人教版八年级下册数学第二十章测试题(附答案)
人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。
2022-2023学年新人教版初中八年级数学下册第二十单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第二十单元综合能力提升测试卷时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)蓝青学校乒乓球队员的年龄分布如表所示:对于不同的a,下列关于年龄的统计量不会发生改变的是()A.众数,中位数B.众数,方差C.平均数,中位数D.平均数,方差2.(3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四个人中成绩最稳定的是()A.甲B.乙C.丙D.丁3.(3分)某厂房3月1日至7日的用电量如表:关于这7天的用电量,下列说法不正确的是()A.平均数是50B.中位数是50C.众数是3D.方差是1000 74.(3分)把一组数据中的每个数据都加1后得到一组新数据,新的这组数据与原数据相比()A.平均数不变B.中位数不变C.众数不变D.方差不变5.(3分)中国队在2002年至2022年间的六届冬奥会中获得的金牌数分别是2,2,5,3,1,9枚,则中国队在这六届冬奥会中所获得的金牌数的众数和中位数分别是()A.2,2.5B.2,3C.3,3D.4,26.(3分)已知一样本数据4,4,5,6,m的中位数为4,则数m可能为() A.6B.5C.4.5D.47.(3分)某同学对数据35,31,29,32,4■,44,45进行统计分析,发现两位数“4■”的个位数字模糊不清,则下列统计量不受影响的是()A.平均数B.众数C.中位数D.方差8.(3分)为了参加市中学生篮球赛,某校一支篮球队购买了10双运动鞋,尺码如表:则这10双运动鞋尺码的众数和中位数分别为()A.25.5cm,26cm B.26.5cm,26cmC.26.5cm,25.5cm D.26cm,26cm9.(3分)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是36C︒B.平均数是32C︒C.众数是33C︒D.7天里的最高气温的极差为7 10.(3分)3月14日是国际数学节,为迎接数学节,某学校3月份举办“数学嘉年华之手抄报评比活动”,对甲、乙、丙、丁四组候选作品进行量化评分,具体成绩(百分制)如下表,如果按照创新性占60%,丰富性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁二、填空题(共5小题,满分15分,每小题3分)11.(3分)已知数据1、1、2、3、5、8、13、21、34,这些数据的中位数为.12.(3分)若数据2,1,a,3,0的平均数是2,则这组数据的方差是.13.(3分)2022年冬奥会将在北京市和张家口市联合举行,北京成为奥运史上第一个既举办夏季奥运会又举办冬季奥运会的城市.为了激发同学们对冬奥会的热情,某校开设了冰球选修课,12名同学被分成甲、乙、丙三组进行训练,经过5次测试,若甲、乙、丙三组的平均成绩相同,且方差20.75S=甲,220.50.9S S==乙丙,则应选择组参加全市中学生冰球联谊赛.14.(3分)在一次以“建设美丽济阳”为主题的演讲比赛中,小红的演讲内容、语言表达、演讲技能、形象礼仪的各项得分依次为9.5;9.4;9.2;9.7.若依次按40%,25%,25%,10%的比例确定她的综合得分,则她的综合得分是.15.(3分)每天登录“学习强国” App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数是.三、解答题(共10小题,满分75分)16.(7分)为了解某校七年级450名男生引体向上成绩情况,陈老师对该校随机抽取的30名七年级男生进行了引体向上测试,制成统计表如表:(1)求这30名男生引体向上成绩的平均数、中位数和众数.(2)学校规定:当引体向上测试成绩超过5个时成绩等级评为优秀,请估计该校七年级所有男生引体向上成绩为优秀的人数.17.(7分)我们约定:如果身高在选定标准的2%±范围之内都称为“优身高”.为了解某校九年级男生中具有“优身高”的人数,我们从该校九年级男生中随机选出10名,分别测量出他们的身高(单位:)cm,收集并整理统计如下表:根据以上表格信息,解答如下问题:(1)这10个数据的中位数是 cm ,众数是 cm ;(2)如果以中位数作为选定标准,请通过计算说明,上面挑选的10名男生中具有“优身高”的有几人?(3)请根据第(2)问中的信息,估计本校380名男生中具有“优身高”的人数.18.(7分)学生的心理健康教育一直是学校的重要工作,为了了解学生的心理健康状况,某校进行了心理健康情况调查.现从八、九年级各随机抽取了20名学生的调查结果(满分为100分,分数用x 表示,共分成四组::85A x <,:8590B x <,:9095C x <,:95100)D x 进行整理、描述和分析,当分数不低于85分说明心理健康,下面给出部分信息.八年级随机抽取了20名学生的分数是:72,80,81,82,86,88,90,90,91,a ,92,92,93,93,95,95,96,96,97,99.九年级随机抽取了20名学生的分数中,A 、B 两组数据个数相等,B 、C 两组的数据是:86,88,88,89,91,91,91,92,92,93根据以上信息,回答下列问题:填空:(1)a = ;b = ;m = ;(2)根据以上数据分析,你认为八、九年级哪个年级学生心理健康状况更好?请说明理由(写出一条理由即可).(3)若该校八年级有800名学生,九年级有700名学生,估计这两个年级心理健康的学生一共有多少人?19.(7分)某公司欲招聘一名公关人员,对甲,乙两位应试者进行了面试与笔试,他们的成绩(百分制)如表所示:(1)如果公司认为面试和笔试同等重要,从他们的成绩看,会被录取是;(2)如果公司认为作为公关人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算两人各自的平均成绩,并确定会被录取的人.20.(7分)某篮球训练营在一次投篮训练中,A组的20名运动员均参加训练,训练方式为每人定点投篮10次,以命中次数作为训练成绩.据统计,此次投篮训练的成绩如表:(1)已知这20名运动员此次训练成绩的平均数是6.25、中位数是b、众数是c,直接写出b、c的值;(2)若A组某运动员的训练成绩为7次,统计时被记录员记少了1次,则此次训练成绩的统计数据中不受影响的是.(填“平均数”、“众数”、“中位数” )(3)已知B组的20名运动员在本次训练中的成绩统计如表:你认为哪组运动员本次的训练成绩更好?为什么?21.(8分)在一次体操比赛中,6个裁判员对某一运动员的打分数据(动作完成分)如下:9.6??8.8??8.8??8.9??8.6??8.7对打分数据有以下两种处理方式:方式一:不去掉任何数据,用6个原始数据进行统计;方式二:去掉一个最高分和一个最低分,用剩余的4个数据进行统计;(1)a=,b=,c=;(2)你认为把哪种方式统计出的平均分作为该运动员的最终得分更合理?写出你的判定并说明理由.22.(8分)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献,这些志愿者很多来自高校,在志愿者招募之时,甲、乙两所大学就积极组织了志愿者选拔活动,对报名的志愿者进行现场测试,现从两所大学参加测试的志愿者中分别随机抽取了20名志愿者的测试成绩进行整理和分析(成绩得分用x 表示,满分100分,共分成五组:A .80x <,B .8085x <,C .8590x <,D .9095x <,E .95100)x ,下面给出了部分信息:a .甲校20名志愿者的成绩在D 组的数据是:90,91,91,92.b .乙校20名志愿者的成绩成绩是:82,89,80,85,88,89,87,96,96,99,96,92,91,93,96,97,98,92,94,100.c .d .两校抽取的志愿者成绩的平均数、中位数、众数、方差如下表所示:根据以上信息,解答下列问题:(1)由上表填空:a = ,b = ,α= ︒.(2)你认为哪个学校的志愿者测试成绩较好,请说明理由(写出一条即可). (3)若甲校有200名志愿者,乙校有300名志愿者参加了此次侧试,估计此次参加测试的志愿者中,成绩在90分以上的志愿者有多少?23.(8分)保家卫国尽精英,战绩辉煌留盛名,近几年涌现了很多缅怀中国军人的优秀作品,其中《长津湖》和《长津湖之水门桥》正是其中的优秀代表,为了解学生对这两部作品的评价,某调查小组从该校九年级中随机抽取了20名学生对这两部作品分别进行打分,并进行整理,描述和分析,下面给出了部分信息:《长津湖》得分:7,8,7,10,7,6,9,9,10,10,8,9,8,6,6,10,9,7,9,9.抽取的学生对两部作品分别打分的平均数,众数和中位数如下表.根据以上信息,解答下列问题:(1)上述表格中的b=,c=;(2)根据上述数据,你认为该校九年级学生对哪部作品评价更高?请说明理由(写出一条理由即可);(3)若该校九年级1100名学生都对这两部作品进行打分,请你估计一下这两部作品一共大约可得到多少个满分?24.(8分)北京冬奥会的成功举办掀起了全民“冬奥热”.某校组织全校七、八年级学生举行了“冬奥知识”竞赛,现分别在七、八两个年级中各随机抽取10名学生,统计这部分学生的竞赛成绩,相关数据统计整理如下:[收集数据]七年级10名同学测试成绩统计如下:84,78,85,75,72,91,79,72,69,95八年级10名同学测试成绩统计如下:85,80,76,84,80,72,92,74,75,82【整理数据】两组数据各分数段,如下表所示:x<x<901006070x<8090x<7080152a0451【分析数据】两组数据的平均数、中位数、众数、方差如下表:【问题解决】根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)计算八年级同学测试成绩的方差是:2_S八年级.请你求出七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上为优秀,若该校七年级学生共1200人,八年级学生共1000人,请估计这两个年级竞赛成绩达到优秀学生的人数.(4)根据以上数据,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由(写出一条理由即可).25.(8分)2022年2月8日,中国选手谷爱凌在冬奥会自由式滑需女子大跳台决赛中夺得金牌,国际滑联评价谷爱凌为滑雪史上第一人,已知自由式滑雪大跳台的计分规则如下:①每次滑雪的动作,按照其完成难度的不同对应一个难度系数A;②每次滑雪都有7名裁判进行打分,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这次起跳的完成分B;③运动员该次滑雪的最后得分C=难度系数A⨯完成分3B⨯.在某次自由滑雪大跳台比赛中,某运动员的打分(满分10分)表为:(1)7名裁判打分的众数是;中位数是.(2)该运动员的最后得分是多少?(3)已知某运动员在一次滑雪大跳台比赛中完成了难度系数3.2的动作,且所有裁判都打了满分,请你帮她算一下,难度系数3.2的满分成绩应该是多少分?参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.D;5.A;6.D;7.C;8.B;9.A;10.B;二、填空题(共5小题,满分15分,每小题3分)11.5;12.2;13.乙;14.9.42;15.21;三、解答题(共10小题,满分75分)16.(1)这30名男生引体向上成绩的平均为:1(013253644556373) 3.730⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(个),中位数为343.52+=(个),众数为3个;(2)334509030+⨯=(人),答:估计该校七年级所有男生引体向上成绩为优秀的人数为90人.17.(1)这10个数据的中位数是:164166165()2cm+=,众数是164cm,故答案为:165;164;(2)如果以中位数作为选定标准,上面挑选的10名男生中具有“优身高”的有⑦、⑧、⑨、⑩共4人;(3)438015210⨯=(人),答:估计本校380名男生中具有“优身高”的人数为152人.18.(1)1(92)922a+=,解得92a=,九年级测试成绩的中位数1(9191)912b=⨯+=,九年级测试成绩分数不低于90分的人数所占百分比为12100%60% 20⨯=,60m∴=,故答案为:92;91;60;(2)八年级学生心理健康状况更好,理由如下:八年级测试成绩的平均数,中位数和健康率均大于九年级;(3)估计这两个年级的学生疫情防控知识竞赛成绩为优秀(分数不低于90分为优秀)的一共有80080%70060%1060⨯+⨯=(人). 19.(1)甲的平均成绩:859087.52+=(分), 乙的平均成绩:928186.52+=(分), 所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取; 故答案为:甲. (2)甲的平均成绩8569048764⨯+⨯==+(分), 乙的平均成绩92681487.664⨯+⨯==+(分), 因为乙的平均分数较高, 所以乙将被录取.20.(1)这20名运动员此次训练成绩从小到大排列,排在最中间的两个数分别为6、6,故中位数6662b +==, 7出现的次数最多,故众数7c =;(2)若A 组某运动员的训练成绩为7次,统计时被记录员记少了1次,则此次训练成绩的统计数据中不受影响的是中位数; 故答案为:中位数;(3)B 组成绩更好;理由:两组成绩的众数均相同,但B 组的平均数、中位数较大,说明B 组运动员的平均成绩及中等偏上的成绩更好.21.(1)方式一:不去掉任何数据,这组数据的中位数为:8.88.88.82a +==; 方式二:去掉一个最高分和一个最低分, 平均数为1(8.88.88.98.7)8.84b =⨯+++=,方差为:22221[(8.88.8)(8.88.8)(8.98.8)(8.78.8)]0.0054c =⨯-+-+-+-=,故答案为:8.8,8.8,0.005;(3)方式二:去掉一个最高分和一个最低分,用剩余的4个数据进行统计更合理, 理由:这样可以减少极端值对数据的影响.22.(1)甲校D组所占的百分比为:420%20=,甲校C组所占的百分比为:15%5%45%20%25%----=,C组的人数为2025%5⨯=(名),∴甲校的中位数919291.52a+==,乙校的出现次数最涉感是96,因此众数是96,即96b=.360(5%5%25%)126a x=︒++=︒,故答案为:91.5,96,126;(2)乙校志愿者测试成绩较好.理由如下:甲、乙两校的平均数虽然相同,但是乙校的中位数、众数均比甲校的大,甲校的方差为36.6,乙校的方差是31.4,而36.631.4>,∴乙校的成绩较为稳定,∴乙校志愿者测试成绩较好;(3)根据题意得:甲校20名志愿者成绩在90分以上的人数为:20(45%20%)112⨯+-=,20名志愿者成绩在90分以上的人数为13,∴12132003001201953152020⨯+⨯=+=(人),答:成绩在90分以上的志愿者有315人.23.(1)将《长津湖》得分按照从小到大排好顺序处在中间位置的两位数为:898.52+=,根据扇形图可知《长津湖之水门桥》的得分为8分的所占的比例为126100%35% 360⨯=,∴得分为10分的所占的比例为135%20%20%10%15%----=,∴《长津湖之水门桥》的得分的众数为8分,故答案为:8.5,8;(2)该校九年级学生对《长津湖》评价更高,理由是:《长津湖》的平均数、众数、中位数均比《长津湖之水门桥》的高;(3)这两部作品一共大约可得到满分的个数为41100(15%)38520⨯+=(人)答:该校九年级1100名学生都对这两部作品进行打分,这两部作品一共大约可得到满分的个数为385人.24.(1)将七年级抽样成绩重新排列为:69,72,72,75,78,79,84,85,91,95,其中在90100x<范围内的数据有2个,故2a=.中位数787978.52b+==,将八年级样成绩重新排列为:72,74,75,76,80,80,82,84,85,92,其众数80c=,故答案为:2,78.5,80;(2)七年级的方差是2_S七年级,因为2_S七年级,所以八年级学生的竞赛成绩更整齐;(3)21 120010003401010⨯+⨯=(人),答:估计这两个年级竞赛成绩达到优秀学生的人数有340人;(4)可以推断出八年级年级学生知识竞赛成绩更好,理由为两班平均数相同,而八年级的中位数以及众数均高于七年级,说明八年级学生的竞赛成绩更好(答案不唯一).25.(1)9.0出现次数最多,7名裁判打分的众数是9;把这组数据按照从小到大的顺序排列得:9、9、9、9、9.5、9.5、10,根据中位数的定义知,中位数是9.故答案为:9;9;(2)13.0(9.59.09.0)382.53⨯⨯++⨯=(分).故该运动员本次滑雪的得分是82.5分.(3)13.2(101010)3963⨯⨯++⨯=(分),答:难度系数3.2的满分成绩应该是96分.。
知识点详解人教版八年级数学下册第二十章-数据的分析专题测试试题(含答案解析)

人教版八年级数学下册第二十章-数据的分析专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.下列关于成的统计量中、与被遮盖的数据无关的是()A.平均数 B.中位数C.中位数、众数D.平均数、众数2、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是()A.甲B.乙C.丙D.丁3、一组数据x、0、1、﹣2、3的平均数是1,则这组数据的中位数是()A.0 B.1 C.2.5 D.34、下列说法中正确的是()A.样本7,7,6,5,4的众数是2B.样本2,2,3,4,5,6的中位数是4C.样本39,41,45,45不存在众数D.5,4,5,7,5的众数和中位数相等5、5G是新一代信息技术的发展方向和数字经济的重要基础,预计我国5G商用将直接创造更多的就业岗位.小明准备到一家公司应聘普通员,他了解到该公司全体员工的月收入如下:对这家公司全体员工的月收入,能为小明提供更为有用的信息的统计量是()A.平均数B.众数C.中位数D.方差6、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A.平均数、中位数和众数都是3B.极差为4C.方差是5 3D7、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A.20m3B.52m3C.60m3D.100m38、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选()A.甲B.乙C.丙D.丁9、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D .丁10、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).2、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是______(精确到0.1),众数是______,中位数是______.3、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为2s 甲_____2s 乙(填>或<).4、一组数据4,3,6,x 的平均数是4,则这组数据的方差是_________.5、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S 甲2=38,S 乙2=10,则______ 同学的数学成绩更稳定.三、解答题(5小题,每小题10分,共计50分)1、2020年初的新冠肺炎疫情对人们的生活造成了较人的影响,为响应教育部下发通知“停课不停学”的倡议,某校准备选用合适的软件对全校学生直播上课,经对直播软件功能进行筛选,学校选定了“钉钉”和“QQ直播”两款软件进行试用,并组织全校师生对这两款软件打分(均为整数,最高5分:最低1分),20名同学打分情况如下:学生打分的平均数、众数、中位数如表:抽取的10位教师对“钉钉”和“QQ直播”这两款软件打分的平均分分别为3.9分和4分.请根据以上信息解答下列问题:(1)将上面表格填写完整:(2)你认为学生对这两款软件评价较高的是,(填“钉钉”或“QQ直播”)理由是:;(3)学校决定选择综合平均分高的软件进行教学,其中综合平均分中教师打分占60%,学生打分占40%,请你通过计算分析学校会采用哪款软件进行教学.2、某单位要招聘1名英语翻译,甲、乙两人报名参加了4项素质测试,成绩如下(单位:分):如果把听、说、读、写的成绩按3:3:2:2计算素质测试平均成绩,那么谁的平均成绩高?请说明理由.3、根据下列统计图,写出相应分数的平均数、众数和中位数.(1)(2)4、近日,教育部印发通知,决定实施青少年急救教育行动计划,开展全国学校急救教育试点工作.某校为普及急救知识,进行了相关知识竞赛,现从七、八年级中各随机抽取20名学生的竞赛成绩进行整理、描述和分析(成绩得分用x表示,共分为四个等级:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100),下面给出了部分信息.七年级20名学生的竞赛成绩是:62,68,75,80,82,85,86,88,89,90,90,95,96,98,99,99,99,99,100,100.八年级20名学生的竞赛成绩中C等级包含的所有数据为:82,84,85,86,88,89.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:上述图表中a=,b=c=;(2)根据图表中的数据,判断七、八年级中哪个年级学生竞赛成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级共2000名学生参加了此次竞赛活动,估计竞赛成绩为D等级的学生人数是多少?5、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛.某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x表示,共分为四个等级:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100);下面给出了部分信息:七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85.八年级D等级中全部学生的成绩为:92, 95, 98, 98, 98, 98, 98, 100, 100, 100.七八年级抽取的学生知识竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数.---------参考答案-----------一、单选题1、C【解析】【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择. 【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人), 成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98, 因此中位数和众数与被遮盖的数据无关, 故选:C . 【点睛】本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提. 2、D 【解析】 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】解:∵x x x x =<=乙丙甲丁,∴从丙和丁中选择一人参加比赛, ∵S 丙2>S 丁2, ∴选择丁参赛, 故选:D . 【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 3、B 【解析】 【分析】先根据算术平均数的定义列方程求出x 的值,再将这组数据从小到大重新排列,利用中位数的定义可得答案. 【详解】解:∵数据x 、0、1、-2、3的平均数是1, ∴()1012315x ++-+=, 解得x =3,所以这组数据为-2、0、1、3、3, 所以这组数据的中位数为1, 故选:B . 【点睛】本题主要考查了中位数和算术平均数,解题的关键是掌握算术平均数和中位数的定义. 4、D 【解析】 【分析】根据众数定义和中位数定义对各选项进行一一分析判定即可. 【详解】A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A 不正确;B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是343.52+=,故选项B 不正确;C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.故选D.【点睛】本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.5、B【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然小明想了解到该公司全体员工的月收入,那么应该是看多数员工的工资情况,故值得关注的是众数.【详解】解:由于众数是数据中出现次数最多的数,故小明应最关心这组数据中的众数.故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A 不符合题意;极差为5﹣1=4,B 选项不符合题意;S 2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C 选项不符合题意;S =D 选项符合题意, 故选:D .【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.7、B【解析】【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】30.5213 1.5223 1.310m ⨯+⨯+⨯+⨯=, 由此可估计全班同学的家庭一个月节约用水的总量是340 1.352m ⨯=.故选:B .【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.8、A【解析】【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵6.2 6.0 5.8>>,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,0.250.32<,∴甲的成绩好且发挥稳定,故应选甲,故选A .【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.9、D【解析】【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B .【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.二、填空题1、甲【解析】【分析】根据题意可得:22S S <甲乙,即可求解.【详解】 解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.∴22S S <甲乙,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.2、 73.0 80,90 80【解析】【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【详解】解:(1)平均数是:1004+9011+8011+708+605+3004+11+11+8+5+8⨯⨯⨯⨯⨯ =73.0;(2)90分的有11人,80分的有11人,出现的次数最多,则众数是 80和90,(3)把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;73.0;80和90;80.【点睛】此题考查了平均数、众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),出现次数最多的数是众数.3、>【解析】【分析】根据数据的波动越小,方差越小,越稳定,反之数据的波动越大,方差越大,再结合图象即可填空.【详解】由图可知甲的数据波动相对较大,乙的数据波动相对较小.∴甲的方差大于乙的方差.故答案为:>.【点睛】本题考查根据数据的波动程度判断方差的大小.掌握数据波动程度和方差的关系是解答本题的关键. 4、32【解析】【分析】先根据平均数的定义求出x 的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x 的平均数是4, 可得:43644x +++=, 解得:x =3, 方差为:22221(44)(34)(64)(34)4⎡⎤-+-+-+-⎣⎦=32, 故答案为:32.【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.5、乙【解析】【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:∵甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,∴S甲2 S乙2,∴乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查了方差,解题的关键是明确方差越小越稳定.三、解答题1、(1)4,3;(2)钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播;(3)学校会采用QQ 直播软件进行教学,见解析【分析】(1)将20名学生对钉钉直播软件的评分重新排列,再根据中位数的定义求解即可;根据众数的定义可得20名学生对钉钉直播软件的评分的众数;(2)比较平均数、众数和中位数的大小即可得出答案;(3)根据加权平均数的定义分别计算出钉钉软件和QQ直播软件的最终得分,比较大小即可得出答案.【详解】解:(1)将20名学生对钉钉直播软件的评分排列如下:1,1,2,2,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,其中位数为4+42=4,20名学生对钉钉直播软件的评分次数最多的是3分,有6次,所以其众数为3,补全表格如下:故答案为:4、3;(2)认为学生对这两款软件评价较高的是钉钉,理由是:钉钉软件得分的平均数、众数和中位数均大于QQ直播,故答案为:钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播.(3)钉钉软件的最终得分为3.9×60%+3.4×40%=3.7(分),QQ直播软件的最终得分为4×60%+3.35×40%=3.74(分),∵3.74>3.7,∴学校会采用QQ直播软件进行教学.【点睛】本题主要考查中位数、众数及平均数,熟练掌握求一组数据的众数、中位数及平均数是解题的关键.2、甲的平均成绩高,见解析【分析】根据加权平均数的定义列式计算即可求解.【详解】解:甲的平均成绩高,∵甲的平均成绩:90380385278283.63322⨯+⨯+⨯+⨯=+++(分),乙的平均成绩:78382385288282.63322⨯+⨯+⨯+⨯=+++(分),83.682.6>,∴甲的平均成绩高.【点睛】本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.3、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分【分析】(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.【详解】解:(1)平均分数为:021*******3272110⨯+⨯+⨯+⨯=+++,从图中可得:有21人得3分,众数为3分,共有40人,将分数从小到大排序后,第20和21位都是3分,∴中位数为3分,∴平均分数为3分,众数为3分,中位数为3分;(2)平均分数为:13%24%351%432%510% 3.42⨯+⨯+⨯+⨯+⨯=,扇形统计图中3分占比51%,大于其他分数的占比,众数为3分;中位数在51%的比例中,中位数为3分;∴平均分数为3.42分,众数为3分,中位数为3分.【点睛】题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.4、(1)40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)900人【分析】(1)根据八年级C等级有6个学生可得a,根据扇形统计图可得八年级中位数b,根据七年级的成绩可得众数c;(2)比较平均数、中位数和众数可得结论;(3)求出七、八年级学生竞赛成绩为D等级的百分比可得答案.【详解】解:(1)八年级20名学生的竞赛成绩中C等级包含6个分数,C等级所占百分比为620=30%,a%=1﹣20%﹣10%﹣30%=40%,∴a=40,八年级成绩A等级的有20×20%=4(人),B等级的有20×10%=2(人),∴八年级中位数位于C等级的第4、5两个数据即86,88,八年级中位数位于C等级,b=86882=87,七年级成绩是众数是99分,c=99,故答案为:40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)七年级D等级人数是10人,八年级D等级人数是20×40%=8人,2000×10840=900(人),答:竞赛成绩为D等级的学生人数是900人.【点睛】本题考查了扇形统计图、中位数、众数、平均数,理解中位数、众数、平均数的计算方法是正确求解的前提.5、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人.【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)根据中位数,满分率解答即可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)∵七年级C等有10人,∴C等所占比例为1040×100%=25%,∴a%=1-20%-45%-25%=10%,∴a=10,七年级A等有:40×10%=4(人),B等有:40×20%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的是第20名和第21名的成绩,分别是89,89,∴中位数b=89;∵七年级满分人数为:40×25%=10(人),∴众数c=100;八年级满分率为:340×100%=7.5%,∴m=7.5;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)1800×45%+250×1040×100%≈873(人),答:估计两个年级此次知识竞赛中优秀的人数约为873人.【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键.。
2022年八年级人教版数学下册第二十章【数据的分析】综合测试卷附答案

2022年八年级数学下册第二十章【数据的分析】综合测试卷(满分100分)一、选择题(本大题共6个小题,每小题3分,共18分)1.已知一组数3、6、7、4、7,那么这组数的众数是()A.3B.4C.6D.72.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数3.若一组数据1,3,4,6,m 的平均数为4,则这组数据的中位数和众数分别是()A.4,6B.4,4C.3,6D.3,44.某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有一个数据丢失):日期一二三四五平均气温最高气温1℃2℃﹣2℃0℃1℃则这个被丢失的数据是()A.2℃B.3℃C.4℃D.5℃5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S 甲2>S 乙2;②S 甲2<S 乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④6.已知:一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据31x ﹣2,32x ﹣2,33x ﹣2,34x ﹣2,35x ﹣2的平均数和方差分别是()A.2,13B.2,1C.4,23D.4,3二、填空题(本大题共6个小题,每小题3分,满分18分)7.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是元.8.若一组数据3,4,x ,6,8的平均数为5,则这组数据的众数是.9.生命在于运动.运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.10.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S 甲22=0.6,则两人射击成绩比较稳定的是(填“甲”或“乙”).=1.4,S乙11.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.12.一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是.三、解答题(共64分)13.(4分)有一组数据:5,4,3,6,7,求这组数据的方差.14.(4分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图.请根据相关信息,解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?15.(4分)一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里,过了一段时间,待带标记的鱼完全混合于鱼群后,再捕捞了五次,记录如下:第一次捕上90条鱼,其中带标记的有11条;第二次捕上100条鱼,其中带标记的有9条;第:三次捕上120条鱼,其中带标记的有12条;第四次捕上100条鱼,其中带标记的有9条;第五次捕上80条鱼,其中带标记的有8条;池塘里大约有多少条鱼?16.(5分)某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.(1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.17.(5分)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.18.(6分)车间有20名工人,某一天他们生产的零件个数统计如下表.生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?19.(6分)为隆重纪念中国共产党成立100周年,进一步激发师生的爱党爱国热情,某校开展了四项庆祝活动:A、感党恩•我们诵;B、听党话•我们唱;C、跟党走•我们画;D、学党史•我们写.其中C项活动全体同学参与,预计成绩95<x≤100可获一等奖,成绩90<x≤95可获二等奖,随机抽取50个同学的作品进行打分并对成绩进行整理、分析,得到频数分布直方图如图:收集其中90<x≤100这一组成绩如下:n939298959596919496整理该组数据得下表:组别平均数中位数众数获奖组94.59595根据以上信息,回答下列问题:(1)频数分布直方图中m=;(2)90<x≤100组中n=;(3)已知该校有1200名学生,估计本次活动获一等奖的同学有多少人?20.(7分)某校为了选择一名数学成绩优秀的学生去参加本次全市“数学竞赛”,对在上学期六次数学测试中成绩最优秀的两名同学的数学成绩进行统计分析,列表如下:学生月考一月考二月考三月考四期中期末小明118120114119115116小刚120118120108116120(1)直接写出小刚六次数学测试成绩的中位数和众数;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,你会选择哪一个学生去参加“数学竞赛”?为什么?21.(7分)暑期将至,某校组织学生进行“防溺水”安全知识竞赛,老师从中随机抽取了部分学生的成绩(得分取整数,满分为100分),整理后绘制成如图所示的不完整的扇形统计图和频数分布直方图.其中A组的频数a比B组的频数b小15.请根据以上信息,解答下列问题:(1)本次共抽取名学生,a的值为;(2)在扇形统计图中,n=,E组所占比例为%;(3)补全频数分布直方图;(4)若全校共有1500名学生,请根据抽样调查的结果,估计成绩在80分以上的学生人数.22.(7分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.23.(9分)南康某中学为了抗疫宣传,在七、八年级开展了“防疫知识”大赛.为了解参赛学生的成绩情况,从两个年级中各随机抽取了10名学生的成绩(单位:分),数据如下:七年级:889490948494999499100八年级:84938894939893989799整理数据:按如下分数段整理样本数据:成绩x (分)年级80≤x<8585≤x<9090≤x<9595≤x ≤100七年级1153八年级a144分析数据:统计量年级平均数中位数众数方差七年级93.694b23.6八年级93.7c9320.4根据以上信息,回答下列问题:(1)a=,b=,c=;(2)由统计数据可知,年级选手的成绩比较接近;(3)学校规定,成绩不低于90分的选手可以获奖,若该校七年级有200人参加比赛,请估计有多少人获奖.答案1.D 2.A 3.A 4.C 5.C6.D7.378.49.1.310.乙11.0.312.4.2或4.13.解:5576345=++++=x ,S 2=51×[(5﹣5)2+(4﹣5)2+(3﹣5)2+(6﹣5)2+(7﹣5)2]=2.14.解:(1)观察条形统计图,52.14161411540.2168.1145.1112.150.1=++++⨯+⨯+⨯+⨯+⨯=x ,所以这组数据的平均数是1.52,将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,这组数据的中位数是1.5.