输出变压器阻抗计算
输出变压器的绕制(单端)

2
二:初级绕组匝数:600*初级电感量开平方值; 三:绕组漆包线直径:按照电流密度计算,通常取值 2.5A;或电流值开平方后*0.7;而电流值 取之屏极工作电流值. 四:次级匝数计算:
先计算初级与次级之间的匝数比值:公式 初级阻抗*0.85 系数/次级阻抗)开平方得数即为
匝数比. 将初级绕制匝数/匝数比=次级匝数. 先计算出阻抗比.然后通过阻抗比,才能计算出初级与 次级的匝数比
关于输出变压器的绕制(单端)摘至中国音响论坛 一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1. 输出变压器阻抗。2.尽量大的电感量。3 尽量小的分布电容。 对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管内阻一致,这样才能达到该功放 管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取 变压器阻抗远大于胆管内阻。以 805 管为例,本人一般设计变压器时都取其胆内阻的 3-5 倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。 尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身 就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小, 如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这 就是我们绕制输出变压器以保证音质的关键所在。如何解决好这一对矛盾呢?下面详细谈谈 个人的制作体会,不对之处请大家讨论。 1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重 要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其 为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的, 本人用于 10-20W 的小功率单端机的输出牛铁芯决不会小于舌宽 35mm,叠厚不得小于 65mm, 即 35×65 以上。而大功率单端机的输出牛一般都用舌宽 41mm,叠厚 75mm,也就是 41×75 以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。
一分钟搞明白变压器短路阻抗

一分钟搞明白变压器短路阻抗1、什么是变压器的短路阻抗?变压器的短路阻抗,是指在额定频率和参考温度下,一对绕组中、某一绕组的端子之间的等效串联阻抗Zk=Rk+jXk。
由于它的值除计算之外,还要通过负载试验来确定,所以习惯上又把它称为阻抗电压。
2、怎么测量变压器的短路阻抗?用试验测量的方法为:将变压器二次侧短路,在一次侧逐渐施加电压,当二次绕阻通过额定电流时,一次绕阻施加的电压Uz与额定电压Un之比的百分数,即:Uz%=Uz/Un×100%。
3、变压器的短路阻抗实质是什么?变压器的短路阻抗是变压器的一个重要参数,它表明变压器内阻抗的大小,即变压器在额定负荷运行时变压器本身的阻抗压降大小。
4、为什么说“变压器阻抗的实质是绕组间的漏抗”?我们知道,变压器短路阻抗是由两部分组成,是变压器线圈及其他的电阻分量与变压器线圈之间的漏抗的向量和组成,即Zk=Rk+jXk。
但在大型变压器中,电阻分量远远小于电抗分量,其数值与电抗分量相比,可以忽略不计,所以工程计算时往往将电抗分量的值,替代阻抗值,所以有“变压器阻抗的实质是绕组间的漏抗”的说法。
当然,还可以这样理解:如果没有漏抗时,变压器副边短路,电压为0,原边电压也应该等于0。
但是大家都知道,副边短路时,变压器原边电压不等于零,是因为有漏抗。
所以说,变压器阻抗的实质是绕组间的漏抗。
5、实际学习时,怎么理解变压器的短路阻抗?1)如果把变压器当作一个电源来看的话,它的阻抗相当于任何一个电源的内阻。
这个内阻只有在有电流(负载电流)流过时,才表现出来。
空载时,它就反映不出了,但不等于它不存在。
当变压器满载运行时,短路阻抗的高低对二次侧输出电压的高低有一定的影响,短路阻抗小,电压降小,短路阻抗大,电压降大。
2)如果把变压器作为电网的一个负载来看的话,它是一个感性负载(电阻部分很小)。
短路阻抗所表现出来的特性,就是它的负载特性--电感。
