异名三角函数的诱导公式(2)
高一数学(三角函数的诱导公式 2)

3p 3p sin( - a ), cos( - a ), 2 2 3p 3π sin( + a ), cos( +α) 2 2
公式五: 公式五:
sin (
π
2
−α) = cosα −α) = sin α
cos(
π
2
sin(
π
2
+α) = cosα +α) = −sin α
公式六: 公式六:
cos(
π
2
形成结论
kπ 所有诱导公式可统一为 ±α(k ∈Z) 2 的三角函数与α的三角函数之间的关系 的三角函数之间的关系. 的三角函数与 的三角函数之间的关系
它们之间的关系归纳为: 它们之间的关系归纳为:
奇变偶不变,符号看象限. 奇变偶不变,符号看象限.
典例讲解
化简: 例1 化简:
11 π sin(2π -α)cos(π +α)cos( +α)cos( -α) 2 2 9π cos(π -α)sin(3π -α)sin(- π -α)sin( +α) 2
y
π
2 −α 的终边
π
y=x
α的终边
O
x
y
π
2
−α 的终边
(y, P2(y,x) α的终边
O
P1(x ,y) x
),则关 设角α的终边上有一点P1(x,y),则关 π 于直线y=x y=x对称的角 的终边上的点P 于直线y=x对称的角 −α 的终边上的点P2的 2 坐标如何? 坐标如何?
形成结论
2
cos(180 +α) ⋅ sin(α + 360 ) 2. o o sin(-α-180 ) ⋅ cos(-180 -α)
1.3异名三角函数的诱导公式

思考4 思考4:若α为一个任意给定的角,那么 为一个任意给定的角, π −α 的终边与角α的终边有什么对称关 的终边与角α 2 π 的终边 y 2 −α 系?
α的终边 O
x
思考5 关于直线y=x y=x对称 思考5:点P1(x,y)关于直线y=x对称 的点P 的坐标如何? 的点P2的坐标如何?
思考6 设角α 思考6:设角α的终边与单位圆的交点 π ),则 为P1(x,y),则 2 −α 的终边与单 位圆的交点为P ),根据三角函 位圆的交点为P2(y,x),根据三角函 数的定义,你能获得哪些结论? 数的定义,你能获得哪些结论? π 的终边 y 2 −α 公式五: 公式五:
2
sin(
π
2
2
+α) = cosα
cos( +α) = −sin α 2
π
思考4:你能概括一下公式五、六的共同 思考4 你能概括一下公式五、 特点和规律吗? 特点和规律吗? 公式五: 公式五:
sin(
π
2
−α) = cosα −α) = sin α
cos(
π
2
sin(
π
2
公式六: 公式六:
+α) = cosα
π 知识探究( 知识探究(一):2 −α 的诱导公式
思考1 sin(90° 60° 思考1:sin(90°-60°)与sin60° sin60° 的值相等吗?相反吗? 的值相等吗?相反吗? 思考2 sin(90° 60° cos60° 思考2:sin(90°-60°)与cos60°, cos(90° 60° sin60° cos(90°-60°)与sin60°的值分别 有什么关系?据此,你有什么猜想? 有什么关系?据此,你有什么猜想?
诱导公式

2、求任意角的三角函数值的步骤:
任意角的三角函数 相应正角的三角函数
2k (k Z )
0 2 角的三角函数
、2 、3
22
锐角的三角函数 查表
三角函数值
1、已知cos 1,求sin(2 )的值.
2
2、已知cos(75 ) 1,其中是第三象限角,
1 k2
1 k2
1 k2
1 k2
A.
B.
C.
D.
k
k
k
k
五分钟内完成
7、如果f (tan x) cot 3x,那么f (cot x)等于( ) A.tan 3x B.cot 3x C. cot 3x D. tan 3x
8、函数式 1+2sin( -2)cos( +2)的值是 ( )
2
求sin(2 ) cot( ) cos的值.
3、已知sin 1. 求证:tan(2 ) tan 0.
4、已知sin( ) cos(8 ) 60 ,且 ( , ).
169
42
求 sin 与 cos 的值.
A.2 2 1 B.2 2 1 C. 2 D.以上答案都不正确
4
4
2
5、若A、B、C是ABC的三角,下列等式正确的是( ) A.sin(B C) sin A B.cos(B C) cos A C.tan(B C) tan A D.cot(B C) cot A
6、若cos100 k,那么tan(-80 )等于( )
A.sin2-cos2 B.(sin2-cos2) C.sin2cos2 D.以上都不正确
9、下列不等式中,不成立的是( ) A.sin130 sin140 B.cos130 cos140 C.tan130 tan140 D.cot130 cot140
三角函数的诱导公式(二)

=cos θ+cos
3
π -θ=cos3θ+sin3θ 2
=(sin θ+cos θ)(sin2θ-sin θcos θ+cos2θ)
8 99 3 =5×1--25=125.
1.若f(sin x)=3-cos 2x,则f(cos x)=( A.3-cos 2x B.3-sin 2x C.3+cos 2x D.3+sin 2x 【答案】C
【学习要求】 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化 简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与 个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”、“发现”过程,培养研究问题、发 现问题、解决问题的能力.
【学法指导】 六组诱导公式可以概括为一句口诀:“奇变偶不变,符号看象 π 限”,即诱导公式左边的角可统一写成 k·± α(k∈Z)的形式,当 k 2 为奇数时公式等号右边的三角函数名称与左边的三角函数名称正 余互变,当 k 为偶数时,公式符号右边的三角函数名称与左边一 π 样; 而公式右边的三角函数之前的符号,则把 α 当成锐角, 看 k· 2 ± α 为第几象限角.
答 P′(y,x).
探究点二
诱导公式六
π ,cos2+α=
(1)诱导公式六: π sin2 +α= cos α
-sin α .
(2)诱导公式六的推导: π π 思路一 根据 +α= -(-α)这一等式, 利用诱导公式三和 2 2 诱导公式五推导诱导公式六.
π π 答 sin(2+α)=sin2--α=cos(-α)=cos α;
α,
π π π cos2+α=cosπ-2-α=-cos2-α
1.3 三角函数的诱导公式(二)课件(人教A版必修四)

【互动探究】本题1若改为cos21°+cos22°+cos23°+…+
cos288°+cos289°+cos290°,又如何求解呢?
【解题指南】利用sin2α+cos2α=1进行计算.
【解析】cos21°+cos289°=cos21°+sin21°=1, cos22°+cos288°=cos22°+sin22°=1, 即cos2x°+cos2(90°-x°)=cos2x°+sin2x°=1(1≤x≤44, x∈N), 所以原式=(cos21°+cos289°)+(cos22°+cos288°)+… +(cos244°+cos246°)+cos290°+cos245°
2
式不变名,而后一套公式必须变名.
【变式训练】化简
tan 3- 3 3 sin - sin( -) sin( )cos 2 2 2
sin 2- cos(-
7 ) 2 .
【解析】tan(3π-α)=-tan α,sin(π-α)=sin α,
(3)当化成的角是270°到360°间的角,则利用360°-α及
-α的诱导公式化为0°到90°间的角的三角函数.
(4)善于发现类似 -与 间的互余关系, -与 2
3 6 3 3
间的互补关系,利用角的变换结合诱导公式做题.
【变式训练】(2013²广东高考)已知 sin( 5 ) 1 , 那么
1.3 三角函数的诱导公式(二)
诱导公式五、六
1.公式的表达形式
cos
sin
1.3三角函数的诱导公式

三角函数的诱导公式(一)诱导公式一终边相同的角的同一三角函数的值相等,这组公式可这样表达:sin(2kπ+α)=sinα;cosα(2kπ+α)=cosα;tg(2kπ+α)=tgα;ctg(2kπ+α)=ctgα.利用诱导公式一可以把求任意角的三角函数值的问题,转化为求0°~360°(0~2π)间角的三角函数值的问题.学习诱导公式的基本思想方法是化归转化,如果我们能把求90°~360°间的角的三角函数值转化为求0°~90°间的角的三角函数值,那么任意角的三角函数值就都能通过查表来求.(二)诱导公式二、三以原点为圆心,等于单位长的线段为半径作一个圆,这样的圆称为单位圆.下面我们利用单位圆和任意角三角函数的定义来推导诱导公式二、三.设点P(x、y),它关于x轴、y轴、原点对称的点坐标分别是P1(x,-y),P2(-x,-y),P3(-x,-y).任意角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α终边的反向延长线,角180°+α的终边与单位圆的交点P′,是与点P关于点O对称的,所以P′坐标是(-x,-y),又因单位圆半径r=1,由正弦函数和余弦函数的定义可得到因此我们可以得到诱导公式二sin(180°+α)=-sinα,cos(180°+α)=-cosα,tg(180°+α)=tgα,ctg(180°+α)=ctgα.例1求下列各三角函数值(1)tan(4π/3)(2)sin225°答案:(1) 3 (2)2/2我们再来研究角α与-α的三角函数值之间的关系.任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点p′,从图上可观察得到P与P′关于x轴成轴对称.我们得到sinα(-α)=-y,cos(-α)=x,从而得到诱导公式三sin(-α)=-sinα,cos(-α)=cosα,tg(-a)=-tgα,ctg(-α)=-ctgα.例2求下列各三角函数值(1)sin(-405°) (2)ctg2π/3答案:例2、-2/2;-3/3。
三角函数的诱导公式

(公式三)
(公式四)
这四组公式都叫做三角函数的诱导公式
知识运用
请同学们完成下列表格:
角度 函数名
6
1 2
3 2
3 3
13 6
1 2
6
1 2
5 6
1 2
7 6
1 2
3 2
3 2
3 2
3 3
3 2
3 3
3 3
3 3
知识运用
思考1:观察表格的每一行,同学们看看 什么不完全相同,什么完全相同? 绝对值相等,符号不完全相同。 思考2:符号由什么确定? 角的终边所在象限。 思考3:若我们将诱导公式中的角 视为 锐角,我们可以发现什么规律?
端入手,利用诱导公式进行化简,逐步地推向右边. 证明
左边
tan sin( ) cos( ) cos( ) sin( )
tan 右边
tan ( sin ) cos cos sin
原式得证 .
探究提高 三角恒等式的证明在高考大题中并不
的符号。
简化成“函数名不变,符号看象限”.
例题
3.利用诱导公式一~四,可以求任意 角的三角函数,其基本思路是:
任意负角的 三角函数
用公式 三或一
任意正角的 三角函数
用公式一
锐角的三角 函数
用公式 二或四
0~2π 的角 的三角函数
这是一种化归与转化的数学思想.
我们来研究角 与
2
思考
P ( x , y)
'
同学们能够根据我们刚才的研究方法,自己得出 任意角 与角 的三角函数值之间的关系吗? y P(x,y)
第一章 1.3(二) 三角函数的诱导公式(二)

§1.3 三角函数的诱导公式(二)学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.知识点一 诱导公式五 诱导公式五知识点二 诱导公式六 诱导公式六知识点三 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α. 2.诱导公式记忆规律:公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”. 公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.1.诱导公式五、六中的角α只能是锐角.( × ) 提示 诱导公式五、六中的角α是任意角.2.诱导公式五、六与诱导公式一~四的主要区别在于函数名称要改变.( √ ) 提示 由诱导公式一~六可知其正确. 3.sin ⎝⎛⎭⎫k π2-α=±cos α.( × )提示 当k =2时,sin ⎝⎛⎭⎫k π2-α=sin(π-α)=sin α.4.口诀“符号看象限”指的是把角α看成锐角时变换后的三角函数值的符号.( × ) 提示 应看原三角函数值的符号.题型一 利用诱导公式求值例1 已知cos ⎝⎛⎭⎫α+π6=35,求sin ⎝⎛⎭⎫α+2π3的值. 考点 异名诱导公式 题点 诱导公式六 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35. 反思感悟 对于这类问题,关键是要能发现它们的互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4-α与π4+α等互余,π3+θ与2π3-θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.跟踪训练1 已知cos ⎝⎛⎭⎫α+π4=23,则sin ⎝⎛⎭⎫π4-α的值等于( ) A.23 B .-23 C.53 D .±53 考点 异名诱导公式 题点 诱导公式五 答案 A解析 因为⎝⎛⎭⎫α+π4+⎝⎛⎭⎫π4-α=π2,所以sin ⎝⎛⎭⎫π4-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4 =cos ⎝⎛⎭⎫α+π4=23. 题型二 利用诱导公式证明三角恒等式例2 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos αsin α =-sin αcos α=-tan α=右边.∴原等式成立.反思感悟 利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法: (1)从一边开始,使得它等于另一边,一般由繁到简. (2)左右归一法:即证明左右两边都等于同一个式子.(3)整合法:即针对题设与结论间的差异,有针对性地进行变形,以消除其差异,简言之,即化异为同.跟踪训练2 证明:sin (2π-α)cos ⎝⎛⎭⎫π3+2αcos (π-α)tan (α-3π)sin ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫7π6-2α=-cos α. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 因为左边=sin (-α)cos ⎝⎛⎭⎫π3+2α(-cos α)tan αcos αsin ⎣⎡⎦⎤3π2-⎝⎛⎭⎫π3+2α=sin αcos αcos ⎝⎛⎭⎫π3+2αsin αcos αcos α⎣⎡⎦⎤-cos ⎝⎛⎭⎫π3+2α=-cos α=右边,所以等式成立.诱导公式的综合应用典例 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简与求值 解 (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.[素养评析] (1)解决此类问题时,可先用诱导公式化简变形,将三角函数的角统一后再用同角三角函数关系式,这样可避免公式交错使用而导致的混乱.(2)掌握运算法则,探究运算思路,求得运算结果,通过运算促进数学思维的发展,提升数学运算的数学核心素养.1.已知sin α=513,则cos ⎝⎛⎭⎫π2+α等于( ) A.513 B.1213 C .-513 D .-1213 考点 异名诱导公式 题点 诱导公式六 答案 C解析 cos ⎝⎛⎭⎫π2+α=-sin α=-513. 2.已知sin ⎝⎛⎭⎫α+π3=13,则cos ⎝⎛⎭⎫π6-α等于( ) A .-13 B.13 C.233 D .-233考点 异名诱导公式 题点 诱导公式五 答案 B解析 因为sin ⎝⎛⎭⎫α+π3=13, 所以cos ⎝⎛⎭⎫π6-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3 =sin ⎝⎛⎭⎫α+π3=13. 3.(2018·泰安高一检测)若sin(3π+α)=-12,则cos ⎝⎛⎭⎫7π2-α等于( ) A .-12 B.12 C.32 D .-32考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A4.(2018·江西赣州联考)设tan α=3,则sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α等于( )A .3B .2C .1D .-1 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 答案 B 解析sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α=-sin α-cos αcos α-sin α=-tan α-11-tan α=-3-11-3=2.5.求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、证明 证明 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.1.诱导公式的分类及其记忆方式 (1)诱导公式分为两大类:①α+k ·2π,-α,α+(2k +1)π(k ∈Z )的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,为了便于记忆,可简单地说成“函数名不变,符号看象限”.②α+π2,-α+π2的三角函数值,等于α的异名三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”.(2)以上两类公式可以归纳为:k ·π2+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后在前面加上一个把α看成锐角时原函数值的符号.2.利用诱导公式求任意角的正弦、余弦函数值,常采用“负角化正角,大角化小角,最后转化成⎝⎛⎭⎫0,π2内的三角函数值”这种方式求解. 用诱导公式把任意角的三角函数转化为0到π2之间的角的三角函数的基本步骤:一、选择题1.已知cos α=14,则sin ⎝⎛⎭⎫α+π2等于( ) A.14 B .-14 C.154 D .-154 考点 异名诱导公式 题点 诱导公式六 答案 A解析 sin ⎝⎛⎭⎫α+π2=cos α=14. 2.已知sin θ=15,则cos(450°+θ)的值是( )A.15B .-15C .-265D.265.考点 异名诱导公式 题点 诱导公式六 答案 B解析 cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( ) A .1 B .sin 2α C .-cos 2α D .-1 考点 异名诱导公式的综合 题点 异名诱导公式的综合应用 答案 C解析 因为sin ⎝⎛⎭⎫α+π2=cos α, cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α, tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α, 所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.4.已知sin(π+α)=12,则cos ⎝⎛⎭⎫α-32π的值为( ) A.12 B .-12C.32D .-22考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A解析 由sin(π+α)=12,得sin α=-12,所以cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α=12. 故选A.5.已知α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β=-5,tan(π+α)+6sin(π+β)=1,则sin α等于( ) A.355B.377C.31010D.13考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 C解析 由题意,得⎩⎪⎨⎪⎧-2tan α+3sin β=-5,tan α-6sin β=1,解得tan α=3,又α为锐角,sin 2α+cos 2α=1, 可得sin α=31010.6.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cosA +C2=sin B D .sinB +C 2=cos A2考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 D解析 ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cosA +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 7.计算:sin 21°+sin 22°+sin 23°+…+sin 289°等于( ) A .89 B .90 C.892D .45考点 异名诱导公式 题点 诱导公式五 答案 C解析 ∵sin 21°+sin 289°=sin 21°+cos 21°,sin 22°+sin 288°=sin 22°+cos 22°=1,…,∴sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 23°+cos 22°+cos 21°=44+12=892.二、填空题8.(2018·锦州高一检测)已知cos ⎝⎛⎭⎫5π12+α=13,且-π<α<-π2,则cos ⎝⎛⎭⎫π12-α= . 考点 异名诱导公式 题点 诱导公式五 答案 -223解析 因为-π<α<-π2,所以-7π12<5π12+α<-π12.又cos ⎝⎛⎭⎫5π12+α=13>0. 所以sin ⎝⎛⎭⎫5π12+α=-1-cos 2⎝⎛⎭⎫5π12+α=-223. 由⎝⎛⎭⎫π12-α+⎝⎛⎭⎫5π12+α=π2, 得cos ⎝⎛⎭⎫π12-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫5π12+α =sin ⎝⎛⎭⎫5π12+α=-223. 9.(2018·吉林长春外国语学校)化简sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )= .考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简 答案 0 解析sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )=(-sin x )(-cos x )(-sin x )cos x -sin x (-cos x )sin x cos x=-1+1=0.10.tan(45°+θ)·tan(45°-θ)= . 考点 题点答案 1解析 原式=sin (45°+θ)cos (45°+θ)·sin (45°-θ)cos (45°-θ)=sin (45°+θ)cos (45°+θ)·sin[90°-(45°+θ)]cos[90°-(45°+θ)]=sin (45°+θ)cos (45°+θ)cos (45°+θ)sin (45°+θ)=1.11.