(2)在所抽取的样本中,质量为2.0kg 的数量有4只,504=0.08,所以由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.2500×8%=200(只).故质量为2.0kg 的约有200只.15.解:根据题意得:100÷100080100120100908912911=++++++++(条),答:池塘里大约有鱼1000条;16.解:(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10﹣57﹣51﹣45﹣41﹣44﹣46﹣45﹣42﹣48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、84、48、48、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51都出现了最多次数3次,所以众数为51,方差=101[(42﹣48)2+(44﹣48)2+2×(45﹣48)2+(46﹣48)2+(48﹣48)2+3×(51﹣48)2+(57﹣48)2]=18.217.解:(1)80×(1﹣30%﹣25%)=36(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒xMB .则4G 手机的下载速度是每秒(x ﹣95)MB .+190=,解得:x 1=100,x 2=﹣5(不合题意,舍去),经检验,x 1=100是原方程的解,答:5G 手机的下载速度是每秒100MB .18.解:(1)x =201×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);(2)中位数为1221212=+(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.19.解:(1)m =12;(2)n =95;(3)抽取50个同学的作品成绩95<x ≤100的人数为3,∴1200×=72(人),答:估计本次活动获一等奖的同学有72人.(2)乙班同学的方差为:51×[(7﹣8.5)2+2×(10﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2]=1.6,∵甲班5名同学成绩的方差是0.7,0.7<1.6,∴甲班选手的成绩较为稳定.20.解:(1)小刚成绩重新排列为:108、116、118、120、120、120,所以小刚成绩的中位数为=119,众数为120;(2)选择小明参加“数学竞赛”,理由如下:小明成绩的平均数为=117,方差为×[(114﹣117)2+(115﹣117)2+(116﹣117)2+(118﹣117)2+(119﹣117)2+(120﹣117)2]=;小刚成绩的平均数为=117,方差为×[(108﹣117)2+(116﹣117)2+(118﹣117)2+3×(120﹣117)2]=;∵小明与小刚的平均成绩相等,而小明成绩的方差小于小刚,∴小明的成绩稳定,∴选择小明参加“数学竞赛”.21.解:(1)150,a =12;(2)144,4;(3)补全频数分布直方图如图所示:(4)1500×=660(人),答:估计成绩在80分以上的学生人数大约为660人.22.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).23.解:(1)由样本数据知,八年级在80≤x<85段的人数a=1.将八年级10名学生的成绩重新排列为84,88,93,93,93,94,97,98,98,99,所以其中位数c=(93+94)÷2=93.5,七年级94分人数最多,故众数b=94.故答案为1,94,93.5.(2)由表知八年级成绩的方差20.4小于七年级成绩的方差23.6,∴八年级的成绩更稳定,即成绩比较接近.故答案为八.(3)估计七年级的获奖人数为1601035200=+⨯(人).。
八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章数据的分析》解答题练习-附答案(人教版) 1.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.2.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?3.某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次共抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1 200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?4.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m=________,n=__________;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.5.在上学期的几次测试中,小张和小王的几次数学成绩(单位:分)如下表:平时成绩期中成绩期末成绩小张82 85 91小王84 89 86(1)小张可能是根据什么来判断的?小王可能是根据什么来判断的?(2)你能根据小张的想法设计一种方案使小张的成绩比小王的高吗?写出你的方案.6.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.7.某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)餐厅所有员工的平均工资是多少?(2)所有员工工资的中位数是多少?(3)用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当?(4)去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?8.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.9.为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图分数段频数50≤x<60 260≤x<70 670≤x<80 980≤x<90 1890≤x≤100 15(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?10.某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?11.某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图所示为根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶8∶6,又知此次调查中捐款25元和30元的学生一共有42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,请估计全校学生的总捐款数.12.某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(1)在图①中,m的值为,表示“2小时”的扇形的圆心角为度;(2)求统计的这组学生户外运动时间的平均数、众数和中位数.13.某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?14.中考低于测试前,某区教育局为了了解选报引体向上的九年级男生的成绩情况,随机抽查了本区部分选报引体向上项目的九年级男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,本次抽测中,成绩为6个的学生有名.(2)求这次抽测中,测试成绩的平均数,众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考选报引体向上的男生能获得满分的有多少名?15.迎接学校“元旦”文艺汇演,八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.16.