中考数学总复习第三章函数及其图象第三节反比例函数课件
合集下载
中考数学总复习第三章函数第3课时反比例函数课件ppt版本

重Hale Waihona Puke 点突破考点二:反比例函数y= (k≠0)中k的几何意义
如图,点B在反比例函数y= (x>0)的图象上,横坐标
为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,
则矩形OABC的面积为(
)
A.1
B.2
C.3
D.4
方法点拨: 反比例函数系数k的几何意义,过双曲线上的任意一点分 别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于 k,是中考常考的知识点,同学们应高度关注.
2.反比例函数y=
的值为( C )
A.6
B.-6
的图象经过点A(-2,3),则k
C.
D.
重难点突破
举一反三 3.已知反比例函数y= (k≠0)的图象过点A(-2,8). (1)求这个反比例函数的解析式;(2)若(2,y1),(4,y2)是 这个反比例函数图象上的两个点, 请比较y1,y2的大小,并说明理由.
6.已知反比例函数
的图象经过点A(-2,3),则当x
=-3时,y=____2______.
考点梳理
考点一:反比例函数定义 如果两个变量x、y之间的关系可以表示成
的形式,那么称y是x的反比例 函数.
考点梳理
考点二:反比例函数的图像和性质
k的符号
k>0
k<0
图像的大致 位置
所在象限
第一三象限
第二四象限
金牌中考总复习
第三章
第 3课时 反比例函数
金牌中考总复习
第三课时 反比例函数
1
…考…点…考…查….. …
2 …课…前…小…练…..
…
3 …考…点…梳…理…..
…
4 …重…难…点…突…破.……
中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
【中考数学考点复习】第三节反比例函数的图象与性质课件

∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q
∟
=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,
中考数学总复习 第一部分 教材梳理 第三章 函数 第3节 反比例函数课件

的值.
3. (2016乐山)如图1-3-3-4,反比例函数
与一次函数
y=ax+b的图象交于点A(2,2),
解析式.
. 求这两个函数的
考点演练 4. 如图1-3-3-5,直线AB与坐标轴分别交于A(-2,0), B(0,1)两点,与反比例函数的图象在第一象限交于点 C(4,n),求一次函数和反比例函数的解析式.
能把实际问题转化为数学问题,建立反比例函数的数学模型,
并从实际意义中找到对应的变量的值;还要熟练掌握物理或
化学学科中的一些具有反比例函数关系的公式,同时体会数
学中的转化思想.
中考考点精讲精练
考点1 反比例函数的图象和性质
考点精讲
【例1】(2015广州)已知反比例函数 位于第一象限. (1)判断该函数图象的另一支所在的
图象上的一个点的坐标,即可求出k的值,从而确定其解析式.
2. 反比例函数中反比例系数的几何意义:
若过反比例函数
(k≠0)图象上任一点P作x轴,y轴的
垂线PM,PN,则所得的矩形PMON的面积S=PM·PN=|y|·|x|=
|xy|.∵y=kx,∴xy=k,S=|k|.
3. 反比例函数的应用:利用反比例函数解决实际问题,要
第一部分 教材梳理
第三章 函 数 第3节 反比例函数
知识梳理
概念定理
1. 反比例函数的概念:
一般地,函数
(k是常数,k≠0)叫做反比例函数.反比
例函数的解析式也可以写成y=kx-1或xy=k的形式.自变量x的取
值范围是x≠0的一切实数,函数的取值范围也是一切非零实
数.
2. 反比例函数的图象和性质
反比例函数的图象是双曲线,它有两个分支,这两个分支分别
初三反比例函数ppt课件ppt

详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
最新浙教版初中数学中考复习反比例函数 (共38张PPT)教育课件

30
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
九年级数学第三节 反比例函数的图象与性质优秀课件

x
> y2.
拓展训练
2. 假设反比例函数y=1 3 m
〔 〕1
x1
3
3
A. m≥
B. m≤
的图象位于二、四象限,那么m的取值范围是D
1
1
3 C. m<
3 D. m>
第三节 反比例函数的图象与性质 数的相关概念
3. 对于反比例函数y= k 2 1 ,以下说法不正确的选项是A〔 〕
x
A. 函数值y随x的增大而增大 B. 图象在第二、四象限 C. 当k=2时,它的图象经过点〔5,-1〕 D. 它的图象关于原点对称
第9题图
第三节 反比例函数的图象与性质 数的相关概念
返回目录
第三节 反比例函数的图象与性质
返回目录
数的相关概念
10. 〔20xxxxB卷25题4分〕设双曲线y= 〔k k>0〕与直线y=x交于A,B两点〔点
x
A在第三象限〕,将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点
A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的
达式得-2=1 a,
2
2
∴a=-4,
∴A(-4,-2),(1分)
把A(-4,-2)代入反比例函数y=k 中,得k=-4×(-2)=8,
∴反比例函数的表达式为y= 8
x ,(3分)
y 1x
x
联立方程组 2 ,
y 8
解得
xy11==--24(舍去x ),
x2=4, y2=2
∴B(4,2);(5分)
第三节 反比例函数的图象与性质 数的相关概念
从而得出k的值,代入解析式即可
第三节 反比例函数的图象与性质 数的相关概念
成都10年真题+2019诊断检测
> y2.
拓展训练
2. 假设反比例函数y=1 3 m
〔 〕1
x1
3
3
A. m≥
B. m≤
的图象位于二、四象限,那么m的取值范围是D
1
1
3 C. m<
3 D. m>
第三节 反比例函数的图象与性质 数的相关概念
3. 对于反比例函数y= k 2 1 ,以下说法不正确的选项是A〔 〕
x
A. 函数值y随x的增大而增大 B. 图象在第二、四象限 C. 当k=2时,它的图象经过点〔5,-1〕 D. 它的图象关于原点对称
第9题图
第三节 反比例函数的图象与性质 数的相关概念
返回目录
第三节 反比例函数的图象与性质
返回目录
数的相关概念
10. 〔20xxxxB卷25题4分〕设双曲线y= 〔k k>0〕与直线y=x交于A,B两点〔点
x
A在第三象限〕,将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点
A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的
达式得-2=1 a,
2
2
∴a=-4,
∴A(-4,-2),(1分)
把A(-4,-2)代入反比例函数y=k 中,得k=-4×(-2)=8,
∴反比例函数的表达式为y= 8
x ,(3分)
y 1x
x
联立方程组 2 ,
y 8
解得
xy11==--24(舍去x ),
x2=4, y2=2
∴B(4,2);(5分)
第三节 反比例函数的图象与性质 数的相关概念
从而得出k的值,代入解析式即可
第三节 反比例函数的图象与性质 数的相关概念
成都10年真题+2019诊断检测
反比例函数ppt课件

有42人,各班平均每人的金额分别是多少元?
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =