部编版2020届中考数学一轮复习第三章函数及其图象第1节平面直角坐标系与函数的概念试题793

合集下载

2020年中考数学一轮复习第3章函数及其图象(付)

2020年中考数学一轮复习第3章函数及其图象(付)

第三章函数及其图象第一节平面直角坐标系姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)2.(2018·湖南岳阳中考)函数y=x-3中自变量x的取值范围是( )A.x>3 B.x≠3C.x≥3 D.x≥03.(2017·山东济宁中考)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )A.① B.③C.②或④ D.①或③4.(2019·易错题)函数y=xx-2中自变量x的取值范围是__________.5.在平面直角坐标系中,点P(3,-x2-1)在第______象限.6.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC 绕点A顺时针旋转90°,则旋转后点C的坐标是______________.7.(2019·改编题)如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2 019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________________.8.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.9.定义:直线l 1与l 2交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,点P(-3,2)关于直线y =x 对称的点的坐标是( ) A .(-3,-2) B .(3,2) C .(2,-3)D .(3,-2)11.(2019·改编题)如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…,根据以上规律,那么 M 2 019的坐标为_________________________.12.(2019·创新题)【阅读】在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22).【运用】(1)如图,矩形ONEF的对角线交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E 的坐标为(4,3),则点M的坐标为________;(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C 构成平行四边形的顶点,求点D的坐标.13.(2018·浙江台州中考)甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s 内,两人相遇的次数为( )A.5 B.4C.3 D.2参考答案【基础训练】1.A 2.C 3.D 4.x≠2 5.四 6.(2,1) 7.(-1,1)8.解:(1)图中格点△A′B′C′是由格点△ABC 向右平移7个单位长度得到的. (2)如图,过点F 作FG∥直线a ,交DE 于点G.如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),那么格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =12×5×1+12×5×1=5.【拔高训练】 9.C 10.C 11.( -21 009,21 009)12.解:(1)(2,32)(2)设点D 的坐标为(x ,y),若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合, ∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎪⎨⎪⎧x =1,y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=1+32,2+y 2=4+12,解得⎩⎪⎨⎪⎧x =5,y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合, ∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎪⎨⎪⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5). 【培优训练】 13.B第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2B .y =2xC .y =x2D .y =x +122.若一次函数y =3x +b 的图象经过点(-1,2),则b 的值为( ) A .-7B .-1C .2D .53.(2018·陕西中考)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0)D .(6,0)4.(2019·易错题)已知y 关于x 的函数y =(m -2)x +m 2-4,当m________时,该函数为一次函数;当m__________时,该函数为正比例函数.5. (2019·易错题)已知一次函数y =(1-m)x +m -2,当__________时,y 随x 的增大而增大.6.把直线y =-x -1沿y 轴向上平移2个单位,所得直线的函数表达式为________________. 7.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b>kx -1的解集为____________.8. (2019·易错题)对于一次函数y =kx +b ,当1≤x≤4时,3≤y≤6,则kb 的值是____________.9.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.10.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( )A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<211.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为____________.12.如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB 与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.13.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3.请判断点P 3是否在直线l 上,并说明理由.参考答案【基础训练】1.C 2.D 3.B 4.≠2 =-2 5.m<1 6.y =-x +1 7.x>-1 8.2或-7 9.解:(1)把x =2代入y =12x 得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =12x -4,∴x=0时,y =-4,∴B(0,-4). 将y =-2代入y =12x -4,得x =4,∴点C 的坐标为(4,-2).