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队 178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示: 整理、描述数据: 平均数 中位数 众数 方差 甲队 178 178 b 0.6 乙队178a178c(1)表中a = ,b = ,c = ;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员 \ 环数 \ 次数12 345甲 10 8 9 10 8 乙10 9 9ab某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b = ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a,b 的所有可能取值,并说明理由.18.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级m 3.41 90% 20%八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:八年级成绩的标准差,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=,n=;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.19.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g) 73 74 75 76 77 78甲的数量 2 4 4 3 1 1乙的数量 2 3 6 2 1 1根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?20.甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙7 b 8 c(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?参考答案1.解:(1)这个班级捐款总数为5×11+10×9+15×6+20×2+25×1+30×1=330(元).(2)这个班级捐款总数是330元,这30名同学捐款的平均数为11元.2.解:(1)18×(33+32+28+32+25+24+31+35)=30(听). (2)181×30=5 430(听).3.解:(1)60(2)4×15+5×10+7×15+8×2060=6.25(时); (3)1 200×15+2060=700(名). 4.解:(1)30,19%. (2)B(或70<x ≤80).(3)本次全部测试成绩的平均数为:1200×(2 581+5 543+5 100+2 796)=80.1(分). 5.解:(1)小张可能是根据加权平均数来判断的,小王可能是根据算术平均数来判断的.(2)参考方案:平时成绩、期中成绩、期末成绩所占的百分比分别为30%,30%,40%,这样小张的综合成绩就是86.5分,小王的综合成绩就是86.3分.6.解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.7.解:(1)平均工资为4350元(2)工资的中位数为2000元(3)由(1)(2)可知,用中位数描述该餐厅员工工资的一般水平比较恰当(4)去掉经理和厨师甲的工资后,其他员工的平均工资是2062.5元,和(3)的结果相比较,能反映餐厅员工工资的一般水平8.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额所以去掉周六、日的营业额对平均数的影响较大故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额当月的营业额为30×780=23400(元).9.解:(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90∴这次抽取的学生成绩的中位数在80≤x<90的分数段中这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%故答案为:80≤x<90,12%;(3)105.答:该年级参加这次比赛的学生中成绩“优”等的约有105人.10.解:(1)∵总人数为18÷45%=40人∴C等级人数为40﹣(4+18+5)=13人则C对应的扇形的圆心角是117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级故答案为:B.(4)估计足球运球测试成绩达到A级的学生有30人.11.解:(1)设捐款25元的有8x人,则捐款30元的有6x人.根据题意列方程,得8x +6x =42,解得x =3∴他们一共调查了3x +4x +5x +8x +6x =78(人).(2)由图象可知,众数为25元.由于本组数据的个数为78,按从小到大的顺序排列,处于中间位置的两个数都是25元,故中位数为25元.(3)全校学生的总捐款数约为(3×3×10+3×4×15+3×5×20+3×8×25+3×6×30)×156078=34200(元).12.解:(1)m%=1﹣40%﹣25%﹣15%=20%,即m 的值是20表示“2小时”的扇形的圆心角为:360°×15%=54°故答案为:20、54;(2)这组数据的平均数是:=众数是:1,中位数是:1.13.解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天;(3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人.14.解:(1)a=1﹣30%﹣15%﹣10%﹣20%=25%成绩为6的学生有:20÷10%×25%=50(名)故答案为:25,50;(2)平均数是:3×10%+4×15%+5×30%+6×25%+7×20%=5.3众数是:5个,中位数是:5个;(3)1800×(25%+20%)=810(名)答:该区体育中考选报引体向上的男生能获得满分的有810名.15.解:(1)∵15÷30%=50∴该班共有50人;(2)∵∵捐15元的同学人数为50﹣(10+15+5+)=20∴学生捐款的众数为10元又∵第25个数为10,第26个数为15∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为36°.故答案为:50,15,12.5,36.16.解:(1)乙队共10名队员,中位数落在第3组,为178,即a =178;甲队178出现的次数最多,故众数为178,即b =178;c =110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8; (2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a +b)=9,∴a +b =17.] (3)在(2)的条件下,a,b 的值有四种可能:第①种和第②种方差相等:s 2乙=15(1+0+0+4+1)=1.2>s 2甲 ∴甲比乙的成绩较稳定.第③种和第④种方差相等:s 2乙=15(1+0+0+0+1)=0.4<s 2甲 ∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的成绩较稳定.18.解:(1)∵八年级成绩的方差=110[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41∴八年级成绩的标准差<年级成绩的标准差;七年级成绩为3,6,6,6,6,6,7,8,9,10∴中位数为6,即m=6;八年级成绩为5,5,6,7,7,8,8,8,8,9∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好.19.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75=≈1.87∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.20.解:(1)a=7,b=7.5,c=4.2(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大。
