谢惠民数学分析习题课讲义部分题目解答
利用函数凹凸性质证明不等式

利用函数的凹凸性质证明不等式内蒙古包头市第一中学 张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质的充要条件,并且给出了凸函数的一个重要性质——琴生不等式.通过巧妙构造常见的基本初等函数,利用这些函数的凹凸性推导几个重要不等式,如柯西不等式,均值不等式,柯西赫勒德尔不等式,然后再借助这些函数的凹凸性及其推导出来的重要不等式证明一些初等不等式和函数不等式. 关键词:凸函数;凹函数;不等式.一. 引言在数学分析和高等数学中,利用导数来讨论函数的性态时,经常会遇到一类特殊的函数——凹凸函数.凹凸函数具有一些特殊的性质,对于某些不等式的证明问题如果灵活地运用函数的凹凸性质就可以简洁巧妙地得到证明.二. 凹凸函数的定义及判定定理(1)定义 设)(x f 是定义在区间I 上的函数,若对于I 上的任意两点21,x x 及实数()1,0∈λ总有()()()()21211)1(x f x f x x f λλλλ-+≤-+则称)(x f 为I 上的凸函数(下凸函数);反之,如果总有不等式()()()()21211)1(x f x f x x f λλλλ-+≥-+则称)(x f 为I 上的凹函数(上凸函数).特别地,取21=λ,则有()()().2)2(2121x f x f x x f +≥≤+ 若上述中不等式改为严格不等式,则相应的函数称为严格凸函数或严格凹函数.(2)判定定理 若函数)(x f 在区间 I 上是二阶可微的,则函数)(x f 是凸函数的充要条件是0)("≥x f ,函数)(x f 是凹函数的冲要条件是.0)("≤x f三.关于凸函数的一个重要不等式——琴生不等式设)(x f 是定义在区间I 上的一个凸函数,则对()1,0,,,2,1,1=≥=∈∀∑=ni ii i n i I x λλ 有().)(11i ni i i n i i x f x f ∑∑==≤λλ特别地,当(),,,2,11n i ni ==λ有 ()()().2)2(2121n n x f x f x f x x x f +++≤+++琴生不等式是凸函数的一个重要性质,因为每个凸函数都有一个琴生不等式,因此它在一些不等式的证明中有着广泛的应用.四. 应用凸函数和琴生不等式证明几个重要不等式.(1)(调和——几何——算术平均不等式) 设(),,,2,1,0n i a i =≥则有naa a nni inn i i ni i ∑∏∑===≤⎪⎪⎭⎫ ⎝⎛≤11111当且仅当n a a a === 21时,等号成立.证明 设,ln )(x x f -=因为(),,0,01)("2+∞∈>=x xx f 所以)(x f 是()+∞,0上的凸函数,那么就有().)(11ini iin i i x f x f ∑∑==≤λλ现取(),,,2,1,1,n i na x i i i ===λ 则有 (),ln ln 11ln 1111⎪⎪⎭⎫ ⎝⎛-=-≤⎪⎭⎫ ⎝⎛-∏∑∑===n i n i i n i n i i a a n a n 得 ,ln 1ln 111⎪⎪⎭⎫ ⎝⎛≥⎪⎭⎫⎝⎛∏∑==n i n i n i i a a n由x ln 的递增性可得nni i i n i a a n 1111⎪⎪⎭⎫ ⎝⎛≥∏∑== (1) 同理,我们取01>=ii a x ,就有,1ln 1ln 111ln 1111⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-∏∑∑===ni n i i n i n i i a a n an 即nni i ni i a a n1111⎪⎪⎭⎫ ⎝⎛≤∏∑== (2) 由(1),(2)两式可得naa a nni inn i i ni i ∑∏∑===≤⎪⎪⎭⎫⎝⎛≤11111(2)柯西——赫勒德尔不等式qni q i pn i p i i n i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑=== 其中()n i b a i i ,,2,1,, =是正数,又,1,0≠>p p p 与q 共轭,即111=+qp . 证明 首先构造函数()1,>=p x x f p 时,()()0,0">>x x f 所以()px x f =是()+∞,0上的凸函数,则有pi ni i pn i i i i ni i x x x f ∑∑∑===≤⎪⎭⎫ ⎝⎛=111)(λλλ 令 ,1∑==ni iii pp λ这里()n i p i ,,2,1,0 =>,则 ∑∑∑∑====≤⎪⎪⎪⎪⎭⎫ ⎝⎛ni ini p ii pni i ni ii pxp p x p 1111即 1111-===⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑p ni i n i p i i pn i i i p x p x p由题设知111=+qp ,得1-=p pq ,所以 qni i pni p i i n i i i p x p x p 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫⎝⎛∑∑∑===, 现取qi i i pi i p b x p a 11,==,()n i ,,2,1 = 则pi p i i i i qii pi i i a x p x p p x p b a ===,11,代入上式得qni q i pni p i i n i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑=== 命题得证.在柯西赫勒德尔不等式中,若令2==q p 时,即得到著名的不等式——柯西不等式211221121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===ni i ni i i n i i b a b a ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===n i i n i i i ni i b a b a 121221)(这里()n i b a i i ,,2,1,, =为两组正实数,当且仅当i i b a =时等号成立.五.凸函数及重要不等式在证明初等不等式和函数不等式中的应用.例1.求证在圆的内接n 边形中,以正变形的面积最大.证明 设圆的半径为r ,内接n 边形的面积为S ,各边所对的圆心角分别为n θθθ,,,21 ,则(),sin sin sin 21212n r S θθθ+++=因为()0sin "<-=x x f , 所以()x x f sin =是[]π,0上的凹函数,由琴生不等式可得().1)(11i ni ni if nn f θθ∑∑==≥ 即 nnni ini i∑∑-=≥11s i ns i nθθnn ni i πθ2sinsin 1≤∑= 上式只有在n θθθ=== 21时等号才成立,也即正n 边形的面积最大.特别地,若A,B,C 为三角形的三个内角时,由上式可得323sin sin sin =++C B A . 例2 求证对任意的0,0>>y x ,下面的不等式2ln )(ln ln yx y x y y x x ++≥+成立.证明 我们根据所要证明的不等式构造相应的函数,令()0,ln >=t t t t f ,因().01">=tt f 故()t t t f ln =是()+∞,0上的凸函数, 所以有()()(),,0,,22+∞∈∀+≤⎪⎭⎫ ⎝⎛+y x y f x f y x f 即(),ln ln 212ln 2y y x x y x y x +≤++ (),ln ln 2ln )(y y x x yx y x +≤++所以在利用凸函数证明不等式时,关键是如何巧妙地构造出能够解决问题的函数,然后列出琴生不等式就可以简洁,巧妙地得到证明.例3 设i i i i d c b a ,,,都是正实数,证明∑∑∑∑∑=====≤⎪⎭⎫ ⎝⎛ni i n i i n i i n i i n i i i i i d c b a d c b a 1414141441.分析 本题所要证明的结论看上去接近于柯西不等式,但是这里是4次方的情形,所以想办法将其变成标准形式。
数学分析习题课讲义上册答案

2.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 实数系的基础定理
37
3.1 确界的概念和确界的存在定理 . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 单调数列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Cauchy 命题与 Stolz 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 数列的上极限和下极限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Cauchy 收敛准则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 覆盖定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 两个重要极限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 无穷小量、有界量、无穷大量和阶的比较 . . . . . . . . . . . . . . . . . . 63
北京大学2008数学分析试题及解答

9.
∫设1函数
f (x)
在区间
[0,
1∫]
上有一阶连续导函数,
1
且
f (0)
=
f (1),
g(x)
是周期为
1
的连续函数,
并且满足
g(x) dx = 0. 记 an = f (x)g(nx) dx, 证明 lim nan = 0.
0
0
n→∞
10. 若 f (x∑ )n在∫区b间i [0, 1] 上 Riemann∫可1积, 并且对 [0, 1] 中任意有限个两两不相交的闭区间 [ai, bi], 1 ⩽ i ⩽ n,
∃ξ ∈ (ξ2, ξ1), 使得 f ′′(ξ) > 0. 因此若 f ′′(x) 在 R 上不变号, 则 f ′′(x) > 0, ∀x ∈ R.
若 ∃y0 ∈ R, 使得 f ′(y0) > 1, 则 f (x) > f ′(y0)(x − y0)f (y0), 这将与 lim (f (x) − x) = 0 矛盾. 从而 x→+∞
9.
∫1
∫1
∫ nx
n f (x)g(nx) dx = f (x) dx g(t) dt
0
(0
∫ nx 0
) 1 ∫ 1 (∫ nx
)
= f (x) g(t) dt −
g(t) dt f ′(x) dx
∫ 1 (∫0 nx
)0
0
0
=−
g(t) dt f ′(x) dx.
∫x 令 G(x) = g(t) dt, 则
∫ 1 (∫ nx
)
lim nan = lim −
n→∞
n→∞
0
数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?

27. 28. 29. 30. 31. 32. 33. 34. 35.
Burkill, J.C., and Burkill,H., A Second Course in Mathematical Analysis, London, Cambridge, 1970. Gelbaum, B., Problems in Analysis, New York, Springer-Verlag, 1982. Klambauer, G., Problems and Propositions in Analysis, New York, Marcel Dekker, 1979. Lang, S., Undergraduate Analysis, New York, Springer-Verlag, 1983. Pö lya, G. and Szegö , G., Problems and Theorems in Analysis, Vol.1, Berlin, Springer-Verlag, 1972. Smith, K. T., Primer of Modern Analysis, New York, Springer-Verlag, 1983. Stromberg, K.R., An Introduction to Classical Analysis, Belmont, Wadsworth, 1981. Van Rooij, A. C. M., and Schikhof, W. H. A Second Course on Real Functions, London, Cambridge, 1982. Lewin, J. W., Amer. Math. Monthly, 93(1986), 395 397.
< 1 (x12 + x1+ 1) | x n 1 | ,极限为 1. 7 n n n 14. 由平均不等式, 1 kak n !( ak )1 / n . n k 1 k 1 15. 由 F (1, y) = ½ f (y 1) = ½ y2 y + 5 得 f (t ) = t + 9, 故 xn+1 =
谢惠民上册答案

7.3 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8 微分学的应用
136
8.1 函数极限的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6 由迭代生成的数列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 一致连续性与 Cantor 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 单调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 周期 3 蕴涵混沌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 实数系的基础定理
37
3.1 确界的概念和确界的存在定理 . . . . . . . . . . . . . . . . . . . . . . . . . 37
数学分析与习题课 教学大纲

《数学分析I》课程教学大纲(本课程周课时数为5,共85课时,此外每周还有2课时的习题课)课程编号:MAAB1101课程类别:大类基础课授课对象:数学与应用数学基地、数学与应用数学师范、信息与计算科学、统计专业开课学期:秋季,第1学期学分:5学分指定教材:1、华东师范大学数学系,《数学分析(下)》(第三版),高等教育出版社,2003年2、谢惠民,《数学分析讲义》(第一册),自编一、教学目的数学分析课程是是数学专业最重要的基础课,对学生数学思想的形成,后继课程的学习都有着重要的意义。
课程的其特点是:学习时间的跨度很大,一般是三个学期,内容极为丰富。
《数学分析I》课程是基础,其基本的内容为极限和连续理论、一元微分学。
课程的教学目的是通过系统的数学训练,使学生进一步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想方法,最终使学生的数学思维能力得到根本的提高。
二、课程内容第一章、引论(5 课时)1. 集合;2. 实数的连续性实数的一些描述方法。
3. 数集与确界确界的描述、确界原理及其应用;4. 逻辑记号的对偶法则逻辑记号的对偶法则;用逻辑记号叙述否命题;5. 常用不等式三角不等式、Bernoulli不等式、平均值不等式、Cauchy不等式。
.第二章、数列极限(20课时)1. 数列极限的定义数列极限的ε-N语言和邻域语言。
2. 数列极限的计算适当放大法;发散数列;一些重要例子;Cauchy命题和Stolz定理。
3. 单调数列的极限单调有界定理、闭区间套定理及其应用;4. Cauchy收敛准则用Cauchy收敛准则描述极限存在和不存在;5. 子列及其应用.子列的概念、它与收敛发散的关系及其应用。
第三章、映射与函数(2课时)1.映射;2. 一元实函数;3. 函数的几何特性草图的画法(如两个函数和的草图等);有界函数、单调函数、反函数、奇偶函数和周期函数的特性。
第四章、函数极限与连续性(10课时)1. 函数极限的定义与性质,函数极限的定义、性质和几个重要的函数极限;三种存在性条件(Heine归结原则;单调有界函数的收敛定理;Cauchy准则),能有选择地应用。
(数学分析习题答案)第二章

第二章 数列极限P.27 习题2.按N -ε定义证明:(1)11lim=+∞→n nn证明 因为 n n n n 11111<+=-+,所以0>∀ε,取ε1=N ,N n >∀,必有ε<<-+n n n 111. 故11lim =+∞→n n n(2)23123lim 22=-+∞→n n n n 证明 因为 n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+ )1(>n ,于是0>∀ε,取}3,1max{ε=N ,N n >∀,有 ε<<--+n n n n 32312322. 所以23123lim 22=-+∞→n n n n(3)0!lim =∞→n n n n证明 因为n n n n n n n n n n n n n n nn 11211)1(!0!≤⋅⋅⋅-=⋅⋅⋅-==- ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<≤-n n n n10!. 所以0!lim =∞→n n n n(4)sinlim =∞→nn π证明 因为n nnπππ≤=-s in0s in,于是0>∀ε,取επ=N ,N n >∀,必有εππ<≤-nn0s in. 所以sinlim =∞→nn π(5))1(0lim>=∞→a a nnn证明 因为1>a ,设)0(1>+=h h a ,于是222)1(2)1(1)1(h n n h h n n nh h a n n n -≥++-++=+= ,从而22)1(22)1(0h n hn n n a n a n n n -=-≤=-,所以0>∀ε,取122+=h N ε,N n >∀,有ε<-≤-2)1(20h n a n n . 故0lim =∞→n n a n3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)n n 1lim∞→;(2)n n 3lim ∞→;(3)31limn n ∞→(4)n n 31lim ∞→;(5)n n 21lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 21==∞→∞→n nn n (用例2的结果,21=a ),无穷小数列.(2)13lim =∞→n n ,(用例5的结果,3=a )(3)01lim3=∞→n n ,(用例2的结果,3=a ),无穷小数列.(4)031lim 31lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,31=q ),无穷小数列.(5)021lim 21lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞→n n ,(用例5的结果,10=a ).(7)121lim 21lim==∞→∞→nn nn ,(用例5的结果,21=a ). 4.证明:若a a n n =∞→lim ,则对任一正整数 k ,有a a k n k =+∞→lim证明 因为aa n n =∞→lim ,所以εε<->∀>∃>∀||,,0,0a a N n N n ,于是,当Nk >时,必有N k n >+,从而有ε<-+||a a k n ,因此a a k n k =+∞→lim .5.试用定义1证明:(1)数列⎭⎬⎫⎩⎨⎧n 1不以1为极限;(2)数列}{)1(n n -发散.证明(用定义1证明) 数列}{n a 不以 a 为极限(即a a n n ≠∞→lim )的定义是:00>∃ε,0>∀N ,N n >∃0,0||0ε≥-a a n(1)取210=ε,0>∀N ,取N N n >+=20,有0021)1(212112111ε==++≥++=-+=-N N N N N n ,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.另证(用定义1’证明) 取210=ε,则数列⎭⎬⎫⎩⎨⎧n 1中满足2>n 的项(有无穷多个)显然都落在1的邻域)23,21();1(0=εU 之外,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.(2)数列}{)1(n n -=},6,51,4,31,2,1{ ,对任何R a ∈,取10=ε,则数列}{)1(n n -中所有满足“n 为偶数,且1+>a n ”的项(有无穷多个),都落在 a 的邻域)1,1();(0+-=a a a U ε之外,故数列}{)1(nn -不以任何数 a 为极限,即数列}{)1(nn -发散.6.证明定理2.1,并应用它证明数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 定理2.1 数列}{n a 收敛于 a 充要条件是:}{a a n -为无穷小数列. (即a a n n =∞→lim 的充要条件是0)(lim =-∞→a a n n )证明 (必要性)设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<--=-|0)(|||a a a a n n ,所以 0)(lim =-∞→a a n n .(充分性)设0)(lim =-∞→a a n n ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<-=--|||0)(|a a a a n n ,所以a a n n =∞→lim .下面证明:数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 因为⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧--+n n n n )1(1)1(1是无穷小数列,所以数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1.7.证明:若a a n n =∞→lim ,则||||lim a a n n =∞→. 当且仅当 a 为何值时反之也成立?证明 设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,ε<-≤-||||||a a a a n n ,所以也有||||lim a a n n =∞→. 但此结论反之不一定成立,例如数列})1{(n -.当且仅当 a = 0 时反之也成立. 设0||lim =∞→n n a ,于是,0,0>∃>∀N εN n >∀,ε<=||||n n a a ,所以aa n n =∞→lim .8.按N -ε定义证明:(1)0)1(lim =-+∞→n n n ; (2)0321lim3=++++∞→n nn(3)1lim =∞→n n a ,其中⎪⎪⎩⎪⎪⎨⎧+-=为奇数为偶数n n n n n nn a n 2,1证明 (1)因为n nn n n 111|1|<++=-+. 于是0>∀ε,取21ε=N ,N n >∀,必有ε<<-+nn n 1|1|,从而0)1(lim =-+∞→n n n .(2)因为n n n n n n n n n n n 12212)1(3212233=+<+=+=++++ ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-++++n n n 103213 ,所以0321lim 3=++++∞→n n n(3)因为当 n 为偶数时,n n n a n 111|1|=--=-当 n 为奇数时,nnn n nnn n n nn a n 111|1|222<++=-+=-+=-,故不管n 为偶数还是奇数,都有n a n 1|1|<-. 于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-n a n 1|1|,所以 1lim =∞→n n a .P.33 习题1.求下列极限:⑴ 根据P.24例2 01lim=∞→an n ,0>a ,可得4131241131lim 32413lim 323323=++++=++++∞→∞→n n n n n n n n n n⑵ 0)21(lim 21lim 22=+=+∞→∞→n n n n n n⑶根据P.25例4 0lim =∞→n n q ,1||<q ,可得313)32(31)32(lim 3)2(3)2(lim 111=+-⋅+-=+-+-+∞→++∞→n nn n n nnn⑷ 211111lim lim )(lim 22=++=++=-+∞→∞→∞→n n n n n n n n n n n这是因为由P.29例1若aa n n =∞→lim ,则aa n n =∞→lim . 于是由1)11(lim =+∞→n n ,得1111lim ==+∞→n n .⑸ 10)1021(lim =+++∞→n n n n ,因为1lim =∞→n n a (0>a )⑹ 23113113121121121lim 313131212121lim 22=--⋅--⋅=++++++∞→∞→nn n n n n2.设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正数N ,使得当N n >时,有n n b a <.证明 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由P.24保号性定理2.4,存在01>N ,使得当1N n >时有2b a a n +<. 又因为2lim b a b b n n +>=∞→,所以,又存在02>N ,使得当2N n >时有2b a b n +>. 于是取},m ax {21N N N =,当N n >时,有nn b b a a <+<2. 3.设}{n a 为无穷小数列,}{n b 为有界数列,证明:}{n n b a 为无穷小数列.证明 因为}{n b 为有界数列,所以存在0>M ,使得 ,2,1,||=≤n M b n. 由}{n a 为无穷小数列,知,0,0>∃>∀N εN n >∀,M a n ε<||. 从而当N n >时,有εε=⋅<⋅=M Mb a b a n n n n ||||||,所以0lim =∞→n n n b a ,即}{n n b a 为无穷小数列.4.求下列极限(1)1111lim 11131212111lim )1(1321211lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→∞→∞→n n n n n n n n(2)因为nnn n212112181412128422222222===-+++ ,而)(12221121∞→→=<<n nnn,于是12lim 21=∞→nn ,从而222lim2222lim 21284==∞→∞→nnn n(3)32323lim 23221229272725253lim 2122321lim 13222=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++-+-+-=⎪⎭⎫ ⎝⎛-+++∞→-∞→∞→n n n n n n n n n n n(4)当2>n 时,11121<-<n ,n n n n 11121<-<,而11lim 21lim ==∞→∞→n n n n ,所以111lim =-∞→n n n .(5)因为)(,0111)2(1)1(11022222∞→→+=+≤++++<n n n n n n n n ,所以 0)2(1)1(11lim 222=⎪⎪⎭⎫⎝⎛++++∞→n n n n(6)因为1112111222222=≤+≤++++++≤+nn n n n n n n nn n ,且1111limlim2=+=+∞→∞→nnn n n n ,所以112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 5.设}{n a 与}{n b 中一个是收敛数列,另一个是发散数列,证明}{n nb a ±是发散数列. 又问}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是否必为发散数列.证明 (用反证法证明)不妨设}{n a 是收敛数列,}{n b 是发散数列. 假设数列}{n nb a +收敛,则n n n n a b a b -+=)(收敛,这与}{n b 是发散数列矛盾,所以,数列}{n n b a +发散.同理可得数列}{n n b a -发散.}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 不一定是发散数列. 例如,若}{n a 是无穷小数列,}{n b 是有界的发散数列. 则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是无穷小数列,当然收敛.但是,有下列结果:如果0lim ≠=∞→a a n n ,}{n b 是发散数列,则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n a a b 一定是发散数列.6.证明以下数列发散:(1)⎭⎬⎫⎩⎨⎧+-1)1(n n n证明 设1)1(+-=n n a nn ,则)(,11222∞→→+=n n n a n ,而121212-→--=-n n a n ,由P.33,定理2.8 知⎭⎬⎫⎩⎨⎧+-1)1(n n n 发散. (2){}nn )1(-证明{}nn )1(- 的偶数项组成的数列n a n 22=,发散,所以{}nn)1(-发散.(3)⎭⎬⎫⎩⎨⎧4cos πn 证明 设4cosπn a n =,则子列 )(,118∞→→=n a n ,子列 )(,1148∞→-→-=+n a n ,故⎭⎬⎫⎩⎨⎧4cos πn 发散. 7.判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若}{12-k a 和}{2k a 都收敛,则}{n a 收敛.解 结论不一定成立. 例如,设nn a )1(-=,则12=ka ,112-=-k a 都收敛,但n n a )1(-=发散.注 若}{12-k a 和}{2k a 都收敛,且极限相等(即kk k k a a 212lim lim ∞→-∞→=),则}{n a 收敛.(2)若}{23-k a ,}{13-k a 和}{3k a 都收敛,且有相同的极限,则}{n a 收敛.证明 设aa a a k k k k k k ===∞→-∞→-∞→31323lim lim lim ,则由数列极限的定义,知0>∀ε,01>∃K ,1K k >∀,ε<--||23a a k ;同样也有02>∃K ,2K k >∀,ε<--||13a a k ;03>∃K ,3K k >∀,ε<-||3a a k . 取}3,3,3m ax {321K K K N =,当N n >时,对任意的自然数 n ,若23-=k n ,则必有1K k >,从而ε<-||a a n;同样若13-=k n ,则必有2K k >,从而也有ε<-||a a n;若k n 3=,则必有3K k >,从而ε<-||a a n . 所以aa n k =∞→lim ,即}{n a 收敛.8.求下列极限:(1)n n k 2124321lim-∞→解 因为n n 2126543210-<121)12)(12(12)12)(32(32755533311+=+-----⋅⋅⋅<n n n n n n n而0121lim =+∞→n k ,所以 02124321lim =-∞→n n k 另解 因为12254322124321+<-n n n n ,设n n S n 2124321-=,1225432+=n n T n ,则n n T S <. 于是121+=⋅<n S T S S n n n n ,所以121+<n S n .(2) 答案见教材P.312提示. (3)10],)1[(lim <<-+∞→αααn n k解 ]1)11[(]1)11[()1(0-+<-+=-+<n n n n n n ααααα)(,011∞→→==-n n n n αα所以,0])1[(lim =-+∞→ααn n k另解 因为01<-α,所以11)1(--<+ααn n ,于是11)1()1(--+=+<+ααααn n n n n ,从而)(,0)1(01∞→→<-+<-n nn n ααα. (4) 答案见教材P.312提示.9.设m a a a ,,21为 m 个正数,证明:},,max {lim 2121m n nn n n n a a a a a a =+++∞→证明 因为 },,max{},,max{212121m n n nn n n m a a a n a a a a a a ≤+++≤而1lim =∞→n n n ,所以},,max {lim 2121m n nn n n n a a a a a a =+++∞→10.设aa n n =∞→lim ,证明:(1)a n na n n =∞→][lim; (2)若0,0>>n a a ,则1lim =∞→n n n a .证明 (1)因为1][][+<≤n n n na na na ,所以nn n a n na n na ≤<-][1. 由于a n a n na n n n n =⎪⎭⎫ ⎝⎛-=-∞→∞→1lim 1lim ,且a a n n =∞→lim ,从而a n na n n =∞→][lim .(2)因为 0lim >=∞→a a n n ,由P.29 定理 2.4,存在0>N ,使得当N n >时,有a a a n 232<<. 于是 n n n na a a 232<<,并且123lim 2lim ==∞→∞→n n n n a a ,所以1lim =∞→n n n a .P.38 习题1.利用e n nn =⎪⎭⎫⎝⎛+∞→11lim 求下列极限:(1)e n n n n n n n nn nn 11111111lim 1lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--∞→∞→∞→(2)e n n n nn n n =⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→+∞→1111lim 11lim 1(3)e n n n n n nn =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++∞→∞→111111lim 111lim 1(4)en n n nn n n nn =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→⋅∞→∞→2212211lim 211lim 211lim注:此题的求解用到事实(P.29例1):若aa n n =∞→lim ,且,2,1,0=≥n a n ,则aa n n =∞→lim .(5)nn n ⎪⎭⎫ ⎝⎛+∞→211lim 解 因为数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11单调增加,且有上界 3,于是 )(,1311111222∞→→<⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+<n n n n n n n,所以111lim 2=⎪⎭⎫ ⎝⎛+∞→nn n2.试问下面的解题方法是否正确:求nn 2lim ∞→解 不正确. 因为极限nn 2lim ∞→是否存在还不知道(事实上极限nn 2lim ∞→不存在),所以设an n =∞→2lim 是错误的.3.证明下列数列极限存在并求其值: (1)设,2,1,2,211===+n a a a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:2是}{n a 的一个上界.221<=a ,假设2<n a ,则22221=⋅<=+n n a a ,所以}{n a 有上界2.其次证明}{n a 单调增加.2)2(21>+-=-=-+nn n n n n n n a a a a a a a a ,所以n n a a >+1,即}{n a 单调增加. 从而}{n a 极限存在,设a a n n =∞→lim ,在n n a a 221=+的两端取极限,得a a 22=,解之得 a = 0 (舍去) 和 2,所以2lim =∞→n n a .注:}{n a 的单调增加也可以如下证明:122221=>==+n n n n n a a a a a ,所以n n a a >+1.还可以如下得到:121214121214121122++++++++=<=+n na a n n n(2)设,2,1,),0(11=+=>=+n a c a c c a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:}{n a 的一个上界是 1 + c .c c a +<=11,假设c a n +<1,则c c c c a c a n n +=++<+<+=+1121221,所以}{n a 有上界1 + c .其次证明}{n a 单调增加(用数学归纳法证明). 21a c c c a =+<=,假设n n a a <-1,于是n n a c a c +<+-1,从而n n a c a c +<+-1,即1+<n n a a . 故}{n a 单调增加. 所以}{n a 极限存在,设a a n n =∞→lim ,在n n a c a +=+21的两端取极限,得a c a +=2,解之得 2411ca +±=. 由于a n > 0 ,所以 a > 0 . 故 2lim =∞→n n a . (3),2,1),0(!=>=n c n c a nn 证明 先证}{n a 从某一项以后单调减少. 取自然数 N 使得 N > c ,于是当N n >时,nn n n n n a a N ca n c n c n c n c a <+<+=+=+=++11!1)!1(11,即从第N 项开始}{n a 单调减少.由于}{n a 的各项都大于零,所以}{n a 有下界0. 从而}{n a 极限存在. 设a a n n =∞→lim ,在n n a n c a 11+=+的两端取极限,得a a ⋅=0,故0=a ,即0lim =∞→n n a .4.利用⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11为递增数列的结论,证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++nn 111为递增数列. 证明 设nn n n n n a ⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=12111,要证: ,3,2,1=≤-n a a n n ,即 因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为递增数列,所以有111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n , 即1121+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+n nn n n n ,于是nnn n n n a n n n n n n n n n n n n n n a =⎪⎭⎫⎝⎛++<+⋅++⋅⎪⎭⎫ ⎝⎛++=+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+=+--12112121121111.其中用到事实:1)1()2(1122≤++=+⋅++⋅n n n n n n n .5.应用柯西收敛准则,证明以下数列}{n a 收敛:(1)n n na 2sin 22sin 21sin 2+++=证明 不妨设m n >,则有n m m m n nm m a a 2sin 2)2sin(2)1sin(||21+++++=-++n m m n m m n m m 2121212sin 2)2sin(2)1sin(2121+++≤+++++≤++++ ⎪⎭⎫ ⎝⎛+++++<⎪⎭⎫ ⎝⎛+++=---+--+ m n m n m m n m 21212112121211211111 m m m 1212211<=⋅=+ 所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛. (2)222131211n a n ++++= 证明 不妨设m n >,则有2221)2(1)1(1||n m m a a m n +++++=- n n m m m m )1(1)2)(1(1)1(1-++++++≤ m n m n n m m m m 1111112111111<-=--+++-+++-=所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛.6.证明:若单调数列}{n a 含有一个收敛子列,则}{n a 收敛.证明 不妨设}{n a 是单调增加数列,}{k n a 是其收敛子列. 于是}{k n a 有界,即存在0>M ,使得 ,2,1,=≤k M a kn . 