高的灵敏度意味着设备对细微的变化能够做出更加精确的响应。
在化学和生物领域中,灵敏度通常指的是对于特定分子或化合物的检测能力。
例如,荧光探针对于特定分子的结合能力越强,其检测结果就越灵敏。
在医学诊断中,灵敏度是用来评估一种测试方法对于疾病或病变的检测能力的指标。
一个高灵敏度的测试方法能够准确地检测到更多的阳性样本,从而提高疾病的早期诊断率。
灵敏度还可以应用到心理学和社会科学中,用来描述个体对于不同刺激或情境的反应程度。
在这种情况下,灵敏度通常指的是个体对于信息的感知和处理的能力。
对于某些个体而言,他们可能对于一些细微的改变或信息更加敏感,而对于其他人而言,可能需要更强的刺激才能产生反应。
总体而言,灵敏度可以被看作是一个系统或个体对于外界变化的响应程度或感知能力。
灵敏度的高低不仅影响着一个系统或
个体的性能,还可能对于其他相关应用产生重要的影响。
因此,对于灵敏度的研究和评估在各个领域中具有重要的意义。
实验结果的灵敏度分析

实验结果的灵敏度分析实验是科学研究中不可或缺的一部分。
通过实验可以验证理论,揭示规律,为科学研究的发展提供支持。
然而,实验结果的可靠性和准确性往往是人们关注的焦点。
为了评估实验结果的稳定性和可信度,灵敏度分析是一种常用的方法。
本文将对实验结果的灵敏度分析进行探讨,旨在阐明其重要性和应用场景。
一、什么是灵敏度分析灵敏度分析是一种系统地评估实验结果对于输入参数变化的敏感程度的方法。
它能够帮助我们了解实验结果对于参数的响应程度,找出影响实验结果的主要因素,从而为进一步的研究和决策提供依据。
通常,灵敏度分析可通过多种途径进行,如参数敏感度分析、局部敏感度分析和全局敏感度分析等。
二、灵敏度分析的意义灵敏度分析对于科学研究具有重要意义。
首先,它可以帮助我们了解实验结果的稳定性。
通过灵敏度分析,我们可以观察输入参数变化对实验结果的影响程度,若实验结果对于参数变化不敏感,则说明实验结果较为稳定可靠。
其次,灵敏度分析可以揭示实验结果中的主要因素。
在实验过程中,我们常常需要面对各种参数和影响因素,通过灵敏度分析,可以确定哪些因素对实验结果具有重要影响,进而提供优化研究方向和决策依据。
此外,灵敏度分析还可以帮助我们发现异常结果和探索实验结果潜在的风险因素。
三、灵敏度分析的应用场景根据实际需求和研究目的,灵敏度分析可以应用于多个领域。
以下将针对不同领域的实验结果灵敏度分析进行简要介绍。
1. 生态学领域生态学研究中,我们常常需要评估各种生态系统的稳定性和脆弱性。
通过灵敏度分析,可以了解生态系统对于各种环境因素的响应程度,找出对生态系统稳定性具有重要影响的关键因素,为生态保护和可持续发展提供科学依据。
2. 经济学领域经济学研究往往需要分析不同经济因素对于经济系统的影响。
通过灵敏度分析,可以评估经济模型中各个参数对于经济结果的敏感程度,识别经济政策的潜在风险和利益分配的不平衡情况,为经济决策提供参考。
3. 工程领域工程设计中常常需要考虑各种参数对于产品性能和安全性能的影响。
灵敏度的名词解释

灵敏度的名词解释灵敏度(sensitivity)又称为“感觉适应度”、“感觉性能”,或简称为“感度”。
它是指被试对刺激的感觉与该刺激的实际强度(或效应)之间的关系。
在感觉心理学中用于描述感觉器官感受刺激的能力。
1)生理特性指物体在其振动频率范围内所具有的感受周围环境微小变化的特性。
例如,听觉的频率范围是20Hz— 20000Hz;视觉的频率范围是380— 2000KHz;嗅觉的频率范围是0。
1— 1000KHz;味觉的频率范围是0。
1— 10MHz。
2)反应时间指从开始感知刺激到最终将这种刺激识别出来的过程。
例如,听觉的反应时间是0。
005— 0。
005 ms;视觉的反应时间是0。
01— 0。
005 ms;味觉的反应时间是0。
005— 0。
001 s;触觉的反应时间是0。
001— 0。
01 s。
3)阈值当刺激超过了某一强度时就无法产生可觉察的感觉。
这个临界值就叫做“阈值”。
例如,视觉上能够区分的亮度为1。
000。
