浮选工艺流程图
正反浮选工艺流程优化

3.2.2 与正精精矿合并成混合精矿进行反浮选作业
考虑到正扫精产低, P2O5含量与原矿相近,MgO含量 LOGO 比原矿低,而反浮精矿产率高。将正扫精与正精精矿合并 进行反浮选作业,提高反浮选作业产率,降低反浮入选矿 中P2O5含量和MgO含量,同时降低反浮选脱镁的难度,降 低反浮精矿中P2O5含量。工艺流程如图3.2-2,试验指标见 表2.2-2所示。
MgO 4.11
SiO2 22.26
CaO 35.55
跟之前试验原矿相比,P2O5含量低了1.23%,MgO含 量高了0.90%,硅、钙含量相近。
YOUR SITE HERE
2.2 原矿粒度筛析
表2.2-1 原矿粒度筛析结果
粒级(mm)
占有率%
个别 累积 49.19 67.94 个别 22.2 24.74
品位% P2O5 个别 25.13 26.84 24.65 21.52 19.23 14.44 23.09 累积 25.13 25.53 25.42 25.23 25.07 23.09 个别 3.36 1.97 2.24 3.3 3.9 4.04 3.18 MgO 累积 3.36 3.04 2.94 2.96 2.98 3.18 个别 19.34 20.45 23.43 25.29 27.34 31.55 22.57 SiO2 累积 19.34 19.60 20.07 20.33 20.51 22.57
正浮粗选5min 正浮精选3min
磨矿细度:-0.074mm占~94.4﹪ 正浮粗选5min 正浮精选3min
正浮扫选3min 反浮粗选6min 反浮粗选6min 反尾矿
正浮扫选3min
正尾矿
正尾矿
精矿 反尾矿 图3.2-3 正浮扫选精与正粗精矿合并试验工艺流程图
浮选在固体废物处理中的应用

浮选在固体废物处理中的应用摘要:本文主要介绍了浮选原理,浮选药剂和浮选的工艺流程,并对浮选的几种常规应用进行了简要的总结。
关键词:浮选,原理,工艺Abstract:In this study,the theory,reagents and technological process of flotation were introduced. Moreover,some application of flotation were illustrated with examples.Key words:flotation,theory,technological process1、浮选原理浮选是在固体废物与水调制的料浆中加入浮选药剂,并通入空气形成无数细小气泡,使欲选物质颗粒粘附在气泡上,随气泡上浮于料浆表面成为泡沫层,然后刮出回收;不浮的颗粒仍留在料浆内,通过适当处理后废弃[1]。
在浮选过程中,固体废物各组分对气泡粘附的选择性,是由固体颗粒、水、气泡组成的三相界面间的物理化学性质所决定的,其中比较重要的是物质表面的润湿性[2]。
固体废物中一些表面疏水性较强的物质容易粘附在气泡上,而另一些表面亲水的物质则不易粘附在气泡上。
而物质表面的亲水、疏水性能,是可以通过浮选剂的作用而加强的[1,2]。
因此,在浮选工艺中正确选择、使用浮选药剂是调整物质可浮性的主要外因条件。
1.2 浮选药剂的种类与作用根据药剂在浮选过程中的不同作用,可分为捕收剂、起泡剂和调整剂三大类。
(一)捕收剂捕收剂能够选择性地吸附在欲选的物质颗粒表面上,使其疏水性增强,提高可浮性,并牢固地粘附在气泡上而上浮。
常用的捕收剂有异极性捕收剂和非极性油类捕收剂两类。
(二)起泡剂起泡剂是一种表面活性物质,主要作用在水-气界面上,使其界面张力降低,促使空气在料浆中弥散,形成小气泡,防止气泡兼并,增大分选界面,提高气泡与颗粒的粘附和上浮过程中的稳定性,以保证气泡上浮形成泡沫层。
第三章 浮选工艺

1.选择药剂时,应选择捕收能力强的捕收 剂。例如,在分选硫化矿物时,选用高级 黄药。 2.合理地增加药剂浓度 3.调节充气情况。提高充气量,提高气泡 质量。 4. 选取充气量大,搅拌力强,能析出微泡 的浅槽型浮选机。
细粒浮选的工艺措施
细粒在浮选中存在的主要问题是分选进程 选择性差。特别是细泥含量比较高时,尤明 显。 选矿中的矿泥,常指小于200目的粒级,而 浮选中的矿泥指小于18um或10um的细粒 级。
原则流程
浮选原则流程涉及到各种矿石处理的原则 方案,例如,浮选流程的段数、浮选循环 及矿物的选别顺序。 浮选流程的段数是指:浮选中磨矿与浮选 相结合的次数。一般磨矿一次,浮选一次 称一段磨选流程。通常,矿石中常有几种 有用矿物,经一次磨矿,将不同矿物分别 选出,要经过几次浮选,仍称为一段磨选 流程。
2.中矿再磨 当中矿含有较多连生体时,为使有用矿物从 中矿中解离出来,应该进行再磨。再磨可以 单独进行,也可返回到第一段磨矿。中矿再 磨之前常常应该进行浓缩和分级,浓缩的溢 流可作回水使用。
3.中矿单独处理 根据中矿的性质采用浮选或其他方式处理。 当中矿性质比较特殊,返回前面作业又不 太合适,此时可考虑中矿单独浮选的方案。
1. 选取选择性强的药剂。分选硫化矿应选 黑药、低级黄药,这些捕收的选择性较好。 2. 采用分段分批加药,使药剂随时在矿浆 中保持最低的合理浓度。一次加药使大量 药剂吸附在矿泥上,降低药剂的选择性, 并使药剂消耗量增加。 3.添加矿泥分散剂。常用的矿泥分散剂有 水玻璃、碳酸钠、氢氧化钠、六偏磷酸钠。
有用矿物的解离程度是以矿物的单体解离 度加以度量的。 单体解离度系指新产品中某有用矿物呈单 体状态存在的量与该矿物总量之比值的百 分数。 为了测定单体解离度,可以对有代表性的 试样,用筛分、水析等方法按粒度进行分 级,然后在显微镜下分别测定各级别目矿 物的矿物的单体解离度。
铝电解碳渣浮选工艺回收电解质的实践

in 文/刘坤铝电解碳渣沁艺检电渣的实辭The practice of recovering electrolytealuminum electrolysis carbon slag flotation process碳渣是铝电解生产过程产生的有害废物,碳渣中含有大量的氟化盐,采用浮选法对碳渣中的氟化盐进行摘要:回收利用,不仅可以减少氟化盐的损失,提高资源的利用率,还避免了对环境的污染,有显著的效益。
关键词:铝电解;碳渣;浮选J在铝电解生产过程中,由炭素材料制作的电极,由于其 不均质性,碳渣的产生是不可避免的。
阴极炭素内衬破损,阳极炭素材料的不均匀燃烧及侵蚀冲刷作用产生的炭粒剥 落,电解过程的二次反应生成游离固态碳,操作不当带来的机械损失,与电解质熔合上浮,在捞出时成为碳渣。
其中,碳阳极的不均匀燃烧和选择性氧化导致炭粒脱落,是产生碳 渣的主要原因。
据统计,每生产一吨原铝约产生5 - 15 kg碳渣。
在捞出的碳渣中,由于受电解质的浸泡和渗透,碳渣 中电解质含量很高、约占碳渣重量的60% - 70 %,主要 成分是冰晶石、亚冰晶石,少量氧化铝和氟化钙[1]。
如果将其作为废物丢弃,既造成氟化盐的损失,增加氟化盐单耗, 又对环境造成污染。
本文主要采用浮选工艺将碳渣中的氟化盐予以回收,符合国家节能减排、循环利用的发展战略。
1碳渣的化学组成碳渣的主要成分是以冰晶石(Na s AlF e )为主的钠铝 氟化物、a - AI 2O 3和碳;含碳约40%,电解质氟化物约60%,除了碳是有害物质外,其余完全是电解槽内可利用的物质。
碳渣的化学组成比较简单,其主要化学元素及含量见表1 [21o以往技术条件下,大多电解铝企业采用露天堆存或直接土壤填埋的方法处理电解铝固体废弃物,不仅占用了大表1碳渣中主要化学元素及含量含量,%32.2612.9116.340.52“o0.8219.68量土地,而且其中含有的可溶性氟化物,氧化物还会随着雨水流入江河,渗入地下污染土壤和地下水、地表水,对周围生态环境、人类健康和动植物生长造成极大危害。
萤石矿选矿

非金属矿物加工工程结课论文《萤石矿物及其加工利用》学校:中国矿业大学姓名:丘成荣班级:矿加13-4班学号:********摘要:本篇论文主要论述了萤石的基本性质、用途及我国萤石资源现状,萤石矿选矿工艺流程以及流程中使用的药剂,最后论述了萤石矿物分选的发展趋势。
关键词:萤石,性质,工艺流程,发展趋势1. 萤石的结构特性和表面性质萤石又称氟石,是一种含氟量最高的重要非金属矿物原料,具有广泛的工业用途。
其主要成分是氟化钙(化学式CaF2),密度为3.18g/cm³,氟和钙的质量百分数分别为48.67%和51.33%。
含杂质较多,Ca常被Y和Ce等稀土元素替代,此外还含有少量的Fe2O3,SiO2和微量的Cl,Al,Me,He等。
萤石的颜色几多,一般呈绿、紫、玫瑰、白、黄、蓝,有时呈蓝黑、紫黑及棕褐等色,无色透明者少见。
当加热到300℃时,其色可以消失,但在X射线照射后,又可恢复原色。
萤石在紫外线或阴极射线照射下能发强烈的荧光,当含有一些稀土元素时会发出磷光。
引起萤石颜色多变的原因是多方面的,A.N.苏杰尔金认为,是与含微量稀有元素和少量的铁、锰氧化物杂质或碳氢化合物的分散包裹体有关,如铕(Eu)的存在使萤石呈蓝色,钐(Sm)呈淡绿色,混入钇(Y)呈黄色,含沥青杂质的萤石呈乌灰色等。
也有人认为,萤石的颜色与温度有关,紫色者形成温度高,淡蓝色者形成温度次之,两者与钨(W)、锡(Sn)、钼(Mo)矿床有关,绿色者形成温度较低,与硫化物矿床有关等等。
在自然界中能与氟组成化合物的元素约有15种,形成含氟矿物约25种,除萤石外,常见的有冰晶石(Na3AlF6)、氟磷灰石[Ca5(PO4)3(F,OH9)]、黄玉[Al2(SiO4)(F,OH)]、氟硅钾石(K2SiF6)等等。
萤石的晶体结构一般为等轴晶系,多为立方体或八面体,十二面体较为罕见,宏观形式主要为粒状或块状的集合体,有时呈土状。
萤石具玻璃光泽,性脆,断口呈贝壳状,沿八面体解理完全,硬度4,条痕为白色,熔点较高,为1360℃,在水中的溶解度很小,可以溶解于硫酸、磷酸,不溶于冷的盐酸、硼酸和次氯酸,可以与氢氧化钠、氢氧化钾等强碱发生微弱的化学反应。
磷矿石浮选工艺

书山有路勤为径,学海无涯苦作舟
磷矿石浮选工艺
一、正浮选工艺流程
正浮选工艺流程适合于分选硅质磷矿,采用Na2SiO3 等抑制硅酸盐矿物而用阴离子捕收剂正浮磷酸盐矿物的正浮选工艺,分选效果较好,如宁夏贺兰山
矿,工艺流程见图1。
沉积变质型硅一钙质磷灰岩属易浮磷灰石型磷块岩,采
用Na2CO3、Na2SiO3 等抑制硅、钙矿物,阴离子捕收剂正浮选磷灰石的直接浮选工艺,对含P2O58.0%的原矿,经此工艺可以获得磷精矿P2O5 品位大于35%,磷回收率83%的良好指标,如湖北大悟县黄麦岭选矿厂。
二、正一反浮选工艺流程
正一反浮选工艺流程适合分选沉积钙质磷矿,加Na2CO3、Na2SiO3 等抑制
硅酸盐,阴离子捕收剂浮选磷酸盐及含钙镁等碳酸盐矿物,然后再用H2SO4
或H3PO4 将pH 值调至5.5~6.0 以抑制磷酸盐,阴离子捕收剂反浮选碳酸盐矿物,这样可使磷精矿P2O5 含量提高到35.17%,MgO 降至0.78%、R2O31.97 %、磷回收率91.98%的良好选矿指标,如贵州瓮福磷矿,工艺流程见图2。
图2 沉积钙质磷矿正一反浮选工艺流程
三、双反浮选工艺流程
双反浮选工艺流程适合磷矿石中最难选的胶磷矿,该工艺先用H2SO4 或
H3PO4 抑制磷矿物,阴离子捕收剂反浮选白云石等碳酸盐矿物,然后矿浆经脱泥后再用阳离子捕收剂反浮选硅酸盐矿物,工艺流程见图3。
但对选择性好的
高效阳离子捕收剂及选矿工艺尚需做进一步的研究,如湖北宜昌磷矿、荆襄磷
矿等。
第五章影响浮选的主要因素

班次
甲
24.48
12.01
71.34
79.02
92.02
39.02
53.00
乙
26.20
11.91
70.08
75.27
89.86
34.22
55.64
丙
25.25
11.48
69.56
75.85
90.08
34.26
55.82
j (100 Aj ) j Aj
(100 Ar ) Ar
100
(%)
j
100 Ar
Ar Aj Ar
— 浮选精煤灰分,%;
— 浮选入料灰分,%;源自— 浮选精煤产率,%。第五章
影响浮选的主要因素
表2 B选煤厂各生产班的浮选月平均指标
入料 灰分 % 精煤 灰分 % 尾煤 灰分 % 精煤 产率 % 精煤可燃体 回收率 % 精煤非可燃 体回收率 % 浮选完善 指标 %
剂,增快其浮选速度,提高可燃体回收率。
(3)以免被细粒级和细泥过多吸附,从而降低了浮选剂用量。
第五章
影响浮选的主要因素
5 浮选流程
煤泥水原则流程 浮选结构流程
5.1 煤泥水原则流程
图4 浓缩浮选原则流程图
第五章
影响浮选的主要因素
煤泥水 (来自于浮选粒度上限控制作业)
煤浆预处理装置
浮选设备
尾煤 澄清浓缩设备
④ 三种浓度之间的换算式:
第五章 影响浮选的主要因素
2.2 结论
一般认为合适的入浮浓度在80g/L左右。 当要求提高分选选择性,降低精煤灰分时,取较低浓度,反之取较高浓度; 当煤泥可浮性差,尤其高灰细泥多时,取较低浓度,反之取较高浓度。 浮选入料浓度的大小,直接影响浮选的生产成本。降低浮选入料浓度固然可以 增强浮选选择性,但浮选剂用量增加,浮选机处理量(按干煤泥计算)下降,电能 消耗(按干煤泥量计算)和稀释水量上升,致使选煤加工成本增加。
磷矿石的浮选

磷矿石的浮选不同矿石类型的选矿工艺1.1我国磷矿石选矿近几年的研究和发展较快,从技术上来说与国外较为接近,技术和经验比较成熟。
根据不同矿石性质通常采用如下的选矿方法:硅质磷矿采用Na SiO,等抑制硅酸盐矿物而用阴离子捕收剂正浮磷酸盐矿物的正浮选工艺,分选效果较好,如宁夏贺兰山矿,工艺流程见图2。
图2 硅质磷矿正浮选工艺流程沉积钙质磷块岩采用H sO 或H PO 等抑制磷酸盐,阴离子捕收剂浮选白云石、方解石等碳酸盐矿物的单一反浮选工艺,工艺流程见图3。
对于含P O27.0% ,MgO 4.47% ,SiO,7.87%的原矿,用此单一反浮选工艺可以获得磷精矿P O 32.89% ,MgO 1.01% ,磷回收率95.32% 的良好选矿指标。
如想进一步提高品位,可采用正-反浮选工艺,即加Na CO 、Na SiO 等抑制硅酸盐,阴离子捕收剂浮选磷酸盐及含钙镁等碳酸盐矿物,然后再用H sO 或H PO 将pH值调至5.5~ 6.0以抑制磷酸盐,阴离子捕收剂反浮选碳酸盐矿物,这样可使磷精矿P O 含量提高到35.17% ,MgO降至0.78% ,R2O 31.97% ,磷回收率91.98% 的良好选矿指标,如贵州瓮福磷矿,工艺流程见图4。
图3 沉积钙质磷矿单一反浮选工艺流程图4 沉积钙质磷矿正-反浮选工艺流程沉积变质型硅.钙质磷灰岩属易浮磷灰石型磷块岩,采用Na CO 、Na SiO 等抑制硅、钙矿物,阴离子捕收剂正浮选磷灰石的直接浮选工艺,对含P:O 8.0%的原矿,经此工艺可以获得磷精矿P O 品位大于35% ,磷回收率83% 的良好指标,如湖北大悟县黄麦岭选矿厂。
沉积硅.钙质磷块岩类磷矿石即胶磷矿是磷矿石中最难选的一种。
它储量很大,占全国磷矿总储量的85%以上。
胶磷矿是一种结晶微细的与硅酸盐、碳酸盐胶结在一起的细晶磷灰石,晶格中的ca“可被Mg、Mn、Sr、Na、K、Sn等元素的离子所置换,磷酸根离子也可被其它阴离子基团所替代,造成表面性质发生变化。