信号相关分析原理:自相关函数,互相关函数

合集下载

自相关与互相关函数的计算与应用

自相关与互相关函数的计算与应用

自相关与互相关函数的计算与应用自相关函数和互相关函数是信号处理中常用的概念和工具,用于描述信号之间的相关性和相似性。

在本文中,我们将介绍自相关函数和互相关函数的计算方法,并探讨它们在实际应用中的用途。

一、自相关函数的计算与应用自相关函数是描述一个信号与其自身之间的相关程度的函数。

它的计算方法是将信号与其自身进行卷积,然后对结果进行归一化处理。

自相关函数具有以下性质:1. 自相关函数的取值范围是[-1, 1]之间。

当自相关函数的取值接近1时,表示信号之间具有高度的相关性;当取值接近-1时,表示信号之间具有高度的反相关性;当取值接近0时,表示信号之间不存在相关性。

2. 自相关函数的峰值对应着信号的周期。

通过找到自相关函数的峰值,我们可以确定信号的周期,从而对信号进行频域分析和周期性检测等操作。

3. 自相关函数可以用于信号的降噪和滤波。

通过计算信号的自相关函数,我们可以找到信号中的重复模式,并进行滤波操作,从而去除噪声和杂乱的信号成分。

二、互相关函数的计算与应用互相关函数是描述两个信号之间相关程度的函数。

它的计算方法是将两个信号进行卷积,然后对结果进行归一化处理。

互相关函数具有以下性质:1. 互相关函数可以用于信号的相似性匹配和模式识别。

通过计算待匹配信号和参考信号的互相关函数,我们可以找到信号之间的相似性,并进行模式匹配和识别操作。

2. 互相关函数可以用于信号的延时估计。

通过计算信号之间的互相关函数,我们可以估计信号之间的时间延迟,从而实现信号的同步和对齐。

3. 互相关函数可以用于信号的频率测量。

通过计算信号之间的互相关函数的频域分析,我们可以获得信号的频率信息,从而实现信号的频率测量和频域分析。

三、自相关与互相关函数的应用示例自相关和互相关函数在信号处理和模式识别领域有着广泛的应用。

以下是一些常见的应用示例:1. 语音信号处理:通过计算语音信号的自相关函数,可以实现语音信号的周期性检测和降噪操作,从而提高语音识别的准确性。

自相关与互相关函数

自相关与互相关函数

相关函数1.自相关函数自相关函数就是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值与另一时刻取值的依赖关系,其定义式为(2、4、6)对于周期信号,积分平均时间T为信号周期。

对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2、4、7)自相关函数就就是信号x(t)与它的时移信号x(t+τ)乘积的平均值,它就是时移变量τ的函数。

例如信号的自相关函数为若信号就是由两个频率与初相角不同的频率分量组成,即,则对于正弦信号,由于,其自相关函数仍为由此可见,正弦(余弦)信号的自相关函数同样就是一个余弦函数。

它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。

自相关函数具有如下主要性质:(1)自相关函数为偶函数,,其图形对称于纵轴。

因此,不论时移方向就是导前还就是滞后(τ为正或负),函数值不变。

(2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即(2、4、8)(3)周期信号的自相关函数仍为同频率的周期信号。

(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即(2、4、9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为(2、4、10)当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。