则刺激的最小值为1。
000。
对应的亮度为0。
5,而对应的亮度为100,则这个亮度就是一个阈值。
当感受器处于正常工作状态时,阈值对该感受器起着“阀门”的作用。
由于人的主观条件和客观条件的不同,使人们对同一刺激物产生的感觉阈值不同。
人对于不同的外界刺激往往具有不同的阈值。
因此,灵敏度的高低是一个相对的概念,即在一定条件下,某些刺激或事物可能对人具有高的灵敏度,而另一些则对人具有低的灵敏度。
对于各种物理量的灵敏度,可以根据其变化规律进行研究。
4)定义不明确,是指测量方法不明确或者测量的单位不明确。
5)已知灵敏度为正数,则灵敏度越大,感受器越灵敏。
例如,黑暗中比较亮的地方,视网膜的像很清楚;而强光下,则模糊不清。
6)最大灵敏度与最小灵敏度,灵敏度最大的位置往往也是对刺激最不敏感的位置。
灵敏度是指从一个微弱的外部信号得到一个与之对应的输出量的难易程度。
可见,灵敏度是一个数值,是一个相对于环境的值。
灵敏度和特异度

灵敏度和特异度
灵敏度和特异度是统计学中用来表征二项分类测试特征的数据。
灵敏度又称为真阳性率(true positive),即实际有病而按照筛检试验的标准被正确地判为有病的百分比。
反映了筛检试验发现病人的能力。
灵敏度=真阳性人数/(真阳性人数+假阴性人数)*100%。
正确判断病人的率。
灵敏度=A/(A+C)*100%
特异度是又称为真阴性率(true positive),即实际无病而按照筛检试验的标准被正确地判为无病的百分比。
反映了筛检试验确定非病人的能力。
特异度=真阴性人数/(真阴性人数+假阳性人数))*100%。
正确判断非病人的率。
特异度=D/(B+D)*100%。
力敏传感器灵敏度计算公式

力敏传感器灵敏度计算公式力敏传感器是一种可以量化测量力的传感器设备,它可以将施加在其表面上的压力或力量转化为可测量的电信号。
传感器的灵敏度是指在给定的压力范围内,传感器输出的电信号的变化程度。
这个灵敏度值越高,表示传感器对于微小的压力变化更敏感。
通常情况下,力敏传感器的灵敏度是通过以下公式来计算的:灵敏度=∆V/∆P其中,ΔV表示传感器输出的电压变化,ΔP表示施加在传感器表面上的压力变化。
灵敏度的单位通常是mV/N或V/N,表示每单位压力变化对应的电压变化。
在实际应用中,灵敏度的计算需要根据具体的传感器型号和厂商提供的技术规格进行。
通常情况下,传感器的灵敏度是由传感器本身的设计参数决定的。
因此,在选择力敏传感器时,我们需要根据具体的应用需求来选择合适的传感器,确保其灵敏度能够满足实际的测量要求。
值得注意的是,传感器的灵敏度并不是越高越好。
过高的灵敏度可能会导致传感器对环境干扰更为敏感,同时还可能引入更多的噪声。
因此,在实际应用中,我们需要根据实际需求和具体环境来选择合适的灵敏度范围。
除了传感器本身的灵敏度,还有一些其他因素也会影响传感器的灵敏度。
例如,传感器的尺寸、材料特性、安装方式等都会对传感器的灵敏度产生影响。
因此,在进行传感器灵敏度计算时,我们还需要考虑这些因素,并将其纳入到计算公式中去。
总之,力敏传感器的灵敏度是通过传感器输出的电信号变化量与施加在传感器表面上的压力变化量之间的比值来计算的。
传感器的灵敏度是根据传感器的设计参数和技术规格来确定的。
在选择传感器时,我们需要根据实际需求和具体环境来选择合适的灵敏度范围。
同时,还需要考虑其他因素对传感器灵敏度的影响。
这样才能保证传感器在实际应用中能够以最佳的性能进行工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[]问题:我们经常看到某些GPS芯片商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[]1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 []2)接收GPS信号的功率和信噪比是一个什么样的水平 []3)如何按照信噪比,信号功率设计系统灵敏度 [][]这真是一篇超精华的帖子!感谢楼主和参与的所有人![52jinfoxhe:R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益.2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB.3 见1.snow99:好象在说GPS, 不是GSM, 虽然看起来很像GPS RF BW: 2.046 MHzModulation: BPSKProcess Gain: 46 dThermal Noise Floor: kTB = -111 dBm/2.046MHzRequired Eb/N0: 6 dB (不太清楚, 可以修正)Receiver NF: 3 dB (Typical)Sensitivity: -111 + 6 + 3 - 46 = -148 dBm这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间]Arm720:楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解:1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗Arm720:看来我的发帖晚了一部,多谢jinfoxhe和snow99兄!不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了!以下是引用jinfoxhe在2006-4-24 8:56:00的发言:1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益.2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB.3 见1.今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这个理论值是衡量实际系统能够工作的重要依据.比如,接收系统的灵敏度理论值为-150dBm (该值仅为了举例),如果你在室内测量到的GPS信号为-145dBm,说明你的系统在室内也能工作.上面是个人理解,望大家指正.看来Sow99兄对GPS有丰富的经验,可否大致说明一下这些指标的设计思路啊snow99:我现在不做GPS, 只有一点简单的了解, 这方面也是一知半解.上面给出来的公式有点问题GPS RF基本参数RF BW: 2.046 MHzData Rate: 50 bpsPN Rate: 1.023 MbpsData repeat: 1 msProcess Gain (per data) = 10*LOG(1.023 Mbps / 50 bps) = 43 dBRequired Eb/N0 由基带处理器决定 --- 基带并行相关器数目N和积分时间T, 一般来说, N和T越大, Required Eb/N0 就越低. N增加表示系统复杂度增加, T增加表示启动时间变长.抄一下灵敏度的计算公式:S=-174dBm+10*log(RF BW)+Eb/N0+NF = -111 +Eb/N0+NF比如说SiRF最新的产品有-159DBM的灵敏度, 并且冷启动时间是三十几秒, 说明它有很大数量的相关器, 实际上这个数字 N > 200000在CDMA/WCDMA/GSM手机上的GPS接收可以由网络协助完成(SA),因此不需要太复杂的基带处理器,并且所需C/N很低,比如17DB-HZ (CDMA/WCDMA)Required Eb/N0 = C/N - 10log(RF BW) = 17 - 63 = -46 dB灵敏度S= -111 + Eb/N0+NF=-111-46+NF=-157+NFNF是接收机从天线到基带的级联噪声系数snow99:这是GPS接收所需C/N与相关器数目N和积分时间T的曲线snow99:注意C/N的单位是dB-Hz, Eb/N0 (dB) = C/N - 10log(RF BW)GPS RF BW: 2.046 MHz伽利略系统 RF BW: 4.092 MHzArm720:snow99兄,感谢你的精辟分析!