设直线l 2的表达式为y =kx +b(k≠0), ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的表达式为y =-32x +4.(2)∵y=-32x +4,∴x=0时,y =4,∴D(0,4).∵B(0,-4),∴BD=8, ∴△BDC 的面积=12×8×4=16.【拔高训练】10.D 11.(43,0) 12.(94,94)【培优训练】13.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上.第三节 一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg 的这种水果.已知水果店每售出1 kg 该水果可获利润10元,未售出的部分每1 kg 将亏损6元,以x(单位:kg ,2 000≤x≤3 000)表示A 酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 ________ 2:50首尔时间________ 12:15 ________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB.(1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22=2.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600,当2 600<x≤3 000时,y=2 600×10=26 000.(2)由题意得16x-15 600≥22 000,解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.2.解:(1)22 2 2 5(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3,∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3, ∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.第四节 反比例函数姓名:________ 班级:________ 用时:______分钟1.(2018·浙江宁波模拟)若y =(m +1)x m -2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.以下各点中,与点(-2,6)在同一个反比例函数图象上的是( ) A .(6,2) B .(-2,-6) C .(3,4)D .(4,-3)3.(2019·易错题)已知点A(1,y 1),B(2,y 2),C(-3,y 3)都在反比例函数y =4x 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 2<y 1<y 3D .y 3<y 2<y 14.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,反比例函数y =3x的图象经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .135.(2018·江西中考)在平面直角坐标系中,分别过点A(m ,0),B(m +2,0)作x 轴的垂线l 1和l 2,探究直线l 1,直线l 2与双曲线y =3x的关系,下列结论中错误的是( )A .两直线中总有一条与双曲线相交B .当m =1时,两直线与双曲线的交点到原点的距离相等C .当-2<m <0时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 6. (2019·易错题)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在第二、四象限;③y 随x 的增大而增大;④当x>-1时,则y>8.其中错误的结论有( ) A .3个B .2个C .1个D .0个7.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连结AO ,AB ,且AO =AB ,则S △AOB =______.8.如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连结OA ,OB ,过点B 作BD⊥y 轴,垂足为点D ,交OA 于点C ,若OC =CA.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.9.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )10.如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是______________;点P n 的坐标是______________(用含n 的式子表示).11.如图,已知点A(4,0),B(0,43),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED =2,点G 为边FD 的中点.(1)求直线AB 的函数表达式;(2)如图1,当点D 与点A 重合时,求经过点G 的反比例函数y =kx (k≠0)的函数表达式;(3)在三角尺滑动的过程中,经过点G 的反比例函数的图象能否同时经过点F ?如果能,求出此时反比例函数的表达式;如果不能,说明理由.12.(2018·江苏泰州中考)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=kx (x>0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A′. (1)设a =2,点B(4,2)在函数y 1,y 2的图象上. ①分别求函数y 1,y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图1,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA′B 的面积为16,求k 的值;(3)设m =12,如图2,过点A 作AD⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.参考答案【基础训练】1.A 2.D 3.D 4.C 5.D 6.B 7.68.解:(1)∵反比例函数的表达式为y =a x ,且反比例函数经过点B(3,2),∴2=a3,即a =6.∴反比例函数的表达式为y =6x .如图,过点A 作AE⊥y 轴于点E , ∵过点B 作BD⊥y 轴,OC =CA ,∴CD 是△AOE 的中位线,即OE =2OD =4. 又∵点A 在反比例函数y =6x 的图象上,∴点A 的坐标为(32,4).∵一次函数的表达式为y =kx +b ,且经过A ,B 两点,根据题意,得 ⎩⎪⎨⎪⎧3k +b =2,32k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =6, ∴一次函数的表达式为y =-43x +6.(2)∵CD 是△AOE 的中位线,∴CD=12AE =34,∴BC=BD -CD =3-34=94.∴S △AOB =S △ABC +S △BOC =12BC·OE=12×94×4=92.