此电感就是两两线圈间的互感,由漏磁通产生(漏磁通由变压器负载电流产生)。
胆机输出变压器制作中的一些注意事项

胆机输出变压器制作中的一些注意事项--------------------------------------------------------------------------------本文来自: 原文网址:/info/standard/0074782.html本文主要谈谈胆机输出变压器制作过程中容易被忽略的一些问题。
1.阻抗计算有基础的发烧友都知道,变压器线圈一次侧与二次侧匝数比的平方等于阻抗比,即R1/R2=(n1/n2)2 ,但往往忽略了线圈的铜阻。
设一次侧铜阻为r1,二次侧铜阻为r2,变压器由匝数比n把二次侧喇叭阻抗Rx反射回一次侧等效阻抗为R,并与铜阻相串联。
输出总阻抗为Ro,则Ro=R+r1+Z2,式中Z2为二次侧铜阻通过变压比n反射回一次侧的等效二次侧铜阻,它等于r2n2,上式即变为Ro=R+r1+r2n2。
一只合理布置线圈的变压器,即一次侧与二次侧线圈中电流密度相等的变压器,其一次侧铜阻r1应该等于二次侧铜阻通过电压比n反射回一次侧的铜阻Z2,即r1=Z2,故变压器总铜损r1+Z2=2r1。
这样,前式又变为R =R+2r1或R=Ro-2r1,请记住该计算公式,您经常会使用它。
【例1】某音频输出变压器输出阻抗Ro=5kΩ,r1=350Ω,二次侧负荷为8Ω,求匝数比n。
n=(R/Rr)1/2=[(Ro-2r1)/Rr]1/2=[(5000-700)/8]1/2=23.2如果不考虑铜阻,其结果为n=25,制作出的变压器阻抗将不是5000Ω,而变成了5700Ω,误差由此产生。
输出变压器铁心中的磁感应强度很低,远低于电源变压器,铁损较小,故损失主要是铜损。
变压器中有效阻抗R=n2R ,无效阻抗r1+Z2=2r1,有效阻抗R在总阻抗Ro中所占比例即为变压器的效率η,故η=(Ro-2r1)/Ro。
在例1中η=(5000-700)/5000=86%。
2.用线直径首先应考虑电流密度,一般不大于2.5A/mm2,考究的选2A/mm2。
变压器空载损耗、负载损耗以及阻抗电压的计算

变压器的损失电量分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗)。
一变压器损耗计算公式(1)有功损耗:ΔP=Po+KT β2 Pk(2)无功损耗:ΔQ=Qo+KT β2 Qk(3)综合功率损耗:ΔPz=ΔP+KQΔQQo≈Io%Sn,Qk≈Uk%Sn式中:Qo——空载无功损耗(kvar)Po——空载损耗(kW)Pk——额定负载损耗(kW)Sn——变压器额定容量(kVA)Uk%——短路电压百分比β——负载系数,为负载电流与额定电流之比。
KT——负载波动损耗系数Qk——额定负载漏磁功率(kvar)KQ——无功经济当量(kW/kvar)上式计算时各参数的选择条件:(1)取KT=1.05;(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%;(4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h;(5)变压器空载损耗Po、额定负载损耗Pk、Io%、Uk%,见产品出厂资料所示。
二变压器损耗的特征Po——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。
涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。
Pc——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。
其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。
负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。
变压器的全损耗ΔP=Po+Pc变压器的损耗比=Pc /Po变压器的效率=Pz/(Pz+ΔP),以百分比表示;其中Pz为变压器二次侧输出功率。
三变损电量的计算变压器的损失电量有铁损和铜损两部分组成。
输出变压器计算工具