版主该给snow99兄加分了吧!从你的分析,我发现了一个很奇怪的现象:GPS在信号功率小于噪声功率,系统也能正确解码,分析如下:GPS系统灵敏度:S=-174dBm+10*log(RF BW)+Eb/N0+NF = -111 + Eb/N0+NF.也就是说如果GPS接收器系统的灵敏度比-111dBm还要小,意味着 Eb/N小于0,也就是信号功率小于噪声功率,换句话就是信号淹没在噪声中,也能正确解码.分析到这儿,我又有点糊涂了:1) 如果GPS接收信号的功率为-130dBm,比-111dBm小,但是并不意味着信号功率小于噪声功率呀.2) 上面这种情况,如何分析灵敏度,GPS信号功率,信号比之间的关系snow99兄,这个信噪比的要求感觉太小了吧:Required Eb/N0 = C/N - 10log(RF BW) = 17 - 63 = -46 dBjinfoxhe:GPS在信号功率小于噪声功率,系统也能正确解码对的, 这就是扩频带来的好处,提高了系统的灵敏度.缺点就是需要更大的带宽Arm720:本论坛的高人比较多啊!不知噪声功率一般是多少,也就是环境噪声的功率,另外如何计算从天线进入到系统的噪声功率这个问题搞清楚了就能详细分析信号功率,噪声功率和信噪比之间的关系了;然后分析和灵敏度之间的关系Arm720:前面有一个问题没有描述清楚:1) 如果GPS接收信号的功率为-130dBm,比-111dBm小,也就是信噪比为负值,信号功率小于噪声功率,但是此时并不意味着信号功率就小于噪声功率.这就是互相矛盾的地方.那位朋友能说说您的理解和看法今天网上找到一片文章,详细讨论噪声系数的,正在研究中,初步的研究结果是:1)射频系统讨论的噪声是热噪声,也就是这种噪声不是从环境噪声中来,是由电路自身产生的噪声,与外部环境无关;据我的理解如果是从外部环境中来,应该称之为干扰!2)NF (Noise Factor)噪声系数,与信噪比无关,NF描述的是信号在系统热噪声的影响下,对信号影响的描述.对噪声,灵敏度的研究在继续中,希望这几天就有结果,大家也一起来讨论!据我的理解,如果你研究射频,不研究噪声,系统灵敏度度,就不能把握射频系统的设计和全面分析,但是对这种研究比较枯燥;因为没有实物,又不能测量,唯一能做的就是呆板枯燥的公式分析.Submarine:扩频系统的灵敏度S=KTB+Eb/No+NF-Gp,其中Gp为扩频增益.这个和一般的灵敏度计算公式有点不同,就是最后的扩频增益的差别.扩频增益为扩频数据率/基带数据率.tina_whj:据我的理解,如果你研究射频,不研究噪声,系统灵敏度度,就不能把握射频系统的设计和全面分析,但是对这种研究比较枯燥;因为没有实物,又不能测量,唯一能做的就是呆板枯燥的公式分析.强烈赞同,刚开始学习射频知识,感觉特迷茫Arm720:我的研究轨迹,共楼上的朋友作参考.我接触射频时,能感到的问题是匹配,集中精力攻关匹配方面的问题,同时做仿真方面的准备;然后遇到的问题是系统的性能分析,也就是灵敏度吧,现在集中分析灵敏度和噪声问题;可能接下来碰到的问题就是电路实现方面的,要研究微带线,天线方面的内容.好,下面继续噪声方面的讨论感谢submarine朋友对灵敏度给出新的公司描述!正好手上有一篇介绍CDMA的灵敏度文档,确实是如此,但是对于噪声功率,有一个问题一直都想不通.噪声功率的公式为:(是热噪声的功率)Pnoise = KTB (K: 波尔兹曼常数1.38x10的-23次方;T:开氏温度=摄氏温度+273.15,此处T=290;B:equivalent noise bandwidth--不知道怎么翻译,我的理解是带宽) ----- 问题就在这个带宽B上面单位HZ噪声功率 = 4.002x10的-21次方瓦特. Pnoise(dBm) = -174dBm .------这就是-174dBm的来历.问题(1)就是: 带宽越宽,噪声功率越大;你系统的带宽越宽,系统的噪声功率越大,这和实际不符;在实际系统中应该是噪声能量大,而不是功率大,功率应该是不变的吧.在看看灵敏度的公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽. 实际上10*log(BW)就是上面公式中的参数B部分;问题(2)得出的结果是系统带宽越宽,灵敏度越低,这是个非常奇怪的结论.Jinfoxhe:带宽越宽,噪声功率越高.这是没错的,其实你说的噪声功率和噪声能量是一回事.S=-174dBm+10*log(BW)+Eb/N0+NF,这是对射频(中频)而言.没有考虑基带的处理增益,如果是扩频系统,Gp会带来灵敏度的提高.'问题(2)得出的结果是系统带宽越宽,灵敏度越低,这是个非常奇怪的结论'这个结论很正常. woshi622:这里有个问题我不太明白S=-174dBm+10*log(扩频后带宽)+Eb/N0+NF-Gp此处的Gp=10*log(扩频后速率/扩频前速率).那么一算的话 S==-174dBm+10*log(扩频前带宽)+Eb/N0+NF此时的扩频又有什么意义还有,这里应该要加入天线的增益吧,望解答everyday:以下是引用woshi622在2006-4-27 10:02:00的发言:S=-174dBm+10*log(BW)+Eb/N0+NF此处的Eb/N0应该已经包含了扩频增益.还有,这里应该要加入天线的增益吧,望解答这个灵敏度是做天线以后的计算公式.如果你要从天线端算,应该加天线的增益,但是天线的增益并不是每个方向都是一样的.所以一般公式都没有加.Ayuyu:通常我们说的的噪声基低-174dBm,其实它是常温下热噪声功率谱密度,准确的单位应该是dBm/Hz.是单位Hz上的热噪声功率.所以带宽越宽,频域积分的功率就越大,但是常温下热噪声的功率谱密度是不变的.SNR就是信噪比比.就是信号和噪声功率比,它等于Eb*R/(N0*B),R是数据比特速率,B 是信号占用带宽而不是RF/IF通道的带宽.在扩频系统中通常和扩频信号的chip rate取同样的值.Eb/N0的概念是每比特能量和噪声功率谱密度的比值.如果只考虑热噪声,系统容量(数据比特速率)和它占用的带宽比值趋于零,那么Eb/N0有个理论极限值就是香农极限-1.6dB. 从香农公式R=B*log2(1+SNR)可看出,传输的数据速率一定,信号的功率一定,增大传输信号占用带宽,可以降低系统对SNR的要求也就是降低对Eb/N0的要求.扩频系统就是采用增大信号占用带宽的方法来降低系统对SNR的要求.GPS也是扩频系统.灵敏度实际上就是指能够满足指定Eb/N0的最小信号功率.如果数据比特速率R一定,增大信号占用带宽B,此时带宽内的噪声功率N0*B增加,到了一个程度可以使得SNR<0dB,就是说在这个带宽内信号功率Eb*R小于噪声功率N0*B,信号淹没在噪声里,但是Eb/N0仍然可以被保证,也就是说系统可以正常工作.所以SNR LNA到ADC之间的放大倍数为 124dBArm720:woshi622朋友,我在逐渐写出我最近想到和碰到的问题,我现在对于你的问题也没有定量的研究,我也想知道,如果你近期有研究成果,欢迎发表!我最近较忙,没有时间做研究和仿真了,只能业余时间研究一下;扩频带宽和灵敏度之间的关系,应该有一个曲线来描述,曲线拐点就是最优的值.希望大家一起来研究,各位朋友的观点和意见能起到抛砖引玉和指引方向的目的,我就是沿着这个方向研究的,但是更进一步的理解还是需要个人去找参考书来加深学习.这个论坛很好,资料很多,一起讨论的朋友也热心和多呀.woshi622:通过我对一些扩频项目标书的研究,发现扩频增益并不能直接影响接收灵敏度的,改变的只是信号在传输时对一些特定信号的抗干扰能力,如一些窄带功率很大的信号Cmin=C/No+Rb-Gviterbo+L-G/T-K(L为解扩损耗)如有不对,希望能够指正ayuyu:其实最有意义的是SNR或Eb/N0.灵敏度并没有多少意义Arm720:同意前面woshi622 和 ayuyu兄的观点,扩频不能带来灵敏度上的任何提高,只能增强系统的抗干扰能力 ---- 没有见到权威资料描述0,欢迎讨论!扩频系统灵敏度公式1:Sin (dBm) = NF (dB) + KTB(dBm) + Eb/No (dB) - Gp (dB) 扩频系统灵敏度公式2:Sin (dBm) = NF (dB) + KTB(dBm) + SNR(dB) ---> SNR= Sout/Nout (dB)实际上公式2才是灵敏度的表达式,为什么要转化为Eb/N0的形式原因在于BER (Bit Error Rate)是通过比特能量Eb来衡量和计算的.先解释一下各个部分的含义:NF:噪声系数 K,T:波尔兹曼常数和开氏温度(此处=290K)B :扩频带宽 Eb : 每比特信号能量 N0:噪声功率谱密度(注意有所不同) = F*KT --- 多一个噪声系数FGp:扩频增益 = B / R (R = 用户数据波特率)实际上Sout/Nout = Eb/N0 - Gp (dB) ; 推导一下这个公式.回顾一下Energy = Power * T -> Power = Energy * 1/T --说明 1/T 就是数据波特率也就是Sout = Eb * R ; Nout = F*KTB --- 注意输出噪声有一个噪声系数FSout/Nout = Eb * R / (F*KTB) = (Eb/F*KT) * (R/B) = Eb/N0 * 1/Gp再写一个比较全的灵敏度公式作细化分析:Sin = F * KTB * SNR = F * KTB * Eb/N0 * R/B (mW) ->这个公式的含义就非常清楚了,扩频带宽 B 给约掉了.结论:1)扩频对系统灵敏度没有任何的影响 --- B给约掉了2)扩频提高了抗干扰能力;通过 R/B 看出 --- 为什么使用扩频通讯的原因3)编码算法能有效提高系统灵敏度 ---> 这就是无线通讯为什么人们孜孜不倦的研究高增益的编解码算法的原因;因为编解码是有效降低Eb/N0,提高系统灵敏度,扩大覆盖的半径;今天恍然大悟.到此为止,研究基本告一段落.还有下面的问题没有细化研究:1)Eb 和 BER之间的关系,这个非常的复杂,与具体的编解码算法相关. 不做细化研究.感谢各位朋友的热心支持,给出研究方向,灵敏度研究暂告一段落,下面步入微带线和天线的研究,欢迎交流!Arm720:本来以为到此研究就结束了,但是在实现过程中还是会碰到不少的问题.扩频系统灵敏度公式1:Sin (dBm) = NF (dB) + KTB(dBm) + Eb/No (dB) - Gp (dB) ----- 这个公式描述的是系统在理想情况下的灵敏度理论值,也就是你设计的电路系统的极限值,为实际设计和调测作参考,很重要的.系统实测的灵敏度和这个值作比较,就能发现你的系统是否优良,同时也指导你找出原因.实际实现过程中,你的电路系统几乎是达不到这个指标的,因为实际电路中,由于PCB布线,屏蔽,等各方面的原因,引入干扰,降低系统了的信噪比,降低了灵敏度.那么再提出一个问题:电路实现过程中,有哪些手段去提高设计电路的灵敏度我先说一下我的想法,希望各位朋友参与和提供实践上的指导.1)提高实际电路的灵敏度,关键点在第一级的LNA和输入匹配电路的设计2)LNA输入匹配的关键在于最低噪声系数匹配,匹配方法为Gt增益圆,NF噪声圆,稳定圆,找合适的GamaS (不多讨论匹配细节)上面是传统的匹配步骤,我个人感觉忽略了一个很重要的考虑因数,就是对灵敏度的考虑,我们再把接收到的信号功率在细化的分为几个部分:Paten:天线接收的信号功率 Psignal:天线信号经过匹配后的输出信号功率,也就是LNA之前的信号功率Psig_reflect :不完全匹配从LNA反射回的功率 Psig_LNA :LNA接收到的信号功率他们之间的关系为:Psignal = Paten * aFactor (衰减因子) = Psig_LNA +Psig_reflect ---- 这个公式对分析灵敏度很重要实际上对系统有效解码的信号是Psig_LNA -----> 这个为提高电路系统灵敏度提供了理论依据;要知道电路系统实际接收到的信号的从天线接收到的信号,提高灵敏度的途径就是有效降低天线信号功率和 LNA吸收信号功率(有时也叫源信号资用功率) 的差值:1) 降低从天线信号功率的衰减因子 --- 和匹配电路相关2) 降低LNA输入系统的反射功率 --- 也许NF匹配就确定了LNA的反射功率,是否有新型电路结构能降低VSWR,又能降低信号的反射功率.Arm720:希望各位朋友能提供LNA输入级,在实践上灵敏度的指导和理论验证. 在电路实现上,对LNA输入级有哪些方法能达到下面的目的:1)降低匹配系统衰减因子 2)既有较低的NF系数,又有较低的VSWR(较低的反射功率) awp666:可以通过选择合适的工作点来选择你需要的NF,如果是VSWR则需要通过匹配电路来实现.不过,NF与Gain是不能同时满足的,因此你需要计算出你认为合适的值,然后选择好LNA的工作点.在SMith原图上,把这个工作点通过匹配网络转回圆心,看看需要什么电路形式,进一步用优化的方式使整个通带都满足你的要求.Arm720:多谢版主!一般情况下LNA设计中,NF,VSWR,增益是互相矛盾的;好的NF,增益又低了,VSWR也大了,总之既要得到好的NF,就不可能得到好的VSWR和增益;在电路中提高系统灵敏度,通过分析实际上要达到的目的是降低NF,同时又降低VSWR;主要是低的VSWR,信号功率损失反射损失低,那么进入LNA进行放大的信号功率增加,达到提高系统灵敏度的目的;感觉我们在NF匹配中,很少考虑VSWR对系统灵敏度的影响.实际电路实现中,有没有一些新颖的电路结构,做到NF也低,VSWR也低传统的灵敏度描述再修改一下:降低NF 和 LNA的VSWR,是提高电路系统灵敏度的有效方式.对于 VSWR 对灵敏度的定量影响还要继续研究一下,希望有朋友能提供实践方面的经验数据等. 多谢!woshi622:有很多书上是在接收灵敏度公式里并没有出现KTB,而是用10LgK+G/T(接收机品质因素)来表示,ARM兄我知道你理论清晰且加资料多,能帮我解释下G/T么Arm720:写个全的灵敏度公式吧,局部没法分析啊,你在哪本书上看过可以用图片的形式把灵敏度的描述这个部分贴出来,我试着分析一下.Arm720:灵敏度的理论研究就到此为止吧,对于实际电路提高灵敏度的方式,另起一贴讨论吧.实践方面的挑战还是比较多的,也很有乐趣,虽然前期看了很多资料,但是分析起来还是感觉到力不从新啊.woshi622:Cmin=Eb/No+Rb(信息速率)-G(译码增益)+L(解扩损耗)-G/T-10LgKG/T为接收机品质因素,那份资料上没有写推导方法,大概是与天线和接收机有关Everyday:对于GPS的灵敏度,我想说明一下.现在业界SIRF算是GPS的老大,它的tracking灵敏度可以做到-159dBm.对应的C/No 为13dB-Hz.在GPS中C/No用的很多.能介绍一下C/No与Eb/No之间的关系吗Arm720:手上没有C/N0表示系统灵敏度的资料,就连分析Eb/N0都找了很久,可能是我找的领域不对;射频的书籍是不会详细描述到 Eb/N0和C/N0这一步,哪位朋友有这方面电子文档,如果方便,发一份到我邮箱里面吧,先谢过!SiRF芯片 -159dBm的灵敏度确实高,但是不知是在多少误码率的情况下得到的他们的文档资料都是保密的,据我了解,SiRF芯片运动轨迹的漂移比较大,误码率高是主要原因吧,虽然有些地方能接受到信号,但是解码不稳定,导致静态漂移也大.我的分析不一定对,但是他的资料是绝对不开放的,很难进一步的了解他们的产品. Everyday:的确在LNA的设计中NF和Gain时相互矛盾的,但是在实际的应用中只要你选用的IC能够达到你的要求就OK了.例如:在GPS的LNA设计时一般的要求时NF15dB.一般来说,你选用的管子或者片子都能达到这样的要求.在GPS实际的应用中,还要考虑功耗,layout面积,匹配是否方便,一致性问题等等.功耗是一个相当关键的指标,你设计的LNA除了NF,Gain就是Ic了.比如现在我们设计的一款GPS LNA,达到了NF17dB,而工作电流为3mA(2.7V).S11,S22解码器--Et-->前向纠错(FEC)--Edec-->RS译码--Eb-->解码输出用户传输数据Es :单位符号能量 Et:单位比特信号能量Edec:输入RS译码器单位比特能量 Eb:用户速率单位比特能量从Eb/N0反推C/N的过程比较复杂,可以看出与具体的编解码算法相关.---转换过程很复杂,部分内容还需要在详细研究一下.Arm720:研究过程中的一个难点一直没有搞明白. 就是 C/N = Es/N0. 不知道这个是如何推导和计算出来的还有就是载波到底是调制前的还是调制后的在数字通讯中,为调制信号和载波信号相乘后输出,那么电路系统接收到的调制后(也就是相乘)的信号,包含载波和符号信号.根据付立叶变换,时域两信号相乘,在频域的表现两信号频域的卷积,频谱上的表现为 fc+fs, fc-fs ; 也就是接收信号不会出现载波信号,而是出现两个频率的信号.那位大侠能帮助解释一下 C 的详细含义,到底是载波还是信号(包含载波和符号), 以及C/N 是如何与 Es/N0相等它的定义影响到功率和能量方面的分析. 多谢!Ayuyu:研究问题就要这股劲,我喜欢!这里我有些看法供你参考;1.基带信号经调制器后,载波信号会被抑制,在-25dBc到-50dBc之间,所以载波基本不影响信噪比的计算,这个调制信号通常是双边带信号.2.C/N and C/N0是卫星通信中常用术语,通常指的是信噪比和信号对噪声功率谱密度之比,由于数据经调制后输出的是速率为Rs调制符号,Es/N是解调器输出的信噪比,就是单位符号能量对噪声功率比,可以用矢量信号分析仪很容易测得,在DSP里也可以很容计算Es/N.如果Es/N来表示C/N=Rs×Es/N,这是我们工程上常说的信噪比;考虑N=N0×B就有C/N=Rs*Es/(N0*B),若取噪声带宽与信号的带宽相同,那么B=Rs,所以C/N=Es/N0.Arm720:非常感谢ayuyu兄的鼓励和帮助!我个人困惑的问题就在这儿:C/N=Rs*Es/(N0*B) = (Es/N0)*(Rs/B),就在Rs/B上面.拿GPS来说吧,载波频率为1.5742G,扩频带宽B为2.046M;此处的B就是2.046M,但是符号速率Rs是要小于2.046M的ayuyu:那是因为在基带调制器后有个基带成型滤波器(通常是升余弦一类的滤波器),使得信号占用频谱宽度加大,在这里衡量等效噪声带宽时通常取Rs同值checkz:公式的物理含义灵敏度的定义是在满足系统要求时(即Eb/N0)信号的最小电平.Eb/N0由基带部分的算法以及解调方式决定,所以对于特定的基带系统Eb/N0是一个定值. 再看NF,它是由天线到基带接口中间所有的级联电路决定的,对于特定的电路当然也是定值, 所以在以上两种条件都定下来的情况下,这个最小电平是由带宽决定的.这个公式有两个作用1.根据规范(规定了所需要的灵敏度,BW,Eb/N0比如GSM,灵敏度=-104dBm左右,BW=200Khz,Eb/N0=9dB)计算出射频接收前端所需要的NF然后根据这个指标选择不同的元器件进行接收链路的预算(linkbudget)2.根据实际的射频前端系统计算出灵敏度这和1是个相反的过程.例如GSM系统BW是200KS=-174dBm+10*log(BW)+Eb/N0+NF鄙人的一点粗见,不到之处敬请之处.Yshzhang:参照WCDMA的算法,这个真实一点WCDMA通信系统接收机(基站)灵敏度计算WCDMA作为第三代移动通信最重要的标准之一,其基站设备的性能直接关系到网络的覆盖和质量,射频带宽等于码片速率,即3.84MHz,对于速率为12.2kbit/s,QPSK调制信号,在Eb/No值为5dB时可以获得规定的误码率BER(0.1%).可以计算得到:KTBRF(dBm)=10log(1.381×10-23W/Hz/K×290K×3.84MHz×1000mW/W)=-108dBm.Gp(dB)=BRF/Rb=25dB于是,基站灵敏度:S(dBm)=NF-108+5-25=NF-128dB因此对给定的S=-121dB情况下,系统的噪声指数NF必须小于7dB.扩频系统的接收机灵敏度方程本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。