【拔高训练】 9.A10.(3+2,3-2) (n +n -1,n -n -1) 11.解:(1)设直线AB 的函数表达式为y =k′x+b. ∵点A(4,0),B(0,43),∴⎩⎨⎧4k′+b =0,b =43,解得⎩⎨⎧k′=-3,b =43,∴直线AB 的函数表达式为y =-3x +4 3.(2)∵在Rt△DEF 中,∠EFD=30°,ED =2,∴EF=23,DF =4. ∵点D 与点A 重合,∴点D(4,0), ∴点F(2,23),∴点G(3,3). ∵反比例函数y =kx 经过点G ,∴k=33,∴反比例函数的表达式为y =33x.(3)经过点G 的反比例函数的图象能同时经过点F ,理由如下: ∵点F 在直线AB 上, ∴设点F(t ,-3t +43).又∵ED=2,∴点D(t +2,-3t +23). ∵点G 为边FD 的中点. ∴G(t+1,-3t +33).若过点G 的反比例函数的图象也经过点F , 设此时反比例函数表达式为y =mx,则⎩⎪⎨⎪⎧-3t +33=mt +1,-3t +43=mt,整理得(-3t +33)(t +1)=(-3t +43)t , 解得t =32,∴m=1534,∴经过点G 的反比例函数的图象能同时经过点F ,这个反比例函数的表达式为y =1534x .【培优训练】12.解:(1)①由已知,点B(4,2)在y 1=kx (x >0)的图象上,∴k=8,∴y 1=8x.∵a=2,∴点A 坐标为(2,4),A′坐标为(-2,-4). 把B(4,2),A′(-2,-4)代入y 2=mx +n ,⎩⎪⎨⎪⎧2=4m +n ,-4=-2m +n , 解得⎩⎪⎨⎪⎧m =1,n =-2.∴y 2=x -2.②当y 1>y 2>0时,y 1=8x 图象在y 2=x -2图象上方,且两函数图象在x 轴上方,∴由图象得2<x <4.(2)如图,分别过点A ,B 作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连结BO.∵O 为AA′的中点, ∴S △AOB =12S △AA′B =8,∵点A ,B 在双曲线上, ∴S △AOC =S △BOD , ∴S △AOB =S 四边形ACDB =8.由已知得,点A ,B 坐标为(a ,k a ),(3a ,k3a ),∴12(k 3a +ka)·2a=8,解得k =6. (3)由已知A(a ,k a ),则A′为(-a ,-ka ).把A′代入到y 2=12x +n 中,则-k a =-12a +n ,∴n=12a -k a,∴A′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 纵坐标为a -ka ,∴AD=2ka-a.∵AD=AF ,∴点F 和点P 横坐标为a +2k a -a =2ka .∴点P 纵坐标为12·2k a +12a -k a =12a.∴点P 在y 1=kx (x >0)的图象上.第五节 二次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4D .y =(x -1)2+22.(2017·浙江丽水中考)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位3.(2018·湖南益阳中考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .b 2-4ac <0 D .a +b +c <04.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.6.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或347.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.(2018·山东德州中考)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )9.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.11.(2018·四川南充中考)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).参考答案【基础训练】 1.D 2.D 3.B4.y =-19(x +6)2+4 5.y =x 2+8x +14【拔高训练】 6.A 7.D 8.B9.解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.10.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=22CF =22(3-m),PE =22PG. 设x P =t(1<t<3),则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE+EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.【培优训练】 11.②④第六节 二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x m(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元. ∵968>952,∴当x =18时,W 最大=968元.(3)当1≤x<20时,令-2x 2+72x +320=870, 解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下, ∴11≤x≤25时,W≥870. 又∵11≤x<20,x 为正整数, ∴有9天利润不低于870元,当20≤x≤30时,令28x +112≥870, 解得x≥27114.∴27114≤x≤30.∵x 为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天. 【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P 与点P′(1,3)关于x 轴对称, ∴点P 的坐标为(1,-3).设原抛物线的表达式为y =a(x -1)2-3,∵其过点A(1-3,0), ∴0=a(1-3-1)2-3,解得a =1.∴原抛物线的函数表达式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD∥x 轴,P′(1,3)在CD 上, ∴C,D 两点纵坐标均为3.由(x -1)2-3=3,解得x 1=1-6,x 2=1+6,∴C,D 两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6. ∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为 y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E. 在Rt△BDE 中,同①可证∠AGO=∠DB O =∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2,即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。

第一部分 第三章 第1讲 函数与平面直角坐标系-2020中考数学一轮复习课件(共29张PPT)

第一部分 第三章 第1讲 函数与平面直角坐标系-2020中考数学一轮复习课件(共29张PPT)

考点 1 平面直角坐标系中点的坐标特征
【题型过关】
1.(2019 年 湖 南 常 德 ) 点 ( - 1,2) 关 于 原 点 的 对 称 点
坐标是( ) A.(-1,-2)
B.(1,-2)
C.(1,2)
D.(2,-1)
答案:B
2.(2019 年浙江杭州) 在平面直角坐标系中,点 A(m,2) 与点
y=
1 2
AD•h2,AD和h2都不变,
∴在这个过程中,y不变;
③当P在边CD上时,如图3-1-9,y=
1 2
PD·h1,
图 3-1-9 ∵PD 随 x 的增大而减小,h1 不变, ∴y 随 x 的增大而减小. ∵P 点从点 A 出发沿 A→B→C→D 路径匀速运动到点 D, ∴P 在三条线段上运动的时间相同,故选项 B 正确. 答案:B
图 3-1-6
A
B
C
D
解析:设点 D 到 AB 的距离为 h1,点 C 到 AD 的距离为 h2. ①当P在AB边上时,如图3-1-7,y=12AP·h1. ∵AP 随 x 的增大而增大,h1 不变,
∴y 随 x 的增大而增大;
图 3-1-7
图 3-1-8
②当 P 在边 BC 上时,如图 3-1-8,
小结与反思:(1)判断函数图象关键要把握两点:①两个变量 之间的变化类型:即确定函数类型;②两个变量之间的变化 规律,特别是增减性. (2)对图象及数量关系进行分析时,要抓住图象中的转折点及 拐点,这些点往往是运动状态发生改变或者相互数量关系发 生改变的地方. (3)根据函数图象信息解决有关问题,要正确理解函数与自变 量之间的变化关系,有时需要通过计算求出它们之间的函数 解析式.
【题型过关】 10.(2018 年四川达州)如图 3-1-10,在物理课上,老师将挂在 弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提 起,直至铁块完全露出水面一定高度,则下图能反映弹簧测 力计的读数 y(单位:N)与铁块被提起的高度 x(单位:cm)之 间的函数关系的大致图象是( )

中考数学一轮复习《平面直角坐标系与函数》课件 (2)

中考数学一轮复习《平面直角坐标系与函数》课件 (2)

画函数图象时,一次函数用直线,反比例函数和二次函数 要用平滑的曲线.
考点一 平面直角坐标系中点的坐标特征 (5年0考)
例1 对于任意实数m,点P(m-3,12-3m)不可能在(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【分析】 根据各个象限点的坐标特征,分别建立不等式 组,结合不等式组有解无解的情况,确定是否能在此象限.
纵坐标
横坐标
横坐标
纵坐标
5.对称点的坐标特征
(1)点P(a,b)关于x轴对称点P1的坐标为_________;
(2)点P(a,b)关于y轴对称点P2的坐标为_________; (3)点P(a,b)关于原点对称点P3的坐标__(a_,__-_b_)____.
6.坐标与距离
(-a,b)
P(a,b)到x轴的距离为____,到y轴的距离为____,到原点
3.各象限内点的坐标特征 (1)若点P(a,b)在第一象限,则a>0,b>0; (2)若点P(a,b)在第二象限,则a____0,b____0; (3)若点P(a,b)在第三象限,则a____0,b____0; (4)若点P(a,b)在第四象限,则a_<___0,b_>___0.
<
<
>
<
4.与坐标轴有关的点的坐标特征 (1)若点P(a,b)在x轴上,则b=0; (2)若点P(a,b)在y轴上,则a=0; (3)若点P(a,b)是原点,则a=0且b=0; (4)若多个点在平行于x轴的直线上,则_______相同, _______不同; (5)若多个点在平行于y轴的直线上,则_______相同, _______不同.
向右平移3个单位长度得到点B,则点B关于x轴的对称点B′