由于,所以。

值的大小表示信号相关性的强弱。

自相关函数的性质可用图2、4、3表示。

图2、4、3 自相关函数的性质常见四种典型信号的自相关函数如图2、4、4所示,自相关函数的典型应用包括:(1)检测信号回声(反射)。

若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。

时间历程自相关函数图形正弦波正弦波加随机噪声窄带随机噪声宽带随机噪声图2、4、4 四种典型信号的自相关函数(2)检测淹没在随机噪声中的周期信号。

自相关与互相关函数的性质与应用

自相关与互相关函数的性质与应用

自相关与互相关函数的性质与应用自相关函数和互相关函数是信号处理领域中常用的工具,它们能够描述信号与自身或其他信号之间的相互关系。

本文将介绍自相关函数和互相关函数的性质及其在不同领域中的应用。

一、自相关函数自相关函数是用来衡量信号与自身之间的相似程度。

在时域上,自相关函数定义为信号与其自身的延迟版本的乘积的积分。

数学表达式如下:Rxx(tau) = ∫[x(t)*x(t-tau)]dt在自相关函数中,tau表示延迟的时间。

自相关函数具有以下性质:1. 对称性:自相关函数关于tau=0对称,即Rxx(-tau) = Rxx(tau)。

2. 零延迟:在tau=0时,自相关函数达到最大值,即Rxx(0) =∫[x(t)^2]dt。

3. 正则性:自相关函数的取值范围在0和Rxx(0)之间。

自相关函数在信号处理中有广泛的应用,包括时序分析、噪声滤除和谱估计等。

例如,在时序分析中,自相关函数可用于检测信号的周期性和重复性,帮助确定信号的周期。

二、互相关函数互相关函数用于衡量两个信号之间的相似程度。

在时域上,互相关函数定义为一个信号与另一个信号的延迟版本的乘积的积分。

数学表达式如下:Rxy(tau) = ∫[x(t)*y(t-tau)]dt在互相关函数中,tau表示延迟的时间。

互相关函数具有以下性质:1. 非对称性:互相关函数通常不满足对称性,即Rxy(-tau) ≠Rxy(tau)。

2. 特定延迟下的相似性:当tau等于信号y的延迟时间时,互相关函数达到最大值,即Rxy(tau) = ∫[x(t)*y(t)]dt。

3. 互相关峰值:互相关函数的最大值表示信号x和信号y之间的最佳匹配程度。

互相关函数在信号处理和图像处理领域具有广泛应用。

例如,在音频处理中,互相关函数可用于音频识别和音频匹配;在图像处理中,互相关函数可用于图像匹配和模式识别。

三、自相关与互相关函数的应用1. 语音识别:自相关和互相关函数可用于语音信号的特征提取和语音识别算法的设计。

互相关函数,自相关函数计算和作图

互相关函数,自相关函数计算和作图

互相关函数,自相关函数计算和作图1.自相关和互相关的概念。

●互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。

●自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。

互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。

它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。

----------------------------------------------------------------------------------- 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。

2.利用matlab中实现这两个相关并用图像显示:自相关函数:dt=.1;t=[0:dt:100];x=cos(t);[a,b]=xcorr(x,'unbiased');plot(b*dt,a)互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。

3. 实现过程:在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。

当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。

事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。

下面是检验两者结果相同的代码:dt=.1;t=[0:dt:100];x=3*sin(t);y=cos(3*t);subplot(3,1,1);plot(t,x);subplot(3,1,2);plot(t,y);[a,b]=xcorr(x,y);subplot(3,1,3);plot(b*dt,a);yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);z=conv(x,yy);pause;subplot(3,1,3);plot(b*dt,z,'r');即在xcorr中不使用scaling。

自相关与互相关函数

自相关与互相关函数

相关函数1.自相关函数自相关函数是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值和另一时刻取值的依赖关系,其定义式为(2.4.6)对于周期信号,积分平均时间T为信号周期。

对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2.4.7)自相关函数就是信号x(t)和它的时移信号x(t+τ)乘积的平均值,它是时移变量τ的函数。

例如信号的自相关函数为若信号是由两个频率和初相角不同的频率分量组成,即,则对于正弦信号,由于,其自相关函数仍为由此可见,正弦(余弦)信号的自相关函数同样是一个余弦函数。

它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。

自相关函数具有如下主要性质:(1)自相关函数为偶函数,,其图形对称于纵轴。

因此,不论时移方向是导前还是滞后(τ为正或负),函数值不变。

(2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即(2.4.8)(3)周期信号的自相关函数仍为同频率的周期信号。

(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即(2.4.9)实际工程使用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为(2.4.10)当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)和x(t+τ)之间彼此无关。

由于,所以。

值的大小表示信号相关性的强弱。

自相关函数的性质可用图2.4.3表示。

图2.4.3 自相关函数的性质常见四种典型信号的自相关函数如图2.4.4所示,自相关函数的典型使用包括:(1)检测信号回声(反射)。

若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。

时间历程自相关函数图形正弦波正弦波加随机噪声窄带随机噪声宽带随机噪声图2.4.4 四种典型信号的自相关函数(2)检测淹没在随机噪声中的周期信号。

自相关与互相关函数

自相关与互相关函数

相关函数1.自相关函数ﻫ自相关函数就是信号在时域中特性得平均度量,它用来描述信号在一个时刻得取值与另一时刻取值得依赖关系,其定义式为ﻫ(2、4、6)ﻫﻫ对于周期信号,积分平均时间T为信号周期。

对于有限时间内得信号,例如单个脉ﻫ冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2、4、7)ﻫ自相关函数就就是信号x(t)与它得时移信号x(t+τ)乘积得平均值,它就是时移变量τ得函ﻫ数。

ﻫﻫ例如信号得自相关函数为ﻫ若信号就是由两个频率与初相角不同得频率分量组成,即,则ﻫﻫ对于正弦信号,由于,其自相关函数仍为ﻫﻫﻫ由此可见,正弦(余弦)信号得自相关函数同样就是一个余弦函数。

它保留了原信号ﻫ得频率成分,其频率不变,幅值等于原幅值平方得一半,即等于该频率分量得平均功率ﻫ,但丢失了相角得信息。

ﻫﻫ自相关函数具有如下主要性质:ﻫ (1)自相关函数为偶函数,,其图形对称于纵轴。

因此,不论时移方向就是导前还就是滞后(τ为正或负),函数值不变。

(2)当τ=0时,自相关函数具有最大值,且等于信号得均方值,即(2、4、8)ﻫ(3)周期信号得自相关函数仍为同频率得周期信号。

(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值得平方ﻫ,即ﻫ (2、4、9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间得相关程ﻫ度,定义式为ﻫ (2、4、10)ﻫ当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。

由于,所以.值得大小表示信号相关性得强弱。

ﻫﻫ自相关函数得性质可用图2、4、3表示.图2、4、3 自相关函数得性质常见四种典型信号得自相关函数如图2、4、4所示,自相关函数得典型应用包括: ﻫ(1)检测信号回声(反射)。

若在宽带信号中存在着带时间延迟得回声,那么该信号得自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定ﻫ反射体得位置,同时自相关系数在处得值将给出反射信号相对强度得度量。

自相关函数和互相关函数计算

自相关函数和互相关函数计算
这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程 度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号 x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 ----------------------------------------------------------------------------------------------------------------------------------------------
首页
论坛
群组
家园
百科
设施
休闲
游戏
排行榜
我的中心
中国振动联盟进站必读 服务使用协议 行为准则 | 免责声明 | 禁止行为 等级与权限 | 积分获取 | 意见建议
近期热点及本站重点推荐版块 振动实验与测试技术 | 故障诊断及健康监测 管理漫谈 | 振动产品展示 | 专业技术区
新的开始、新的征程—本站诚聘各版版主 加入管理队伍,更好地建设振动家园 版主管理及考核 | 版主推荐 | 版主申请
预科生
帖子 积分 威望 体能
1 0 0点 10 点
jelyness
预科生
帖子 积分 威望 体能
3 0 0点 10 点
lutat
该用户还没有设置签名,暂不外售!
回复
引用
发表于 2007-11-11 04:32 | 只看该作者
太有用了,赞~
即在xcorr中不使用scaling。
3. 其他相关问题:
1) 相关程度与相关函数的取值有什么联系? ----------------------------------------[转版友 gghhjj]------------------------------------------------------------------------------------相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。 相关系数的正负号只表示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两 倍,只能说相关系数为0.7的二列变量相关程度比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数 从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。

信号相关分析原理自相关函数互相关函数

信号相关分析原理自相关函数互相关函数

信号相关分析原理自相关函数互相关函数1. 自相关函数(Autocorrelation Function):自相关函数用于衡量信号与其自身之间的相似性和相关性。

自相关函数是信号的一个函数,描述了信号与其自身在不同时间延迟下的相似程度。

自相关函数的计算公式为:R_xx(tau) = E[x(t)x(t+tau)]其中,R_xx(tau)表示在时间延迟tau下信号x(t)与自身的相关程度,E表示期望值运算。