第一步:选择铁心,输入铁心资料手动输入自动计算舌宽a(cm) 3.2有效截面积S15.52平均匝长叠厚(cm)5窗口高度h 4.8磁路长度lc导磁率μ350窗口宽度c 1.6铁心重最大磁感应强度(T) 1.2窗口面积7.68第二步:确定工作条件手动输入自动计算管内阻或等效内阻800以频响计算初级电感量10.18937对应匝数低频下限频率20防止磁饱和计算初级匝数对应匝数衰减倍率(注1) 1.122以阻抗变化30%计算电感量27.86624对应匝数初级最大交流电压160初级磁饱和电压416.7604初级电流0.07实际工作时最大磁感应强度0.460696电流密度 2.5设计效率(4欧姆)0.85设计效率(8欧姆)0.87第三步:计算匝数、验算窗口占用率、计算铜阻、验手动输入自动计算初级阻抗3500初级最大可通过电流0.143066匝数2520初级铜截面积144.2108线径0.27初级窗口占用0.187774初级铜阻175.7018次级阻抗A4次级匝数A92.403210-A铜阻次级阻抗B8次级匝数B129.16710-B铜阻次级阻抗C0次级匝数C00-C铜阻串联输入1,并联输入1/N匝数单股铜阻次级0-A线径0.690.333392.403210.98648869次级A-B线径0.510.333336.763880.7184297次级B-C线径0.520.333300初级铜重0.292633次级铜重0.255114合计0.547746漏感、电感量核算,磁隙计算。
手动输入自动计算频率初次级绝缘厚度(cm)0.02漏感0.0061720初级单组厚度(cm)0.138电感量20.5751330次级单组厚度(cm)0.144磁隙0.1146660分段数722.821.0242.3521773.385967.46232932.706注1:衰减1db倍率为1.122,3db为1.412.阻、验算效率。
小资料EI48a=1.6功率7.31EI57 1.9EI66 2.2EI76 2.54EI86 2.86效率EI96 3.20.328830.867592EI105 3.50.5683060.878761EI114 3.80.568306#DIV/0!EI133 4.44电流功率截面积窗口占用铜阻2.80303931.4281103.2740.1344710.328831.53133918.7599922.447470.0292280.2394771.591980000125.72140.351474感抗2584.2363876.3547752.709。
变压器直流电阻计算

变压器直流电阻计算
变压器的直流电阻是指在变压器的直流电路中,从一侧输入一定直流
电流,通过变压器绕组产生的总电压降与输入电压之比。
直流电阻由变压
器的铜线电阻和接触电阻等构成,一般采用单位长度电阻值或电阻标幺值
来表示。
在计算铜线电阻时,需要注意考虑铜线的长度及其布局方式对电阻的
影响。
一般来说,变压器的输入端与输出端之间的线圈长度较长,相对较远,故电阻较大;而输入端与输出端之间的线圈长度较短,相对较近,故
电阻较小。
除了铜线电阻外,变压器的直流电阻中还包括接触电阻。
接触电阻是
指变压器的接头和引线接触处的电阻,主要由于接触点的不均匀、铜线表
面的氧化等原因导致。
接触电阻一般较小,但如果接触不良或存在氧化问题,则对电流传输会产生一定的影响。
在计算直流电阻时,接触电阻可以
忽略不计,但在实际操作中需要注意接触质量,以保证电流传输的可靠性。
综上所述,变压器直流电阻计算主要涉及到铜线电阻和接触电阻两个
方面。
铜线电阻的计算需要考虑线圈长度、截面积和电阻率等因素;而接
触电阻则主要与接触质量有关。
通过计算变压器的直流电阻值,可以评估
其电气性能,为变压器的设计和工作提供参考。
需要注意的是,在实际应用中,变压器的直流电阻不仅与绕组参数相关,还与绕组的温度、压降和内部连接方式等因素有关,因此在具体计算
时需要综合考虑这些因素的影响。
另外,变压器的直流电阻值通常较小,
一般在千分之几到几百分之几的量级,因此在测试测量时需要采用高灵敏
度的仪表以保证准确度。
变压器变换阻抗原理

《电工技术》知识点:变压器变换阻抗原理变压器是一种常见的电气设备,在电力系统和电子线路中应用广泛。
变电压:电力系统变阻抗:电子线路中的阻抗匹配变电流:电流互感器变压器的主要功能有:变压器概述变压器变换阻抗原理由图(a )可知:22I U ZU KU U Z K K ZI I I K22122212如图(b )11I U Z1U 2U 1I 2IZ+–+–(a )1U 1I Z+–(b )ZKZ 2结论:变压器一次侧的等效阻抗模,为二次侧所带负载的阻抗模的K 2 倍。
1U 2U 1I2I Z+–+–1U 1I Z+–变压器变换阻抗原理电子线路中,常利用阻抗匹配实现最大输出功率。
结论:接入变压器以后,输出功率大大提高。
0LR R 原因:满足了最大功率输出的条件:变压器变换阻抗原理I E 1N 2U 2I L R 2N R 0+–+–例1:如图,交流信号源的电动势E = 120V ,内阻R 0=800 ,负载为扬声器,其等效电阻为R L =8 。
要求:(1)当R L 折算到原边的等效电阻时,求变压器的匝数比和信号源输出的功率;(2)当将负载直接与信号源联接时,信号源输出多大功率?0LR R 信号源I E R 0+–L R 变压器变换阻抗原理(1)变压器的匝数比应为:LLNR K NR12800108解:IE1N 2U 2I LR 2N R 0+–+–信号源IER 0+–LR 变压器变换阻抗原理信号源的输出功率:(2)将负载直接接到信号源上时,输出功率为:L LW E P R .R R22012080045800800L L WE P R .R R220120801768008变压器变换阻抗原理变压器变换阻抗原理。
变压器阻抗标准

变压器阻抗标准变压器阻抗标准1、输入阻抗输入阻抗是反映变压器输入端电路特性的一个参数,用ρ表示。
即变压器输入端电压与电流的比值。
对于并联电容器来说,输入阻抗越大,外界干扰电信号产生的影响越小,其滤波效果越差。
输入阻抗越小,则干扰电信号产生的影响越大,其滤波效果越好。
因此,要求并联电容器的输入阻抗ρ在所有可能干扰信号的频率下都不应太小,以便能有效地抑制干扰。
2、输出阻抗输出阻抗是指变压器在达到额定容量时,原边线路的等效电阻抗。
变压器的输出功率与输入功率之间存在着一定的关系,根据能量守恒原理,变压器输出的功率一定要大于输入的功率,采用电压源激励时,输出阻抗即等效为负载的输入阻抗。
3、负载阻抗负载阻抗是电路中终端元件吸收的功率与电路中实际电流的比值。
负载电压与负载电流的比值定义为负载阻抗。
用公式表示为XLR=√(XL^2+R^2)。
在变压器技术领域中,负载阻抗通常是指负荷侧的额定电阻抗,即负荷侧的额定电压与额定电流的比值。
4、漏电阻抗漏电阻抗是指连接两个电磁场互相分离的导体间的电阻。
在变压器中,漏电阻抗是指两个电磁场互相分离的导电体之间无外加电压时的电阻。
漏电阻抗会影响电流在变压器线圈中的流动,是导致变压器漏电流产生的主要原因。
5、信号阻抗信号阻抗是指信号传输线中任何两个导体之间的阻抗。
在变压器技术领域中,信号阻抗通常是指传输信号的传输线的阻抗。
6、接地阻抗接地阻抗是指电路中某一点接地时的等效电阻抗。
接地阻抗的大小取决于接地点到电路中各点的连线长度的电阻抗和电感抗之和。
在变压器技术领域中,接地阻抗通常是指变压器外壳或底座与大地相连的等效电阻抗。
7、电源阻抗电源阻抗是指电源电路中的等效电阻抗,包括内阻、连接导体的电阻和负载的电阻。
电源阻抗会影响电流在电源电路中的流动,是导致电源电路中电压降的主要原因。
在变压器技术领域中,电源阻抗通常是指变压器原边电路中的等效电阻抗。
8、传输阻抗传输阻抗是指一个电路或设备在传输信号时对信号的电阻抗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈谈输出变压器---左增军输出牛是胆机的咽喉,其内在品质的优劣直接影响著整机的重放质量。
由于输出牛的专业性较强,加之考虑厂家的利益,故很少有刊物作高保真输出牛的介绍。
发烧友在评论某某胆机之输出牛时仅以外表或者品牌效应点评,甚至仅以个人听感为依据,缺乏对输出牛的定性的认识(虽然变压器所涉及的技术并不深,但一支高保真输出牛并非人人都能作得好的)。
另外各胆机生产厂所生产的输出牛可以说各具特色,各有千秋。
对于称得上“Hi-Fi” 级(严格地讲胆机的输出牛无法算Hi-Fi)的输出牛,一个厂家一个“味”,甚至一个批次一种音色。
当然在这“云云众生”众多的胆机中,也不乏有那不够Hi-Fi甚至失真较大,频率响应较窄的输出牛“滥竽充数”。
而我们业余发烧友又无“孙悟空”那“火眼金睛”,来识破那些“笨牛”。
本来不够Hi-Fi的“牛”,却奉为上品,那可就残了。
这里笔者给大家谈一谈胆机的输出牛及其业余测试方法,让大家对“牛”有一个定性的了解和认识,也让输出牛不在那么“牛气”。
一颗理想的Hi-FI输出牛要求其:1.初级电感(pri-inductor)为无穷大(infinite),以应付很低的低频信号;2.漏感(leakage)为零,分布电感(distributed inductance)、电容(distributed capacitance)为零,以便高保真的传输现代音乐的超高频信号;3.不产生各种形式的串联或并联谐振(resonance),以免使音频信号发生畸变(distortion);4.不产生任何非线性(nonlinear distortion)或相位延迟失真(phase-delay distortion)。
从变压器的原理上讲,现今无论何种形式的变压器均无法同时满足以上条件的。
首先说变压器要用铁心(core)做导磁媒体,其非线性失真一般很大。
再有若需诺大的初级电感(pri-inductor),其漏感(leakage)、分布电感、电容亦随之加大。
满足了第1项,就要损失第2项,互为矛盾。
且较大的初级电感又可使相位失真加大,动态范围(dynamicrenge)减小。
看到这里发烧友可能要问,照你的“牛”(谬)论,胆机就不能算Hi-Fi音响了?你是不是一个“恨胆狂”,然也,相反我是却个胆机迷,且快至如醉如痴之地步。
常言道“爱之深,则之切”。
本人对胆机并非盲目的崇拜,而是从其优点中找出可以改进的不足,无法改进的不足之处,才认为是“残缺的美”。
一只宽频响(freguency response)的输出牛,要求在满足高频的情况下,尽量增加初级电感,以使频响曲线向低端延伸。
亦或在满足低频的情况下,尽量减小分布电容(distributed capacitance)及漏感(leakage inductance)以使高频更靓。
但两者总是互为矛盾,故频响不可能很宽。
现今的输出牛大多采用高质量的铁心,特殊的线材及复杂的绕制工艺,已使频响宽度达到10Hz~20KHz±1.5dB(有的甚至更宽)。
根据现代“音乐频谱曲线”看,已能满足各种音乐信号的传输了。
不过荣幸的是,由于输出牛不可能传输更高的高频信号(即便能传输过去,相位也已延迟了很多,加之人耳的掩蔽效应也就不能感觉到),可将一些高频干扰如CD、DVD等数位音源本身固有的数位干扰“拒之门外”。
这就是用有输出牛的功放(胆机或石机),重播CD、VCD、DVD音乐要比石机“好听”许多(显得不那么刺耳)。
故有些名厂的石机也采用“牛”做输出如McIntosh(麦景图)。
有些中低档胆机之输出牛,干脆就只照顾低频,高频到那里一概不管。
此类胆机虽有充实的低频但高频暗淡,久听会感觉“闷”得难受(如今发烧友的耳朵已修炼的挑剔的很)。
现今的音箱好象在暗中为胆机弥补这“高频不足”,把音箱的高频做的较靓,甚至用高灵敏的号角单元,那种“不足”也就不显得那么突出了.一支宽频响的Hi-Fi输出牛,其电感漏感(leakage inductance)比(LL)很大(即较大的电感(inductor),极小的漏感)。
故通常用电感漏感比(LL)来衡量一个输出牛的优劣。
下面我给大家谈谈对输出牛具体的要求:初级电感(pri- inductor)L L=K·(Ra-r1)/2πfmin其中:Ra是放大器的最佳负载阻抗(optimum plate load),r1是输出牛的初级直流电阻。
K是一个系数,当要求频响曲线不均匀度为-3dB,或允许初级阻抗变化30%时,K=1;当要求-1dB或允许阻抗变化10%时,K=2;要求-0.5dB或允许阻抗变化5%时,K=3;fmin:所要求之最低频率。
初级漏感(pri-leakage inductance)LsLs=K·Ra- r1/2πfmax其中:fmax系所要求之最高频率,当允许初级阻抗变化30%时,K=0.8;允许变化10%时,K=0.5。
输出牛直流电阻单端(single-ended)输出牛,初级电阻r1=0.5·Ra(1-η);次级电阻r2= r1(N2/N1)推挽(push-pull)输出牛初级电阻r1=0.414·Ra-a(1-η)次级电阻r2=0.586·Ra-a(1-η)(N2/N1)其中:Ra系单端放大器(single-ended)最佳负载阻抗(optimum plate load);Ra-a系推挽放大器(push-pull)最佳负载阻抗;η为变压器的效率(efficiency),一般取0.75~0.9,功率越小η取值越低。
输出牛直流电阻不宜过大,否则将影响瞬态(transient)、解析力及动态范围(dynamic range)。
由于变压器中存在电抗(reactance)成分,其感抗(inductive reactance)随频率的变化而变化,使得其输入阻抗(input impedance)亦随之变化,一般中频段呈一定值不变。
而低频段,随频率的降低而急速下降,高频段又随频率的上升而升高。
当阻抗偏离放大器的最佳负载阻抗(optimum plate load)较多时,放大器将产生严重的波形失真,且输出功率亦下降。
故一般要求变压器的输入阻抗(input impedance)变化<30%。
另外,由于变压器本身存在有分布电感(distributed inductance)及分布电容(distributed capacitance),其相互作用将产生串联或并联谐振(resonance)。
发生谐振时,其输入阻抗(input impedance)趋向于零或无穷大(infinite)。
且无论是串联或并联谐振,其输出电压都可能出现峰值,使频响曲线变差。
为控制变压器在谐振(resonance)时输入阻抗的变化程度,保证平坦的幅频特性,应控制住变压器回路的Q值(这里Q值的含义是,感抗(inductive reactance)或容抗(capacitive reactance)与回路电阻之比。
Q值越大,其阻抗的变化程度也越大),选择合适的电感(pri-inductor)漏感、内阻及分布电容值。
另外,变压器初级电感的大小还与信号的动态范围(dynamic range)有关联,当信号幅度(amplitude)与响度(loudness)变化时,意味著铁心中的磁感应强度(induction density)和磁导率(permeance)在变化。
因而初级自感量也将随著信号幅度(amplitude)的变化而变化,当信号幅度(amplitude)较大时,很大的初级电感,引起波形失真加大。
而信号幅度较小时,铁心的磁导率(permeance)变小,自感量变小,将影响频率响应特性(freguencyresponse)。
再者,从减小相移失真(phase-delay distortion)的角度考虑,输出牛亦不能只为照顾低频而过分的加大初级电感(pri-inductor)。
由于铁心的磁饱和(magnetic saturation)程度与频率成反比,在低频段,铁心有可能工作在B-H曲线的饱和区,此时,因磁化电流(magnetizing current)的波形已严重失真,呈尖顶状,致使输出电压的波形也产生失真。
输出牛铁心的磁感应强度(induction density)越高,失真亦越大(这就是为何用EI 型铁心做输出牛,要比其他形式的如R型,C型及环型铁心还好,且EI铁心最好不用超高导磁率,带纹向的硅钢片)。
当输出牛中有直流磁化时(如单端输出牛,或推挽牛因两管电流相差较多,或两组绕组圈数不对称时),失真就更为严重。
为减小波形失真,常用的办法是在铁心(core)中垫入空气隙(air gap)SS(cm)=1.3×10 I·N1 I:磁化电流;N1:圈数根据计算,若推挽输出牛两管电流电流相差5mA以上(或者初级两臂圈数相差5%以上)时,就要留有气隙了(或者不将铁心插的过紧)。
输出变压器的简易测试节选首先是外观检查,我们明白输出变压器的关键在于线包的绕制方法和线材、绝缘材料的质量等因素,虽然不能拆开线包观看,但从外部测试结果也可以作出大致的判断。
第二步是测量线包的直流电阻,可以用万用表欧姆档测试。
推挽输出变压器要求两臂性能参数一致,因此绕制时也要对称,故可测量其B与P1,P2及B与G1,G2之间的直流电阻是否相等,如图1所示。
如果内部采用不对称绕法,是难以做到电阻相等的。
即使是对称绕法,若是人工绕制,万一不留神,将一边多绕或少绕一些圈数,也不是没有可能。
当然用不同型号的万用表测量出来直流电阻值不一定完全相同,但只要两半边电阻相等即可。
最好左右声道两只输出变压器的对应端电阻也相等。
欧博变压器初级线圈(P1~P2)的直流电阻实测数值为198Ω,次级直流电阻为0.4Ω(8Ω端)。
初次级直流电阻数值(铜损)的大小,直接影响变压器的效率,当然是越小越好。
但是,受到变压器体积的限制,又要求足够的电感量,所以必然初级线圈匝数要多,但导线直径又不能太粗,故直流电阻不可能太小。
第三步是测量变压器初次级匝数比,从而求出阻抗比。
方法是在变压器次级线圈(如8Ω端)加上交流电压U2,例如频率为50Hz,电压为1V。
然后用交流毫伏表或数字万用表测量初级P1~P2端之间的电压U1,则匝数比N=U1/U2。
本变压器实测数据如下:次级8Ω端电压U2为1V,初级P1~P2端电压为24V,B~G1间电压为5.27V。
由此可求得:N=24,还可以求出帘栅极的反馈系数:α=5.27/12=0.44。
变压器的效率η可由下式估算:η=N2RL/(N2RL+r1+N2r2)其中:RL~次级标称负载阻抗r1、r2~初级、次级线圈的直流电阻将实测数据代入上式,可求出效率η=91.4%初级等效阻抗可由下式求出:Rp~p=N2RL/η=5.04kΩ。