(中考复习)第13讲 反比例函数及其图象
合集下载
反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
中考总复习数学13-第一部分 第13讲 反比例函数及其应用

返回思维导图
第13讲 反比例函数及其应用— 考点梳理
返回栏目导航
续表
在每个象限内,y随x的增大
增减性
而⑤ 减小
对称性
是轴对称图形,对称轴为直线y=⑦
⑧ 原点O
在每个象限内,y随x的增大
而⑥增大
±x
; 是中心对称图形,对称中心是
图象由分别位于两个象限的双曲线组成,图象无限接近坐标轴,但不与
图象特征
坐标轴相交.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
考点 4 反比例函数的应用
1.判断同一坐标系中反比例函数图象和一次函数图象的方法
(假设法)假设反比例函数正确,即可确定 k的取值范围,再根据 k 的取值范围
确定一次函数图象,无矛盾,则正确.
2.已知两个函数图象,求交点坐标
(1)求一次函数图象与反比例函数图象的交点,将两个函数解析式联立方程组
位置关系,依据图象在上方的函数值总比图象在下方的函数值大 ,在各区域
内找对应的x的取值范围.
4.求图形面积
(1)当图形有一边在坐标轴上时,通常将坐标
轴上的边作为底边,再利用点的坐标求出底边上的高,最后用面积公式求解.
(2)当图形三边都不在坐标轴上时,一般用“割补法”.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S△OBP= |k|
S△ABC=
|k|
S矩形OAPB=|k|
S▱ABCD=
|k|
返回栏目导航
反比例函数及其图象

常数$k$。
02
当$k > 0$时,反比例函数的图像 分布在第一象限和第三象限;当 $k < 0$时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的性质
反比例函数是奇函数,因为对于 任意实数$x$,都有$f(-x) = f(x)$。
当$x$趋向于正无穷或负无穷时, $f(x)$趋向于0,但永远不会等
解决工程问题
材料强度与横截面积的关系
在材料力学中,材料的强度与横截面积成反比关系。这意味着当横截面积增大时,材料的强度减小; 反之,当横截面积减小时,材料的强度增大。这一关系对于设计工程结构和选择材料非常重要。
机械效率与摩擦力的关系
在机械系统中,机械效率与摩擦力之间存在反比例关系。随着摩擦力的增加,机械效率会降低;反之 ,随着摩擦力的减小,机械效率会提高。在设计机械系统时,了解这一关系有助于提高机械设备的效 率和性能。
当 $k < 0$ 时,函数 图像位于第二象限和 第四象限。
当 $k > 0$ 时,函数 图像位于第一象限和 第三象限。
解析式的求解
求函数值
将 $x$ 的值代入解析式中,即可求 得 $y$ 的值。
求未知数
通过已知的点或方程组,可以求出 $k$ 的值或确定函数的表达式。
解析式的应用
解决实际问题
反比例函数可以用于解决 一些实际问题,如电流与 电阻、速度与距离等关系 的问题。
当$k>0$时,反比例函数的图像 分布在第一象限和第三象限,且 随着$x$的增大,$y$的值逐渐减 小。
$k<0$时
当$k<0$时,反比例函数的图像 分布在第二象限和第四象限,且 随着$x$的增大,$y$的值逐渐增 大。
03 反比例函数的解析式
反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
反比例函数的图像和性质ppt课件

增大而增大.
探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试
y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较
探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试
y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较
2014中考复习备战策略_数学PPT第13讲_反比例函数

(1)求上述反比例函数和一次函数的函数解析式; (2)设该直线与 x 轴、y 轴分别相交于 A,B 两点, 与反比例函数图象的另一个交点为 P,连接 OP,OQ, 求△OPQ 的面积.
1 k 解:(1)将点 ( , 8)代入 y= , 2 x k 1 得 8= , k= ×8= 4. 1 2 2 4 ∴反比例函数的解析式为 y= . x
∴四边形 AEOD 和 BEOC 都为矩形. 1 ∵点 A 在双曲线 y= 上, ∴ S 矩形 AEOD= 1. x 3 ∵点 B 在双曲线 y= 上, ∴ S 矩形 BEOC= 3. x ∴四边形 ABCD 的面积为 3- 1= 2.
6. 若反比例函数 y=(m-2)x 一、三象限内,则 m 的值是 3 .
k 1.反比例函数 y= (k 是常数, k≠ 0)的图象是双 x 曲线 . 因为 x≠ 0, k≠ 0,相应地 y 值也不能为 0,所以 反比例函数的图象无限接近 x 轴和 y 轴,但永不与 x 轴、 y 轴相交 .
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠ 0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响 .
考点五
反比例函数的应用
例 5 (2013· 益阳 )我市某蔬菜生产基地在气温较低 时, 用装有恒温系统的大棚栽培一种在自然光照且温度 为 18 ℃的条件下生长最快的新品种.下图是某天恒温 系统从开启到关闭及关闭后,大棚内温度 y(℃ )随时间 k x(时)变化的函数图象,其中 BC 段是双曲线 y= 的一 x 部分.请根据图中信息解答下列问题:
∴ S△ OPQ= S△ AOB- S△ AOQ- S△ BOP 1 1 1 = × 5× 5- × 5× 1- × 5× 1 2 2 2 15 = . 2
反比例函数的图象和性质课件

函数值的无限性
01
由于x不能为0,所以y的值是无限 的,即反比例函数图像上存在无穷 多个点。
02
在每一个象限内,随着x的增大或 减小,y的值会趋近于无穷大或无 穷小。
函数值的单调性
当k>0时,函数在(0, +∞)区间内单调 递减,在(-∞, 0)区间内也单调递减。
当k<0时,函数在(0, +∞)区间内单调递 增,在(-∞, 0)区间内也单调递增。
反比例函数的定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 k 是 常数。
反比例函数的性质
反比例函数的图象是双曲线,当 k > 0 时,双曲线的两支 分别位于第一、第三象限;当 k < 0 时,双曲线的两支分 别位于第二、第四象限。
反比例函数的单调性
在各自象限内,反比例函数是单调递减的。
反比例函数的图象和性质课件
目录
• 反比例函数概述 • 反比例函数的图像性质 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数是指函数形式为$f(x) = frac{k}{x}$(其中$k neq 0$)的函数。
当$k > 0$时,反比例函数的图像分布在 第一象限和第三象限;当$k < 0$时,图 像分布在第二象限和第四象限。
经济问题
在经济学中,反比例函数可以用 于描述商品价格与市场需求之间 的关系,通过分析反比例函数的 特性,可以预测市场价格的变动
趋势。
在物理中的应用
磁场问题
在电磁学中,磁场与电流之间的 关系可以用反比例函数描述,通 过分析反比例函数的特性,可以 解决与磁场和电流相关的问题。
2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件

4
.
返回子目录
7. (2020·河北,19)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每
个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y= (x<0)的图象为曲线L.
(1)若L过点T1,则k= -16
;
(2)若L过点T4,则它必定还过另一点Tm,则m= 5
;
(3)若曲线L使得T 1 ~T 8 这些点分布在它的两侧,每侧各4个点,则k的整数值有
(2)通过计算,说明一次函数y=kx+3-3k
(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y
随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).
返回子目录
解:(1)∵点B,C的横坐标相等,∴BC⊥x轴.
∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵当x=4时,y= =1,∴点N在反比例函数y= 的图象上.
(3)4≤m≤8.
考点梳理
考点 1
反比例函数的概念
考点 2
反比例函数的图象及性质
考点 3
反比例函数解析式的确定
返回子目录
2
考点1
考点梳理
反比例函数的概念
1. 定义:一般地,形如①
y=
(k是常数,k≠0)的函数,叫反比例函数,其中x
是自变量,y是函数.自变量x的取值范围是x≠0.
2. 三种表达式(k为常数,k≠0):y= ;y=kx-1;xy=k.
返回子目录
考点2
反比例函数的图象及性质
1. 反比例函数图象与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.y1=y2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
5. (2012· 达州)一次函数 y1=kx+b(k≠0)与反 m 比例函数 y2= (m≠0),在同一直角坐标 x 系中的图象如图 13-3 所示,若 y1>y2, 则 x 的取值范围是 ( A )
A.-2<x<0或x>1
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
2 3. (2012· 菏泽)反比例函数 y= 图象上的两个点为 (x1, y1), (x2, x y2),且 x1<x2,则下式关系成立的是 ( D ) A.y1>y2 B.y1<y2
D.不能确定 1-2k 4. (2013· 哈尔滨 )反比例函数 y= 的图象经过点 (- 2,3),则 x k 的值为 ( C ) 7 7 A. 6 B.- 6 C. D.- 2 2
轴对称图形 . ______________ 4.应用:
如图 13-1 所示,点 A 和点 C 是反比 k 例函数 y= (k≠0)的图象上任意两点, x 画 AB⊥x 轴于 B,CD⊥y 轴于 D,则 |k| 有 S△AOB=S△COD= . 2
图13-1
课堂回顾 · 巩固提升
基础知识 · 自主学习
图13-4
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
题组一
反比例函数解析式的确定
已知图象上一点求解析式
【 例 1】2 ( 0 1 3 · 巴 中 )如 图 1 3 -5 所 示 , 在 平 面 直 角 坐 标 系 x O y 中,一 次 函 数 y= k x + b(k≠ 0 ) 的 图 象 与 反 比 例 k 函数 y= 的 图 象 交 于 一 、 三 象 限 内 x 的 A、B 两 点 ,直线 AB 与 x 轴 交 于 点 C,点 B 的 坐 标 为 (- 6,n),线 段 OA= 5,E 为 x 轴 正 半 轴 上 一 点 ,且 4 a t n ∠A O E = . 3
题组分类 · 深度剖析
浙派名师中考
k 1.(2013· 遂宁)已知反比例函数 y= 的图象经过点(2,-2),则 k x 的值为 ( C )
A.4
B.-8
C.-4
D.-2
( C )
2.(2012· 南充) 矩形的长为x,宽为y,面积为9,则y与x之间的 函数关系用图象表示大致为图13-2中的
图13-2
图13-7
∵C的坐标为(-2,0),A的坐标为(n,6), ∴AD=6,CD=n+2, ∵tan∠ACO=2,
图13-3
B.x<-2或0<x<1
C.x>1 D.-2<x<1
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
4 2 6.(2013· 永州)如图 13-4 所示,两个反比例函数 y= 和 y= 在 x x 第一 象限内的图象分别是 C1 和 C2,设点 P 在 C1 上,PA⊥x 轴于点 A,交 C2 于点 B,则△POB 的面积为____ 1 .
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
把 A(3 , 4) 和 B( - 6 , - 2) 分 别代 入一 次函数 y = kx + b 得 2 3 k + b = 4 , k= , 3 解得 - 6k+ b=- 2, b=2. 2 则一次函数的解析式为 y= x+2, 3 ∵点C在x轴上,令y=0,得x=-3,
浙派名师中考
第13课 反比例函数及其图象
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
1.概念: 2.图象:
k y= (k 为常数,k≠0) 叫做反比例函数. 函数________________________ x
无限接近x轴、y轴 ,不与两坐标 反比例函数的图象是_____________________
即OC=3,
1 1 ∴S△AOB=S△AOC+S△BOC= ×3×4+ ×3×2=9. 2 2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
雅安)如图 13-7 所示,在 , 一 次 函 数 y=kx+b(k≠0) k 的 图 象 与 反 比 例 函 数 y= (m≠0)的 图 象 交 于 x A、B 两点,与 x 轴交于 C 点,点 A 的 坐 标 为 (n,6),点 C 的 坐 标 为 (-2,0),且 a t n ∠ACO =2.求 该 反 比 例 函 数 和 一 次 函 数 的 解 析 式 . 解:如图13-8所示,过点A作AD⊥x轴于D, [变式训练] 2 ( 0 1 3 · 平 面 直 角 坐 标 系 中
基础知识 · 自主学习
图13-5
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 (1)求反比例函数的解析式; (2)求△AOB的面积. 解:(1)如图13-6所示,
过点A作AD⊥x轴,
AD 在 Rt△AOD 中,∵tan∠AOE= , OD 设
图13-6 在Rt△AOD中,根据勾股定理解得AD=4,OD=3, ∴A(3,4),
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
k 把 A(3,4)代入反比例函数 y= 中, x
解得k=12,
12 则反比例函数的解析式为 y= ; x 12 (2)把点 B 的坐标为(-6,n)代入 y= 中, x
解得n=-2,
则B的坐标为(-6,-2),
基础知识 · 自主学习
轴相交的两条双曲线.
3.性质: 第一、三象限 ,在每个象限 (1)当k>0时,其图象位于________________ 减小 ; 内,y随x的增大而_______
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 (2)当k<0时,其图象位于_______________ 第二、四象限 ,在每个象限 增大 ; 内,y随x的增大而_______ 中心对称图形 ,又是 (3)其图象是关于原点对称的________________