2020深圳中考数学一轮复习宝典课件 第1部分 第3章 第1讲 平面直角坐标系与函数

2020深圳中考数学一轮复习宝典课件 第1部分  第3章  第1讲 平面直角坐标系与函数

C.经过原点
D.以上都不对
知识点 3:平面内任意一点到坐标轴的距离
若平面内任意一点 P(a,b)则
点 P(a,b)到 y 轴的距离为 ||aa|| ,
点 P(a,b)到 x 轴的距离为 |b||b| ;
点 P(a,b)到原点的距离为 =a2+b2
.
对点练习 4:在平面直角坐标系中,点 A(-2,1)到 y 轴的距离为
点 P(x,y)在第四象限⇔ xx>>00,,yy<<00 ;
坐标轴 上的点
x 轴上点的纵坐标都 相相等等 ,横坐标不相等; y 轴上点的横坐标都 相相等等 ,纵坐标不相等; 原点的坐标为 (0(0,,00))
平行于坐标 平行于 x 轴的直线上的点的纵坐标相等;平行于
轴的直线 y 轴的直线上的点的 横横坐坐标标 相等
A.(5,4)
B.(4,5)
C.(-4,5)
D.(-5,4)
4.(2018·深圳宝安区月考)如图,若在象棋盘上建立平面直角坐标
系,使“将”位于点(-1,-2),“相”位于(1,-2),则“炮”
位于点( C )
A.(1,4)
B.(4,1)
C.(-4,1)
D.(1,-2)
5.(2017·深圳龙岗区三模考)在函数 y= x1-2中,自变量 x 的取值
坐标特点
点 P(a,b)关于原点对称的点的坐标为((--aa,,--bb));
将点 P(a,b)向右(或左)平移 k(k>0)个单位长度,
得到对应点 P′的坐标为 ((aa++kk,,bb)) (或 a-k,
点平移的 b);将点 P(a,b)向上(或下)平移 k(k>0)个单位长度,
坐标特点
得到对应点 P′的坐标为 (a(,a,b+b+k)k) (或 a,b

中考数学一轮复习 第三章 函数 第一节 平面直角坐标系与函数课件

中考数学一轮复习 第三章 函数 第一节 平面直角坐标系与函数课件
B.妈妈比小亮提前0.5 h到达姥姥家
C.9:00妈妈追上小亮
D.妈妈在距家13 km处追上小亮 √
2021/12/8
第二十四页,共二十五页。
内容(nèiróng)总结
第三章 函 数。|a|。2.函数:一般地,如果在一个变化过程中有两个变量x和y,。
No 【分析】 根据点A在第二象限,确定出a,b的符号,进而。【自主解答】 ∵点A(a,b)在第
x
【分析】 根据被开方数大于等于0,分母不等于0列不等
式计算即可.
【自主(zìzhǔ)解答】 根据题意得x-4≥0且x≠0,解得x≥4. 故答案为x≥4.
2021/12/8
第十五页,共二十五页。
讲:
与二次根式有关的函数自变量
当二次根式在分子位置时,需要满足被开方数(式)是
非负数;而二次根式在分母(fēnmǔ)位置时,需要满足被开方数(式)
2021/12/8
第十二页,共二十五页。
解答此类问题,关键(guānjiàn)是熟记各象限点的坐标特征:第一象
限的符号为(+,+),第二象限的符号为(-,+),第三 象限的符号为(-,-),第四象限的符号为(+,-).
2021/12/8
第十三页,共二十五页。
1.已知点P(x+3,x-4)在x轴上,则x的值为(
等了几分钟后坐(hòuzuò)上了公交车,公交车沿着公路匀速行驶一
段时间后到达学校.小明从家到学校行驶路程s(m)与时间 t(min) 的
大致图象是( )
C
2021/12/8
第二十二页,共二十五页。
6.(2017·高新一模)
小亮家与姥姥家相距24 km,小亮8:00从家出发(chūfā),骑自行车
, 唯一(wéi yī)

2020广东中考数学一轮复习宝典课件第1部分 第3单元 第1章 平面直角坐标系与函数的概念

2020广东中考数学一轮复习宝典课件第1部分  第3单元  第1章 平面直角坐标系与函数的概念
②函数的三种表示方法:解析法、列表法、图象法. ③描点法画函数图象的一般步骤:列表、描点、连线.
3.确定函数自变量的取值范围
①当函数表达式是整式时,自变量可取 全全体体实实数数 ;
②当函数表达式含有分式时,考虑分母不能为 00 ; ③当函数表达式含有二次根式时,被开方数为 非非负负数数 .
4.函数图与实际问题的应用 ①找起点、终点:结合题干中所给自变量及因变量的取值范围, 对应到图象中找相对应点. ②找特殊点:即指交点或转折点,说明图象在此点处将发生变化. ③判断图象趋势:判断出函数的增减性. ④确定图是直线还是曲线. 5.函数与平面直角坐标系规律应用
A 的对应点坐标是( A )
A.(2,2)
B.(1,2)
C.(-1,2)
D.(2,-1)
易错点 2:函数图象与实际问题的应用 例 2.★小刚从家去学校,先匀速步行到车站,等了几分钟后 坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家 到学校行驶路程 s(单位:m)与时间 t(单位:min)之间函数关系的
例 9.★已知点 P(x2-3,1)在一、三象限夹角平分线上,则 x
= ±2±2 .
例 10.★P(-2,y)与 Q(x,-3)关于 x 轴对称,则 x-y 的值
为( B )
A.1
B.-5
C.5
D.-1
例 11.★★在直角坐标系中,点 A(1,2)的横坐标乘以-1,纵
坐标不变,得到点 A′,则 A 与 A′的关系是( B )
则第 n 个等腰直角三角形 AnBn-1Bn的顶点 Bn的横坐标为22nn++11--22.
易错点 1:坐标系中图形的变换
例 1.★★(2018·新疆乌鲁木齐)在平面直角坐标系 xOy 中,

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
A.(2011,0) B.(2011,1) (2)用方向和距离表示.
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).

中考数学复习第三章函数讲义

中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。

2. 建立了平面直角坐标系的平面称为坐标平面。

3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。

4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。

2. 常量:某一变化的过程中保持相同数值的量叫做常量。

3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。

4. 函数的表示方法有:、、。

在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。

5. 画函数图象的一般步骤:列表、、。

【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。

4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。

第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。

当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。

【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 函数及其图象第一节 平面直角坐标系与函数的概念 1指引方向1.探索简单实例中的数量关系和变化规律,了解常量、变量的意义. 2.结合实例,了解函数的概念和三种表示法,能举出函数的实例. 3.能结合图象对简单实际问题中的函数关系进行分析.4.能确定简单实际问题中函数白变量的取值范围,并会求出函数值. 5.能用适当的函数表示法刻画简单实际问题中变量之间的关系. 6.结合对函数关系的分析,能对变量的变化情况进行初步讨论, 考点梳理1.平面直角坐标系的相关内容:(1)平面直角坐标系的有关概念:在平面内两条互相垂直且有公共原点的数轴组成了平面直角坐标系.水平的数轴称为横轴(或x 轴),竖直的数轴称为纵轴(或y 轴).两条数轴把平面分成四个部分,这四个部分称作四个象限(2)点的坐标:在平面内,任意一个点都可以用一组有序实数对来表示,如A (a ,b ).(a ,b )即为点A 的坐标,其中a 是点A 的 横 坐标,B 是点A 的 纵坐标. (3)点的坐标特征【设点P (a ,b )】: ①各象限点的特征:第一象限(+,+) ; 第二象限(—,+) ; 第三象限(一,一) ; 第四象限(+,一). ②特殊点的特征:若点P 在x 轴上,则b =0 ; 若点P 在y 轴上,则a =0 ;若点P 在一、三象限角平分线上,则a =b ; 若点P 在二、四象限角平分线上,则a +b =0. ③对称点的特征:点P (a ,b )关于x 轴的对称点P ’(a ,一b ) 点P (a ,b )关于y 轴的对称点P ’(一a ,b )点P (a ,b )关于原点的对称点P ’(一a ,一b ) . (4)点的坐标延伸【设点P (a ,b )、点M (c ,d )】: ①点P 到戈轴的距离为a ,到y 轴的距离为b .到原点的距离为22b a +. ②1)将点P 沿水平方向平移m (m >0)个单位后坐标变化情况为: 点P 沿水平向右方向平移m (m >0)个单位后坐标为(a +m ,b ); 点P 沿水平向左方向平移m (m >0)个单位后坐标为(a -m ,b ); 2)将点P 沿竖直方向平移n (n >0)个单位后坐标变化情况为: 点P 沿竖直方向向上平移n (n >0)个单位后坐标为(a ,b +n ); 点P 沿竖直方向向下平移n (n >0)个单位后坐标为(a ,b —n ). ③若直线PM 平行x 轴,则b =d ;若直线PM 平行y 轴,则a =c ; ④点P 到点M 的距离:PM =22)()(d b c a -+- ⑤线段PM 的中点坐标:(22db c a ++,)2.函数的有关知识:(1)常量与变量:在某一变化过程中,始终保持不变的量叫做常量,数值发生 变化 的量叫做变量.(2)函数的定义:一般的,在某个变化过程中如果有两个变量x 、y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,那么x 是自变量,y 是x 的函数. (3)函数的表示方法:①解析式法;② 图象法;③列表法.(4)函数解析式(用来表示函数关系的数学式子叫做解析式)与变自量的取值范围:考点一 平面直角坐标系内点的坐标特征 【例1】(2016枣庄)已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是 ( C )解题点拨:首先根据题意判断出P 点在第二象限,再根据第二象限内点的坐标符号),(+-,得到不等式0<1+a ,0>12+-a,解出a 的范围即可。

本题也可以先求出P 的对称点坐标,再列不等式0>1--a ,0<12-a解出.考点二 几何背景下的坐标变化【例2】(2016安顺)如图,将PQR ∆向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是 ( A )A .(-2,-4)B .(-2,4)C .(2,-3)D .(-1,-3)解题点拨:由题意可知,平面内任意一点(x ,y )平移后的对应坐标是(2+x ,3-y ),照此规律计算可知顶点P (-4,-1)平移后的坐标是(-2,-4)。

考点三 自变量的取值范围【例3】(1)函数12+=x y 中的自变量x 的取值范围是 x 为一切实数 。

(1)函数121+=x y 中的自变量x 的取值范围是21-≠x 。

(3)函数12+=x y 中的自变量x 的取值范围是21-≥x 。

(4)函数12+=x xy 中的自变量x 的取值范围是0≥x 。

(5)函数12+=x x y 中的自变量x 的取值范围是21->x 。

(6)函数121++=x x y 中的自变量x 的取值范围是21-≥x 且0≠x 。

解题点拨:分别抓住分式、二次根式定义确定自变量x 的取值范围解题即可。

考点四 函数图象的简单应用【例4】(2016咸宁)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =54,点P 是对角线OB 上的一个动点,D(O ,1),当CP+DP 最短时,点P 的坐标为( D )A .(0,0)B .(1,21) C .(56,53) D .(710,75) 解题点拨:关于最短路线问题:在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点(注:本题C ,D 位于OB 的同侧)。

点C 关于OB 的对称点是点A .连接AD .交OB 于点P ,P 即为所求的使CP+DP 最短的点。

连接CP ,解答即可。

解:如图,连接AD ,交OB 于点P ,P 即为所求的使CP+DP 最短的点;连接CP 、AC ,AC 交OB 于点E ,过E 怍EF ⊥OA ,垂足为F 。

∵ 点C 关于OB 的对称点是点A , ∴ CP=AP ,∴ AD 即为CP+DP 最短;∵ 四边形OABC 是菱形,OB=54, ∴ 5221==OB OE ,OB AC ⊥,又∵A(5,0), ∴ 在R △AEO 中,5)52(52222=-=-=OE OA AE ; 易知Rt △OEF ∽Rt △OAE ∴AEEFOA OE =,∴25552=⨯=⋅=OA AE OE EF , ∴ 42)52(2222=-=-=EF OE OF 。

∴ E 点坐标为E(4,2),设直线OE 的解析式为:kx y =,将E(4,2)代入,得x y 21=, 设直线AD的解析式为:b x k y +'=,将A(5,0),D(O ,1)代入,得151+-=x y ,∴ 点P 的坐标的方程组:⎪⎪⎩⎪⎪⎨⎧+-==15121x y x y ,解得⎪⎪⎩⎪⎪⎨⎧==75710y x∴ 点P 的坐标为(710,75)。

课堂训练、课堂检测1.(2016荆门)在平面直角坐标系中,若点A (a ,b -)在第一象限内,则点B(a ,b )所在的象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】 D2.(2015巴中)在函数21-=x y 互中,自变量x 的取值范围是 ( D ) A .2-≠x B .2>x C .2<x D .2≠x 【答案】 D3.(2016呼和浩特)已知平行四边形ABCD 的顶点A 在第三象限,对角线AC 的中点在坐标原点,一边AB 与x 轴平行且AB=2,若点A 的坐标为(a ,b ),则点D 的坐标为 。

【答案】 (a --2,b -)或(a -2,b -)4.(2016贺州)如图,将线段AB 绕点O 顺时针旋转︒90得到线段B A '',求A (-2,5)的对应点A '的坐标是多少?【答案】解:∵线段AB 绕点O 顺时针旋转︒90得到线段B A '', ∴ O B A ABO '''∆≅∆,︒='∠90A AO , ∴ O A AO '=。

作y AC ⊥轴于C ,x C A ⊥''轴于C ', ∴ ︒=''∠=∠90O C A ACO 。

∵︒='∠90C CO ,∴ A CO C CO A CO A AO '∠-'∠='∠-'∠, ∴ C O A AOC ''∠=∠, 在ACO ∆和O C A ''∆中,⎪⎩⎪⎨⎧'=''∠=∠''∠=∠O A AO C O A AOC O C A ACO ∴ O C A ACO ''∆≅∆ (AAS), ∴ C A AC ''=,O C CO '=, ∵ )5,2(-A ,∴ 2=AC ,5=CO , ∴ 2=''C A ,5='C O , ∴ )2,5(A '。

中考达标 模拟自测A 组 基础训练一、选择题1.(2016眉山)已知点M (1- 2m ,m-1)在第四象限,则m 的取值范围在数轴上表示正确的是( )【答案】 B2.(2016武汉)已知点A (a ,1)与点A '(5,b )关于坐标原点对称,则实数a 、b 的值是 ( )A .5=a ,1=bB .5-=a ,1=b C.5=a ,1-=b D.5-=a ,1-=b 【答案】 D3.(2016成都)平面直角坐标系中,点P( -2,3)关于x 轴对称的点的坐标为 ( ). A .(-2,-3) B .(2,-3) C .(-3,-2) D .(3,-2) 【答案】 A4.(2016武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是 ( ) A .5 B .6 C .7 D .8 【答案】 A 二、填空题5.(2016金华)将一次函数62+-=x y 的图象向左平移 个单位长度,所得图象的函数表达式为x y 2-=。

【答案】 36.(2015庆阳)函数xxy 21-=的自变量x 的取值范围是 。

【答案】 21≤x 且0≠x 7.(2016荆州)若点M (k-l ,k+l )关于y 轴的对称点在第二象限内,则一次函数k x k y +-=)1(的图象不经过第 象限。

【答案】 四 三、解答题8.(2016自贡)如图,把Rt △ABC 放在直角坐标系内,其中︒=∠90CAB ,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为多少平方厘米?【答案】 解:如图所示.∵ 点A 、B 的坐标分别为(1,0)、(4,0), ∴ AB=3.∵︒=∠90CAB ,5=BC , ∴ 4=AC , ∴4=''C A ,∵ 点C '在直线62-=x y 上, ∴ 462=-x ,解得5=x 。

相关文档
最新文档