对单调增加数列}{n a 中的任一项m a 必有M a a km m ≤≤,即}{n a 单调增加有上界,从而收敛.7.证明:若0>n a ,且1lim1>=+∞→l a a n nn ,则0lim =∞→n n a证明 因为1lim 1>=+∞→l a a n n n ,所以存在 r 使得1lim 1>>=+∞→r l a a n n n . 于是由数列极限的保号性定理(P.29),存在0>N ,当N n >时,ra a n n>+1,1+>n nra a . 从而有n N n N N N a r a r ra a 13221--+++>>>> , 因此,)(,0011∞→→<<--+n r a a N n N n , 故lim =∞→n n a .8.证明:若}{n a 为递增有界数列,则}sup{lim n n n a a =∞→;若}{n a 为递减有界数列,则}inf{lim n n n a a =∞→. 又问逆命题成立否?证明 证明过程参考教材P.35,定理2.9(单调有界定理).逆命题不一定成立. 例如数列⎪⎩⎪⎨⎧-=为偶数为奇数n n n a n 111,1}sup{lim ==∞→nn n a a ,但}{n a 不单调.9.利用不等式 0),()1(11>>-+>-++a b a b a n a bn n n ,证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,并由此推出⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列.证明 设111+⎪⎭⎫⎝⎛+=n n n a ,由不等式 )()1(11a b a n a bn n n -+>-++,有1111++++-+->-n n n n n n a b a na b na a b ,于是b a na b na b n n n n +->++11,b na a na b n n n n 1+-+>.在上式中令1111,111-=-+=+=+=n n n b n n n a ,a b >,得 nnn n n n a ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+=-11111nn nnn n n n n n n n n n n ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+>11111nn nna n n n n n n n =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+11111即n n a a >-1,故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列.而4111111111=⎪⎭⎫ ⎝⎛+≤⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛++n nn n ,所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列. 10.证明:n n e n 3)11(<+- 证 由上题知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,于是对任何n m >有, 111111++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+m n n n ,令∞→m ,取极限得,en n >⎪⎭⎫ ⎝⎛++111 ①又因为nnnn n n n n n n ⎪⎭⎫⎝⎛++⋅<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛++113111111111②由①、②得nn n n n e ⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+<+113111,从而 n n e n e n n 3)11()11(<+-=+-11.给定两正数 a 1 与 b 1 ( a 1 > b 1 ),作出其等差中项2112b a a +=与等比中项112b a b =,一般地令21nn n b a a +=+, ,2,1,1==+n b a b n n n证明:nn a ∞→lim 与nn b ∞→lim 皆存在且相等.证明 因为11b a >,所以有nnn n n n a a a b a a =+<+=+221,即}{n a 单调减少. 同样可得}{n b 单调增加. 于是有11112b b b a b a a a n n n n n n ≥=≥+=≥++,即}{n a 单调减少有下界,}{n b 单调增加有上界,故n n a ∞→lim 与n n b ∞→lim 皆存在.在n n n b a a +=+12的两端取极限,可得n n n n b a ∞→∞→=lim lim12.设}{n a 为有界数列,记},,sup{1 +=n n n a a a ,},,inf{1 +=n n n a a a证明:⑴ 对任何正整数n ,n n a a ≥;⑵}{n a 为递减有界数列,}{n a 为递增有界数列,且对任何正整数n ,m 有m n a a ≥;⑶ 设a 和a 分别是}{n a 和}{n a 的极限,则a a ≥;⑷ }{n a 收敛的充要条件是a a =证 ⑴ 对任何正整数n ,n n n n n n n a a a a a a a =≥≥=++},,inf{},,sup{11⑵ 因为1211},,sup{},,sup{++++=≥=n n n n n na a a a a a , ,2,1=n ,所以}{na 为递减有界数列.由1211},,inf{},,inf{++++=≤=n n n n n n a a a a a a ,知}{n a 为递增有界数列.对任何正整数n ,m ,因为}{n a 为递减有界数列,}{n a 为递增有界数列,所以有m m n m n n a a a a ≥≥≥++.⑶ 因为对任何正整数n ,m 有m n a a ≥,令∞→n 得,mn n a a a ≥=∞→lim ,即m a a ≥,令∞→m 得aa a m m =≥∞→lim ,故a a ≥.⑷ 设}{n a 收敛,a a n n =∞→lim . 则0>∀ε,0>∃N ,N n >∀,ε<-||a a n,εε+<<-a a a n . 于是有εε+≤<-a a a n ,从而a a a n n ==∞→l i m . 同理可得a a a n n ==∞→lim ,所以aa =反之,设a a =. 由a a n n =∞→lim , a a a n n ==∞→lim ,得0>∀ε,0>∃N ,N n >∀, 有εε+<<-a a a n 及εε+<<-a a a n ,从而εε+<≤≤<-a a a a a n n nP.40 总练习题1.求下列数列的极限: (1)n nn n 3lim 3+∞→解 当3>n 时,有nn 33<,于是)(,323323333∞→→⋅=⋅<+<=n n n n n n n n n ,所以33lim 3=+∞→n n n n(2)nn e n 5lim∞→解 设h e +=1,则当6>n 时,62!6)5()1(!2)1(1)1(hn n n h h n n nh h e n n n --≥++-++=+= ,于是)(,0)5)(4)(3)(2)(1(!60655∞→→-----⋅<<n h n n n n n n n e n n ,所以0lim 5=∞→n n e n解法2 用P.39 习题7的结论. 设n n e n a 5=,1)1(lim lim 5151>=+=+∞→+∞→e n e e n a a n n n n n n ,从而0lim lim 5==∞→∞→n n n n a e n .解法3 用P.27 习题2⑸的结果0))((lim lim 5515==∞→∞→n n n n e ne n解法4 用单调有界定理. 令nn e n a 5=,则51)11(1n e a a n n +=+. 因为e n n <=+∞→1)11(lim 5,所以存在0>N ,当N n >时,e n <+5)11(,从而当N n >时,1)11(151<+=+n e a a n n . 于是从N n >起数列}{n a 递减,且有下界0,因此}{n a 收敛. 设a a n n =∞→lim ,在等式nn a n e a ⋅+=+51)11(1的两端取极限,得a e a ⋅=1,所以0=a .(3))122(lim n n n n ++-+∞→解 )]1()12[(lim )122(lim +-++-+=++-+∞→∞→n n n n n n n n n011121lim =⎥⎦⎤⎢⎣⎡++-++++=∞→n n n n n2.证明: (1))1|(|0lim 2<=∞→q q n n n证明 当0=q 时,结论成立.当1||0<<q 时,有1||1>q ,令0,1||1>+=h h q ,于是有nn h q )1(1+=,而由牛顿二项式定理,当3>n 时有3!3)2)(1()1(hn n n h n --≥+,从而)(0!3)2)(1()1(03222∞→→--≤+=<n h n n n n h n q n nn,所以lim 2=∞→n n q n另解 用P.27 习题2⑸的结果)(sgn ))||1((lim lim 22==∞→∞→n nn n n q q n q n(2))1(,0lg lim≥=∞→ααn nn证明 因为0,lg ><x x x ,于是)(,022lg 2lg 021∞→→=<=<-n n n n n n n n αααα,所以0lg lim =∞→αn n n .(3)0!1lim =∞→n n n 证明 先证明不等式:nn n ⎪⎭⎫⎝⎛>3!. 用数学归纳法证明,当1=n 时,显然不等式成立;假设nn n ⎪⎭⎫⎝⎛>3!成立,当 n + 1 时 nn n n n n n n n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅+=⎪⎭⎫ ⎝⎛⋅+>⋅+=+131)1(3)1(!)1()!1(113111331++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+=n nn n n n故不等式nn n ⎪⎭⎫⎝⎛>3!成立. 由此可得)(,03!10∞→→<<n n n n ,所以0!1lim =∞→n n n另解 用数学归纳法证明不等式:n n n≥!3.设aa n n =∞→lim ,证明:(1)a n a a a nn =+++∞→ 21lim(又问由此等式能否反过来推出a a n n =∞→lim )证明 因为aa n n =∞→lim ,于是有11,0,0N n N >∀>∃>∀ε,2||ε<-a a n . 从而当1N n >时,有n naa a a a n a a a n n -+++=-+++ 212122||||||||||||12121111εε+≤⋅-+≤-++-+-+-++-+-≤++n A n N n n A na a a a a a n a a a a a a n N N N其中||||||121a a a a a a A N -++-+-= 是一个定数. 再由0lim =∞→n A n ,知存在02>N ,使得当2N n >时,2ε<n A . 因此取},m ax {21N N N =,当N n >时,有εεεε=+<+≤-+++22221n A a n a a a n .反过来不一定成立. 例如nn a )1(-=不收敛,但0lim21=+++∞→n a a a nn .练习:设+∞=∞→n n a lim ,证明:+∞=+++∞→n a a a n n 21lim(2) 若),2,1(0 =>n a n ,则a a a a n n n =∞→ 21lim证明 先证算术平均值—几何平均值—调和平均值不等式:na a a a a a a a a nnn n n+++≤≤+++ 212121111算术平均值—几何平均值不等式:n a a a a a a nnn +++≤2121对任何非负实数1a ,2a 有2)(212121a a a a +≤,其中等号当且仅当21a a =时成立. 由此推出,对4个非负实数1a ,2a ,3a ,4a 有2143212121432121414321)22(])()[()(a a a a a a a a a a a a +⋅+≤=422243214321a a a a a a a a +++=+++≤按此方法继续下去,可推出不等式n a a a a a a nn n +++≤ 2121对一切kn 2=(,2,1,0=k )都成立,为证其对一切正整数n 都成立,下面采用所谓的反向归纳法,即证明:若不等式对某个)2(≥n 成立,则它对1-n 也成立.设非负实数121,,,-n a a a ,令)(11121-+++-=n n a a a n a ,则有)1(1)1()(12112111211121-+++++++≤-+++⋅----n a a a a a a n n a a a a a a n n n n nn整理后得)(11)(12111121---+++-≤n n n a a a n a a a ,即不等式对1-n 成立,从而对一切正整数n 都成立.几何平均值—调和平均值不等式n nna a a a a a n2121111≤+++的证明,可令i i x y 1=,再对i y (n i ,,2,1 =)应用平均值不等式.由),2,1(0 =>n a n ,知0lim ≥=∞→a a n n . 若0≠a ,则a a n n 11lim=∞→. 由上一小题的结论,有)(,111212121∞→→+++≤≤+++n a na a a a a a a a a nnn n n而a an a a a a a a n n n n n ==+++=+++∞→∞→111111lim 111lim 2121 ,所以aa a a n n n =∞→ 21lim .若0=a ,即0lim =∞→n n a ,则11,0,0N n N >∀>∃>∀ε,ε<na . 从而当1N n >时,有n N n n N n n N N nn a a a a a a a a a a a 11112112121-+⋅≤⋅=εεεεε⋅=⋅=⋅=--n n N N nN n n N A a a a a a a 11112121其中1121N N a a a A -=ε ,是定数,故21lim <=∞→nn A ,于是存在02>N ,使得当2N n >时,2<n A . 因此取},m ax {21N N N =,当N n >时,有εε221<⋅≤n nn A a a a ,故0lim 21=∞→n n n a a a4.应用上题的结论证明下列各题:(1)0131211lim=++++∞→n n n证明 令n a n 1=,则01lim lim ==∞→∞→n a n n n ,所以0131211lim =++++∞→n n n .(2))0(1lim >=∞→a a n n证明 令a a =1, ,3,2,1==n a n ,则1lim =∞→n n a ,从而1lim lim lim 21===∞→∞→∞→n n n n n n n a a a a a(3)1lim =∞→n n n证明 令11=a , ,3,2,1=-=n n na n ,则1lim =∞→n n a ,于是1lim lim 13423121lim lim 21===-⋅⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n a a a a n nn .