反比例函数及其图象教学设计示例2

合集下载

八年级数学《反比例函数的图像及性质(2)》教案

八年级数学《反比例函数的图像及性质(2)》教案

17.1.2反比例函数的图象和性质(2)
问题5:练一练
1、在反比例函数y=-
x 1
a2
的图象上有三点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列各式中正确的是()
A、y3> y1> y2
B、y3> y2> y1
C、y1> y2> y3
D、y1> y3> y2
2.如图,点P是反比例函数y=
x
k 图象上的一点,PD⊥x轴于D.则△POD 的面积为.
(3)关于问题(2)的理解
是借助图象,利用函数在每个
象限内的增减性去解决问题。

(4)学生解题的过程是否
规范。

【学生活动】
学生探究讨论,尝试完
成。

【教师活动】
教师让学生独立完成问
题5练习第1、2题。

【学生活动】
学生弄懂题意,并根据题
意口答。

【媒体应用】
出示问题4,并根
据学生回答,相机展示
问题答案。

【设计意图】
加深对问题(4)
的理解和应用。

【媒体应用】
再现数形结合的方
法及反比例函数的图
象和性质。

板书设计:。

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。

那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。

反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重难点1) 重点:画反比例函数图象并认识图象的特点。

2)难点:画反比例函数图象。

教学关键:教师画图中要规范,为学生树立一个可以学习的模板。

教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。

教学手段:教师画图,学生模仿。

教具:三角板,小黑板。

学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。

教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。

)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。

二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

反比例函数的图象与性质教案教学设计

反比例函数的图象与性质教案教学设计

一、教案基本信息反比例函数的图象与性质教案教学设计课时安排:2课时教学对象:高中数学一年级学生教学目标:1. 让学生理解反比例函数的定义和表达式;2. 让学生掌握反比例函数的图象特征;3. 让学生了解反比例函数的性质;4. 培养学生运用数学知识解决实际问题的能力。

教学重点:1. 反比例函数的定义和表达式;2. 反比例函数的图象特征;3. 反比例函数的性质。

教学难点:1. 反比例函数图象的理解;2. 反比例函数性质的推导。

二、教学准备教学工具:黑板、粉笔、多媒体教学设备教学素材:反比例函数图象和性质的PPT课件、例题、练习题三、教学过程第一课时1. 导入新课教师通过展示实际问题,引导学生回顾正比例函数的图象和性质,为新课的学习做好铺垫。

2. 反比例函数的定义与表达式(1)教师引导学生观察实际问题,引出反比例函数的概念;(2)教师给出反比例函数的表达式;(3)学生跟随教师一起总结反比例函数的定义和表达式。

3. 反比例函数的图象特征(1)教师利用PPT课件展示反比例函数的图象;(2)教师引导学生观察反比例函数的图象特征,总结规律;(3)学生跟随教师一起归纳反比例函数的图象特征。

4. 反比例函数的性质(1)教师引导学生从图象特征出发,推导反比例函数的性质;(2)教师给出反比例函数的性质表述;(3)学生跟随教师一起总结反比例函数的性质。

第二课时5. 应用拓展(1)教师出示应用题,引导学生运用反比例函数的知识解决问题;(2)学生独立解答问题,教师进行指导;(3)教师总结解题方法,强调反比例函数在实际问题中的应用。

6. 课堂小结教师带领学生回顾本节课所学内容,总结反比例函数的定义、表达式、图象特征和性质。

7. 布置作业教师出示课后练习题,要求学生巩固反比例函数的知识。

四、教学反思教师在课后对教学效果进行反思,针对学生的掌握情况调整教学策略,为后续课程的教学做好准备。

五、教学评价通过课堂表现、作业完成情况和课后练习的成绩,对学生在本次课程中的学习效果进行评价。

反比例函数的图象与性质教案范文

反比例函数的图象与性质教案范文

反比例函数的图象与性质教案范文第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数的意义。

1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (k 为常数,k ≠0)。

解释反比例函数中x 和y 的关系,强调它们成反比例关系。

第二章:反比例函数的图象2.1 反比例函数图象的形状引导学生观察反比例函数图象的特点,如双曲线形状。

解释反比例函数图象的渐近线及其意义。

2.2 反比例函数图象的截距分析反比例函数图象在x 轴和y 轴上的截距。

引导学生理解反比例函数图象与坐标轴的交点。

第三章:反比例函数的性质3.1 反比例函数的单调性探讨反比例函数在不同区间的单调性,即在每个象限内的增减性。

通过实例和图形,解释反比例函数单调性的原因。

3.2 反比例函数的奇偶性证明反比例函数是奇函数,即f(-x) = -f(x)。

引导学生理解奇函数性质在反比例函数上的体现。

第四章:反比例函数的渐近线4.1 反比例函数的渐近线方程推导反比例函数的渐近线方程y = x 和y = -x。

解释渐近线在反比例函数图象中的位置和意义。

4.2 反比例函数图象与渐近线的关系分析反比例函数图象与渐近线的交点及其性质。

通过实例,让学生理解反比例函数图象在渐近线附近的特征。

第五章:反比例函数的应用5.1 反比例函数在实际问题中的应用提供实际问题,让学生利用反比例函数解决问题。

引导学生将反比例函数的应用与现实生活联系起来。

5.2 反比例函数的综合练习设计综合练习题,涵盖反比例函数的定义、图象、性质和应用。

引导学生通过练习题加深对反比例函数的理解和运用能力。

第六章:反比例函数的斜率6.1 反比例函数的斜率概念解释在反比例函数图象上任意两点的斜率公式。

引导学生理解斜率在反比例函数图象上的变化规律。

6.2 反比例函数斜率的计算提供具体例子,演示如何计算反比例函数图象上点的斜率。

反比例函数教学设计【优秀10篇】

反比例函数教学设计【优秀10篇】

反比例函数教学设计【优秀10篇】《反比例函数》教学设计篇一教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。

学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设,因为x=2时,y=6,所以有解得k=12三、巩固提高活动51.已知y是x的反比例函数,并且当x=3时,y=?8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.《反比例函数》教师教案篇二教学目标(一)教学知识点1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

6.2反比例函数图象与性质(二) 教学设计

6.2反比例函数图象与性质(二) 教学设计

6.2反比例函数图象与性质(二)教学设计一、教学内容分析:反比例函数是初中数学中的一个重要内容,学生在初中阶段就开始接触并学习反比例函数。

在6.2反比例函数图象与性质(二)这一教学内容中,主要是对反比例函数的图象与性质进行深入的学习和探讨。

通过本节课的学习,学生将能够更加深入地理解反比例函数的性质,掌握反比例函数的图象特点,并能够运用所学知识解决相关问题。

二、教学目标:1. 知识与技能:掌握反比例函数的图象特点和性质,能够绘制反比例函数的图象,并能够利用反比例函数解决实际问题。

2. 过程与方法:培养学生的观察、分析和解决问题的能力,培养学生的动手能力和合作意识。

3. 情感态度与价值观:培养学生对数学的兴趣,增强学生的自信心,提高学生的学习积极性。

三、教学重点与难点:重点:反比例函数的图象特点和性质难点:利用反比例函数解决实际问题四、教学过程:1.导入新课老师可以通过一个有趣的实例引入本节课的主题。

讲述一个关于反比例函数的生活实例,让学生通过生活中的场景来理解反比例函数的图象特点和性质。

2.呈现新知识在呈现新知识环节,老师可以通过课件或者板书向学生介绍反比例函数的图象特点和性质,包括反比例函数的图象穿过第一、第二象限,并且不经过原点。

要让学生掌握反比例函数的图象是一条经过原点的反比例函数的图象。

3.引导学生发现规律4.巩固训练在这一环节,老师可以设计一些练习题让学生巩固所学知识。

通过练习题,让学生掌握绘制反比例函数图象的方法,同时培养学生解决问题的能力。

5.拓展应用在本节课的拓展应用中,老师可以设计一些生活中的实际问题,让学生利用所学知识解决问题。

通过反比例函数解决物体放大缩小的问题,或者解决两个物体的关联问题等。

通过这些拓展应用的例子,帮助学生更好地理解反比例函数的实际应用。

6.课堂总结在本节课的总结环节,老师可以对本节课的重点内容做一个简要的总结,并对学生在学习中可能存在的问题进行解答和讨论。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

反比例函数的图象与性质的教学设计(优秀教案)

反比例函数的图象与性质的教学设计(优秀教案)

在物理问题中的应用
牛顿第二定律
通过反比例函数描述物体 加速度与作用力之间的关 系。
欧姆定律
利用反比例函数表示电流 、电压和电阻之间的关系 。
万有引力定律
通过反比例函数描述两物 体之间的引力与它们之间 距离的关系。
在经济问题中的应用
供需关系
利用反比例函数描述商品价格与 需求量之间的关系。
投资回报
通过反比例函数分析投资回报率与 投资风险之间的关系。
过程与方法
情感态度与价值观
让学生感受数学与生活的联系,体验 数学学习的乐趣,培养学生的数学应 用意识。
通过观察、比较、分析、归纳等数学 活动,培养学生的数学思维能力,提 高学生的数学素养。
教学内容
反比例函数的概念及 其图象特征
反比例函数与一次函 数的比较
反比例函数的性质及 其应用
教学重点与难点
教学重点
学生表现评价标准
知识理解
学生能够准确理解反比例函数的定义、图象特征以及性质,能够 运用相关知识解决问题。
思维能力
学生能够通过观察、分析、归纳等方法,发现反比例函数的规律 ,形成自己的知识体系。
学习态度
学生能够积极参与课堂活动,认真听讲、思考、发言和练习,表 现出对学习的热情和兴趣。
教学反馈与改进
反比例函数的概念、图象特征及 其性质。
教学难点
如何引导学生通过观察、比较、 分析等方法发现反比例函数的性 质,以及如何运用反比例函数的 性质解决实际问题。
02
反比例函数的基本概念
反比例函数的定义
反比例函数是一种特殊的函数关系,其中两个变量之间的乘 积为常数。
具体来说,如果两个变量 x 和 y 满足关系 xy = k(k 为非零 常数),则称 y 是 x 的反比例函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数及其图象教学设计示例2
反比例函数及其图像
一、素养教育目标
〔一〕知识教学点
1.使学生了解反比例函数的概念;
2.使学生能够依照咨询题中的条件确定反比例函数的解析式;
3.使学生明白得反比例函数的性质,会画出它们的图像,以及依照图像指出函数值随自变量的增加或减小而变化的情形;
4.会用待定系数法确定反比例函数的解析式.
〔二〕能力训练点
1.培养学生的作图、观看、分析、总结的能力;
2.向学生渗透数形结合的教学思想方法.
〔三〕德育渗透点
1.向学生渗透数学来源于实践又反过来作用于实践的观点;
2.使学生体会事物是有规律地变化着的观点.
〔四〕美育渗透点
通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的爱好,也培养学生积极探求知识的能力.
二、学法引导
教师采纳类比法、观看法、练习法
学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.
三、重点·难点·疑点及解决方法
1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述咨询题.
2.教学难点:画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.
3.教学疑点:〔1〕反比例函数为何与x轴,y轴无交点;〔2〕反比例函数的图像只能讲在第一、三象限或第二、四象限,而不能讲通过第几象限,增减性也要讲明在第几象限〔或讲在它的每一个象限内〕.
4.解决方法:〔1〕中隐含条件是或;〔2〕双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分不讨论,不能一概而论.
四、教学步骤
〔一〕教学过程
提咨询:小学是否学过反比例关系?是如何表达的?
由学生先考虑及讨论一下.
答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.
看下面的实例:〔出示幻灯〕
1.当路程s一定时,时刻t与速度v成反比例;
2.当矩形面积S一定时,长a与宽b成反比例;
它们分不能够写成〔s是常数〕,〔S是常数〕写在黑板上,用以得出反比例函数的概念:〔板书〕
一样地,函数〔k是常数,〕叫做反比例函数.
即在上面的例子中,当路程s是常数时,时刻t确实是速度v的反比例函数,能否讲:速度v是时刻t的反比例函数呢?
通过那个咨询题,使学生进一步明白得反比例函数的概念,只要满足〔k是常数,〕就能够.因此能够讲速度v是时刻t的反比例函数,因为〔s是常量〕.对第2个实例也一样.
练习一:教材P129中1 口答.P130 1
依照前面学习专门函数的体会,研究完函数的概念,跟着要研究的是什么?
答:图像和性质.
通过那个咨询题,使学生对课本上给出的知识的发生、进展过程有一个明确的认识,以后
学生要研究其他函数,也能够按照这种方式来研究.
下面,我们就来看一个例题:〔出示幻灯〕
例1 画出反比例函数与的图像.
提咨询:1.画函数图像的关键咨询题是什么?
答:合理、正确地选值列表.
2.在选值时,你认为要注意什么咨询题?
答:〔1〕由于函数图像的特点还不清晰,多项选择几个点较好;
〔2〕不能选,因为时函数无意义;
〔3〕选整数较好运算和描点.
那个咨询题中最核心的一点是关于的咨询题,提醒学生注意.
3.你能不能自己完成这道题呢?
学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评判、总结:
注意:〔1〕一样地,反比例函数的图像由两条曲线组成,叫做双曲线;
〔2〕这两条曲线不相交;
〔3〕这两条曲线无限延伸,无限靠近x轴和y轴,但永可不能与x轴和y轴相交.
关于注意〔3〕可咨询学生:什么缘故图像与x和y轴不相交?
通过那个咨询题既可加深学生对反比例函数图像的经历,又可培养学生思维的灵活性和深刻性.再让学生观看黑板上的图,提咨询:
1.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大如何样变化?
2.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大如何样变化?
这两个咨询题由学生讨论总结之后回答,教师板书:
关于双曲线〔1〕当:〔1〕当时,双曲线的两分支位于一、三象限,y随x的增大而减少;〔2〕当时,双曲线的两分支位于二、四象限,y随x的增大而增大.3.反比例函数的这一性质与正比例函数的性质有何异同?
通过那个咨询题使学生能把学过的相关知识有机地串联起来,便于经历和应用.
练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上
上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:〔出示幻灯〕
例2y与成反比例,同时当时,,求时,y的值.
用提咨询的方式对此题加以分析:
〔1〕y与成反比例是什么含义?
由学生讨论这一咨询题,最后归结为依照反比例函数的概念,这句话讲明了: .
〔2〕依照那个式子,能否求出当时,y的值?
〔3〕要想求出y的值,必须先明白哪个量呢?
〔4〕如何样才能确定k的值?用什么条件?
答:用待定系数法,把时代入,求出k的值.
〔5〕你能否自己完成这道例题:
由一名同学板演,其他同学在练习本上完成.
例3 :,与x成正比例,与x成反比例,当时,时,,求y与x的解析式.
分析:一定要先写出y与x的函数表达式,
要用x分不把,表示出来得,
要注意不能写成k,∴
解:设,
.
由题意得
∴ .
〔二〕总结、扩展
教师提咨询,学生摸索回答:
1.什么是反比例函数?
2.反比例函数的图像是什么样的?
3.反比例函数的性质是什么?
4.命题方向及题型设置,反比例函数也是中考命题的要紧考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题显现,在低档题中,近两年各省、市的中考试卷中显现许多将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.
五、布置作业
1.教材P130中4,5,6
2.选做:P130中B1,2
六、板书设计
13.8反比例函数及其图像
引例:〔1〕例1:例2:例3:
〔2〕
1.反比例函数:
2.反比例函数的性质。

相关文档
最新文档