自相关函数的值越大,表示信号在不同时间延迟下的相似性越高。

自相关函数在信号处理中有广泛的应用,例如:-信号周期性分析:自相关函数可以用于检测信号是否具有周期性,通过寻找自相关函数的周期性峰值,可以判断信号的周期。

-信号估计:通过自相关函数的峰值位置可以估计信号的延迟时间。

2. 互相关函数(Cross-correlation Function):互相关函数用于衡量两个信号之间的相似性和相关性。

互相关函数描述了两个信号在不同时间延迟下的相似程度。

互相关函数的计算公式为:R_xy(tau) = E[x(t)y(t+tau)]其中,R_xy(tau)表示信号x(t)与信号y(t)在时间延迟tau下的相关程度。

互相关函数的值越大,表示信号之间的相关性越高。

互相关函数在信号处理中也有广泛的应用,例如:-图像配准:互相关函数可以用于图像配准,通过计算两幅图像之间的互相关函数找到最大峰值,可以确定两幅图像的平移和旋转关系。

-信号相似性检测:在音频、图像和视频等领域中,可以通过互相关函数比较两段信号之间的相似性,例如音频中的语音识别和音乐识别。

总结起来,自相关函数和互相关函数是信号相关分析中常用的方法,可以用来描述信号之间的相似性、周期性和相关程度。

通过计算自相关函数和互相关函数可以在信号处理、图像处理和音频处理等领域中得到广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j
d
d
return 11
1 R ( ) 2



S ( )e
j
5.3 离散信号的自相关函数
离散信号的自相关函数:

R( n )
性质:
j
x( j ) x( j n)
R( n ) R( n )
1、离散自相关函数是偶函数
2、在n=0时,自相关函数就是离散信号的能量


自相关函数的特点:
1. 自相关函数是偶函数

R( ) R( )
2. 当=0 时,自相关函数等于信号的能量
Rx (0) x 2 (t )dt Ex

3. Rx(0)为自相关函数的最大值
8
5.2 信号的相关分析
(二)无限长信号的自相关函数 无限长非周期函数:由有限时间信号的周期T0趋于
信号的功率:信号电压(或电流)在1欧姆电阻上所消耗的功率。
在[T1,T2]时间内平均功率可表示为:
1 P T2 T1

T2
T1
f (t ) dt
2
1 设T2=T/2,T1=-T/2,则: p T
当T时 若f(t)为 实函数

T 2 T 2
2
f (t ) dt
2
P lim
T
W ( ) F ( )
2
因为能谱是频谱密度模的平方,与相位无关。 对波形相同而时间位置不同的所有信号,其能谱完全相同。 4
5.1 信号的互能量与互能谱
2. 功率谱:
设 fT0 (t ) 是 f (t ) 的截短函数 则f(t)的功率谱密度函数为
T0 f ( t ) t 2 fT0 (t ) T0 0 t 2
无穷大时获得的。
为使所得R() 的表达式不发散,定义新自相关函数:
1 Rx ( ) lim T0 T 0

T0 2
T0 2
x(t ) x(t )dt
周期函数:其自相关函数为
周期信号的自相关函数是 的周期函数,周期为T。 当=0 或 T 的整数倍时,x(t- )=x(t), Rx()达到最大值, 9 为x(t)的平均功率。
x(t ) y(t )dt
6
5.1 信号的互能量与互能谱
(四).广义瑞利公式、互能谱 1. 广义瑞利公式:
若信号x(t) 和 y(t) 为实函数,其频谱密度分别为

X ( ) 和 Y ( ) ,则
2. 互能谱:
1 ( x, y ) x (t ) y (t )dt 2




S ( ) lim
FT0 ( ) T0
2
T0
所以
1 P 2



S ( )d
5
5.1 信号的互能量与互能谱
(三).两信号的互能量 两信号x(t) 、y(t)之和的能量为:
E ( x(t ) y (t )) dt
2

x (t )dt
2


互相关:
Rxy ( ) x( ) y ( t )d


16
5.4 信号的互相关函数
(三)相关定理

x (t ) , y (t )
的频谱函数分别为

则:
F Rxy ( ) X ( ) Y ( )

X ( )
,Y ( )
F Ryx ( ) Y ( ) X ( )
Wx ( ) Rx ( )e


j
d
10
5.2 信号的相关分析
(五)自相关函数与功率谱的关系
维纳—辛钦(Wiener-Khintchine)关系:
S()为信号的功率谱密度,
s( ) lim
则:

X T0 ( ) T0
2
T0
S ( ) R( )e


T0 2
T0 2
x(t ) y (t )dt
1 Ryx ( ) lim T0 T 0

T0 2
T0 2
y (t ) x(t )dt
14
5.4 信号的互相关函数
互相关函数性质: 1、互相关函数不是偶函数。
Rxy ( ) Rxy ( )
2、Rxy ( ) 和
2
当R=1时,即可得公式( 5.1 —1)。 压(电流)加在1 电阻上所消耗的能量。
E
若f(t)为实数



| f (t ) | dt
2
E
2 (5.1—1) 如果在无限大的时间间隔内, 信号的能量为有限值,而信号 的平均功率为零
f (t )dt
对于能量信号E为有限值。
2
5.1 信号的互能量与互能谱


式中 为两信号的时差。
Ryx ( ) y (t ) x(t )dt


如果两信号正交



x(t ) y(t )dt 0
13
说明正交信号之间毫无相似之处。
5.4 信号的互相关函数
若 x(t),y(t) 为功率信号,则 x(t), y(t) 的互相关函数为
1 Rxy ( ) lim T0 T 0
由此可见,两信号的互相关函数和互能谱是一对傅立叶变换。
Rxy ( ) Wxy ( ) X ( )Y ( )

(四)离散信号的互相关函数
Rxy ( )
j
x( j ) y ( j n)

return 17
作业:5-3,5-4, 5-10,5-11
return 18
1 Rx ( ) T

T 2
T 2
x (t ) x (t )dt
5.2 信号的相关分析
(四)自相关函数与能谱的关系
1 Rx ( ) 2



X ( ) e j d
2
1 2



Wx ( )e
j
d
可见,自相关函数等于 信号能谱的傅立叶变换。由 此易得:
(两信号之和的能量,除 2 了包含两信号各自的能量 y外,还包含一项 (t )dt 2 E x() t ) y(t )dt xy

Ex E y Exy
信号的互能量为: Exy
2 x(t ) y (t )dt


两函数的标量积: ( x, y )



X ( )Y ( )d

Wxy ( ) X ( )Y ( )

Wxy()称为信号x(t)、y(t)的互能谱密度,简称互能谱。
return 7
5.2 信号的相关分析
(一)信号的自相关函数 为了定量地确定信号x(t) 与时移副本x(t-) 的差别或 相似程度,通常用自相关函数:
Rx ( ) x(t ) x(t )dt
1 T 1 T

T 2 T 2 T 2 T 2
f (t ) dt f (t ) dt
3
P lim
T

2
(1.2—2)
5.1 信号的互能量与互能谱
(二).能量谱与功率谱 1. 能量谱: E



1 f (t )dt 2
2



F ( ) d
2
该式为帕色伐尔(斯瓦尔)定理,又成称为瑞利公式。 它表明:对于能量信号,在时域内计算的信号能量与在频域 内计算的信号能量相等。 其中|F()|2 表明了信号能量在频域的分布情况,所以 被称为能量谱密度,简称能谱。记作:
Rx (0)
j
x ( j) E
2

x
return 12
5.4 信号的互相关函数
(一)互相关函数 描述两信号之间的相互关系, 设 x(t)、 y(t) 为能量信号,则 x(t)、 y(t) 的互相关函数为 即两信号波形的相似程度,时 间轴上的位置差别
Rxy ( ) x(t ) y(t )dt
Ryx ( ) Ryx ( )
Ryx ( )
不是同一个函数,即:
Rxy ( ) Ryx ( )
但存在下列关系:
Rxy ( ) Ryx ( )
15
5.4 信号的互相关函数
(二)相关与卷积的关系
卷积:
x(t ) y(t ) x( ) y(t )d

第五章
信号相关分析原理
5.1 信号的互能量与互能谱 5.2 信号的相关分析
5.3 离散信号的自相关函数
5.4 信号的互相关函数 作 业
1
U 由公式: E I Rdt dt f(t)的归一化能量,即信号的电 R 信号的能量: 指信号
2 (一).信号的能量与功率
5.1 信号的互能量与互能谱
相关文档
最新文档