(4)!1lim=∞→nn n证明 令,2,1,1==n n a n ,则0lim =∞→n n a ,所以1lim 1211lim 3211lim !1lim==⋅⋅⋅=⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n n n(5)e n n n n =∞→!lim 证明 令,3,2,111111=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=--n n n n a n n n ,则ea n n =∞→lim ,所以en n n n n n n n n n n n n n nn n n =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==-∞→-∞→∞→∞→114321lim 14534232lim !lim !lim另证 令 ,2,1,!==n n n a nn ,则en a a n n n n n =⎪⎭⎫ ⎝⎛-+=-∞→-∞→11111lim lim . 于是e a a a a a a a a a n nn n n n n n n n n n n n ==⋅⋅⋅==-∞→-∞→∞→∞→112312lim lim lim !lim .(6)1321lim 3=++++∞→n nn n证明 因为1lim =∞→n n n ,所以1lim 321lim 3==++++∞→∞→n n nn n n n(7)若)0(lim 1>=+∞→n n n n b a b b,则a b n n n =∞→lim证明n n n n n n n nn n n n n n b b b b bb b b b b b b b b b 112312112312lim lim lim lim ∞→+∞→+∞→∞→⋅⋅⋅⋅=⋅⋅⋅⋅=ab b n n n =⋅=+∞→1lim1(8)若d a a n n n =--∞→)(lim 1,则d n a nn =∞→lim证明 设10=a⎥⎦⎤⎢⎣⎡-++-+-+=-∞→∞→n a a a a a a n an a n n n n n )()()(lim lim11201d a a n a a a a a a n a n n n n n n n =-+=-++-+-+=-∞→-∞→∞→)(lim 0)()()(lim lim11120105.证明:若}{n a 为递增数列,}{n b 为递减数列,且 0)(lim =-∞→n n n b a ,则n n a ∞→lim 与nn b ∞→lim 都存在且相等.证明 因为)(lim =-∞→n n n b a ,所以}{n n b a -有界,于是存在0>M ,使得M b a M n n ≤-≤-. 从而有1b M b M a n n +≤+≤, M a M a b n n -≥-≥1,因此}{n a 为递增有上界数列,}{n b 为递减有下界数列,故n n a ∞→lim 与nn b ∞→lim 都存在. 又因为0)(lim lim lim =-=-∞→∞→∞→n n n n n n n b a b a ,所以 nn n n b a ∞→∞→=lim lim .6.设数列}{n a 满足:存在正数M ,对一切 n 有M a a a a a a A n n n ≤-+-+-=-||||||12312证明:数列}{n a 与}{n A 都收敛.证明 数列}{n A 单调增加有界,故收敛. 由柯西收敛准则,0,0>∃>∀N ε,当N n m >>时,ε<-||n m A A . 于是ε<-=-++-+-≤-+---n m n n m m m m n m A A a a a a a a a a ||||||||1211所以由柯西收敛准则,知数列}{n a 收敛.7.设⎪⎭⎫ ⎝⎛+=>>a a a a σσ21,0,01,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211, ,2,1=n , 证明:数列}{n a 收敛,且其极限为σ证明 因为σσσ=⋅≥⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a 211,故数列}{n a 有下界σ.112112121=⎪⎭⎫⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+σσσn n n a a a ,于是n n a a ≤+1,即数列}{n a 单调减少,从而数列}{n a 收敛. 设A a n n =∞→lim ,由⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211,得σ+=+212n n n a a a ,两端取极限得,σ+=222A A ,解得σ=A ,所以σ=∞→n n a lim .8.设011>>b a ,记211--+=n n n b a a ,11112----+⋅=n n n n n b a b a b , ,3,2=n . 证明:数列}{n a 与}{n b 的极限都存在且等于11b a .证 因为 111121111212111112)(2--------------+⋅-+=++≤+⋅=n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b n n n n n n n n n b b a b a b a b a -+=+⋅-+=--------111111112,所以nn n n a b a b =+≤--211, ,3,2=n数列}{n a 是递减的:nnn n n n a a a b a a =+≤+=+221, ,2,1=n数列}{n a 有下界:0211≥+=--n n n b a a , ,2,1=n ,所以}{n a 收敛,设a a n n =∞→lim .数列}{n b 是递增的:11111111122---------=+⋅≥+⋅=n n n n n n n n n n b a a ba b a b a b , ,3,2=n数列}{n b 有上界:1a a b n n ≤≤, ,2,1=n ,所以}{n b 收敛,设b b n n =∞→lim .令∞→n 在211--+=n n n b a a 的两端取极限,得b a =.211--+=n n n b a a 与11112----+⋅=n n n n n b a b a b 两端分别相乘,得11--=n n n n b a b a , ,3,2=n 所以有11b a b a n n=, ,3,2=n ,令∞→n 取极限得11b a ab =,从而11b a a =。
北京大学数学科学学院【数学分析 I】课程习题集(参考 谢惠民 数学分析习题课讲义)

或任意 n ≥ N 有 则仍有矛盾. 从而 c = 1.
1 ∈ (c − ϵ, c + ϵ) .
an
解. 取 M > 1 使得
[
]
1
a1, a2 ∈
,M M
.
则归纳易知任意
n
有
an
∈
[
1 M
,
M ],
从而
α = lim sup an, β = lim inf an
n→∞
n→∞
均为正数, 且 α ≥ β. 又从两个方向分别导出不等式, 可得出 αβ = 1. 取 {ank }∞ k=1 收敛于 α, 易证
4
证明. 只须证 α < c < β 的情形. 找 p1 < q1 < p2 < q2 < · · · 使得
xpl > c > xqm (l = 1, 2, . . . ; m = 1, 2, . . .). 又存在 pj ≤ rj < qj (j = 1, 2, . . .) 使得
此时
xrj ≥ c ≥ xrj+1.
lim
k→∞
ank −1
=
lim
k→∞
ank −2
=
β.
而 2
ank−3 = ank−1 − ank−2 (nk > 3).
左式关于 k 的上极限不大于 α, 但右式关于 k 的极限为 2α − β > α, 矛盾.
问题 4 (08 上期中). 设 {an}∞ n=1 为单调递增的正整数列. 证明: 数列
cn = max(bn+1, bn) (n = 1, 2, . . .).
则 {cn}∞ n=1 不增且有下界, 故其下确界 c 为其极限值 (显然 c ≥ 1), 从而任 意 ϵ > 0, 存在 N 使得任意 n ≥ N 有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。