给出下列三个结论,其中正确结论的序号是 . ①sin(π+α)=-sin α成立的条件是角α是锐角; ②若cos(n π-α)=13(n ∈Z ),则cos α=13;③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 考点 综合应用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 ③解析 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13,当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误.若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确.三、解答题12.(2018·银川高一检测)已知cos ⎝⎛⎭⎫π2+α=35, 求⎣⎡⎦⎤sin ⎝⎛⎭⎫α+32π·sin ⎝⎛⎭⎫32π-α·tan 2()2π-α·tan ()π-α÷⎣⎡⎦⎤cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 解 因为cos ⎝⎛⎭⎫π2+α=35,所以sin α=-35, 所以cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=(-cos α)(-cos α)tan 2α(-tan α)sin α(-sin α)=tan α=±34. 13.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式求值解 ∵sin ⎝⎛⎭⎫-π2-α=-cos α,cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α,∴sin α·cos α=60169,即2sin α·cos α=120169.①又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713,③sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.14.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)等于() A .2 B .-2 C .0 D.23考点题点答案 B15.(2018·湖北孝感八校联考)已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝⎛⎭⎫3π2-α-sin (-α)的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式化简、求值解 ∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴-sin(π-α)=2cos(-α),∴sin α=-2cos α,且cos α≠0.∴原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异名三角函数的诱导公式
一、课题:三角函数的诱导公式(2)
二、教学目标:1.理解正弦、余弦的诱导公式五、六的推导过程;
2.掌握公式五、六,并会正确运用公式进行有关计算、化简;
3.了解、领会把为知问题化归为已知问题的数学思想,提高分析问题、解决
问题的能力。
三、教学重、难点:1.诱导公式五、六的推导、记忆及符号的判断;
2.应用诱导公式五、六的推导。
四、教学过程:
(一)复习:
1.利用单位圆表示任意角α的正弦值和余弦值;
2.(1)s i n (360)s i n ,c o s (360)c o s ,t a n (360)t a n ,k k k k Z
αααααα⋅+=⋅+=⋅+=∈ . 公式二 ()()()sin sin cos cos tan tan παα
πααπαα
+=-+=-+= 公式三 ()()()sin sin cos cos tan tan αααααα-=--=-=-
公式四 ()()()sin sin cos cos tan tan πααπααπαα
-=-=--=-
记忆技巧:函数名不变,符号看象限!
3:利用公式一至四把任意角的三角函数转化为锐角三角函数,一般可按下面步 骤进行:
任意负角的三角函数 用公式三或一 任意正角的三角函数 的角的三角函数
用公式一 用公式二或四 锐角三角函数
二、讲解新课
问题:(1).任何角2/∏—α与α的终边位置关系如何?(关于Y=X 对称)
(2)他们的三角函数之间有什么关系? sin cos 2cos sin 2πααπαα⎛⎫-= ⎪⎝⎭
⎛⎫-= ⎪⎝⎭ 由于22ππαπα⎛⎫+=-- ⎪⎝⎭
,由公式四及公式五可得 公式六 sin cos 2cos sin 2πααπαα⎛⎫+= ⎪⎝⎭
⎛⎫+=- ⎪⎝⎭
一句话概括公式五和公式六:
2
πα±的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号。
利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化。
公式一至六都叫做诱导公式。
一句话概括公式一至公式六:奇变偶不变,符号看象限
例1、证明:()()331s i n c o s ;2c o s s i n 22ππαααα
⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝
⎭ 说明:和公式四比较角多了∏;
例2、化简()()()()()11s i n 2c o s c o s c o s 229c o s s i n 3s i n s i n ()2
πππαπαααππαπαπαα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭----+
三、随堂练习
课本27P ,练习题1~7题
1、已知的值。
求)65cos(,33)6cos(α-π=α+π
2、已知()()2s i n c o s ,32ππαπααπ⎛⎫--+=<< ⎪⎝⎭
求下列各式的值: ()()331s i n c o s ;2s i n c o s 22ππ
αααα⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭
四.总结熟练掌握诱导公式。