人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学第二十章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.某校田径运动会有13名同学参加女子百米赛跑,她们预赛的成绩各不相同,取前6名参加决赛,小玥已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A. 方差B. 极差C. 平均数D. 中位数2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的( )A. 平均数改变,方差不变B. 平均数改变,方差改变C. 平均输不变,方差改变D. 平均数不变,方差不变3.小明想知道银河系里恒星大约有多少颗,他可以获取有关数据的方式是()A. 问卷调查B. 实地考察C. 查阅文献资料D. 实验4.下列说法中,错误的有().①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l的众数是2;③如果数据,,…,的平均数为,那么;④数据0,-1,l,-2,1的中位数是A. 4个B. 3个C. 2个D. 1个5.某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9. 这组数据的平均数和众数分别是( )A. 7,7B. 6,8C. 6,7D. 7, 86.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,107.某校九年级有19名同学参加跳绳比赛,预赛成绩各不相同,要取前9名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这19名同学成绩的()A. 中位数B. 众数C. 平均数D. 极差8.空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A. 扇形统计图B. 条形统计图C. 折线统计图D. 频数分布直方图9.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A. 93B. 95C. 94D. 9610.某一公司共有31名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资由去年的月薪20000增加到月薪22500元,而其他员工的工资同去年一样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A. 平均数和中位数都不变B. 平均数增加,中位数不变C. 平均数不变,中位数增加D. 平均数中位数都增加11.某气象台报告一周中白天的气温(单位:℃)为:3,4,0,3,1,-1,-3,这一周内白天温度的标准差(精确到0.1)是( )A. 2.1B. 2.2C. 2.3D. 2.412.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( ) A. 6.2小时 B. 6.4小时 C. 6.5小时 D. 7小时二、填空题(共8题;共18分)13.数据6,5,7,7,9的众数是________14.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择________.15.一组数据4、5、6、7、8的方差为S 12 , 另一组数据3、5、6、7、9的方差为S 22 , 那么S 12________ S 22(填“>”、“=”或“<”).16.两组数据3,a ,2b ,5与a ,6,b 的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.17.已知一组数据a 、b 、c 、d. e 方差为3,则另一组数据a+3,b+3,c+3,d+3,e+3的方差为________, 18.学校制定成绩的评价方案:期中成绩占30%,期末成绩占70%,小李期中与期末成绩分别为80分和90分,则本学期他的成绩为________分.19.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是________分. 20.已知数据,,,的方差是,则,,,的方差为________.三、解答题(共3题;共13分)21.某校举行黑板报评比,由参加评比的10个班各派一名同学担任评委,每个班的黑板报得分取各个评委所给分值的平均数,下面是各评委给八年级(6)班黑板报的分数:该班的黑板报的得分是多少?此得分能否反映其设计水平?22.一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分) (1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(直接填入表格) (2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择, 标准分的计算公式:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?23.为了从甲、乙、两名同学中选拔一人参加射击比赛,对他们的射击水平进行了测验,两个人在相同条件下各射击5次,命中时间(小时) 5 6 7 8人数10 15 20 5甲乙丙 丁平均数 方差甲 乙 丙 丁 戊 平均分 标准差数学 71 72 69 68 70英语 88 82 94 85 76 85的环数如下(单位:环)甲:6 10 5 10 9乙:5 9 8 10 8(1)求,,s甲2,s乙2;(2)从稳定性的角度看,你认为该选拔哪名同学参加射击比赛,为什么?四、综合题(共4题;共33分)24.在甲、乙两名同学中选拔一人参加“英语口语听力”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,81,82,85,83 乙:88,79,90,81,72.(1)求甲、乙两名同学测试成绩的方差;(2)请你选择一个角度来判断选拔谁参加比赛更合适.25.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是________元,中位数是________元,众数是________元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么:________.(填“合适”或“不合适”)②选择一个你认为最合适的数据估算这个小吃店一个月的营业额________.26.某中学开展“唱红歌”歌唱比赛,九年级(1)班、九年级(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示:(1)九(1)班复赛成绩的中位数是________九(2)班复赛成绩的众数是________.(2)计算九(1)班复赛成绩的平均数和方差.(3)已知九(2)班复赛成绩的方差是160,则复赛成绩较为稳定的是________班.27.如图是甲,乙两人在一次射击比赛中靶的情况(击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将他俩的射击成绩统计出来;(2)请你用学过的统计知识分析:若要选一人参加比赛,①选谁参加更能确保获奖?②选谁参加更有可能破纪录?答案一、单选题1. D2. A3. C4.B5.A6.D7.A8.A9. A 10. B 11.C 12.B二、填空题13.7 14.丙15.<16.12;6 17. 3 18.87 19. 88 20.1.6三、解答题21.解答:解:该班的黑板报的得分是=8.36(分),∴该班的黑板报的得分是8.36分;不能反映其设计水平,因为有两个评委给出了异常分.22.(1)平均分=(71+72++70)÷5=70,标准差=6(2)∵数学标准分=,英语标准分=0.5∴数学更好23.解:(1)=(6+10+5+10+9)÷5=8环,=(5+9+8+10+8)÷5=8环,S2甲=[(8﹣6)2+(10﹣8)2+(8﹣5)2+(10﹣8)2+(9﹣8)2]÷5=4.4,S2乙=[(8﹣5)2+(9﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2]÷5=2.8;(2)∵S2甲>S2乙,∴乙的成绩稳定,选择乙同学参加射击比赛.四、综合题24. (1)解:甲平均分为(分)乙的平均分为(分)甲的方差:乙的方差(2)解:选拔甲参加比赛更合适,∵4<42,甲、乙的平均分相等,甲的方差较小∴甲的成绩比较稳定∴选拔甲参加比赛更合适.25. (1)780;680;640(2)不合适;当月的营业额为23400元.26.(1)85;100(2)解:由题意可得,九(1)班复赛成绩的平均数为:(75+80+85+85+100)=85,九(1)班复赛成绩的方差为:[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70;(3)九(1)27.(1)解:列表如下:(2)解:∵甲=9环,乙=9环,S甲2=,S乙2=1,∴甲=乙,S甲2<S乙2,∴选甲参加更能确保获奖,选乙参加更有可能破纪录.。