二叉树地建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树地高度

合集下载

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

二叉树结点计算公式

二叉树结点计算公式

二叉树结点计算公式二叉树结点的计算公式及解释1. 二叉树的节点个数•公式:N = 2^h - 1,其中 N 表示二叉树的节点个数,h 表示二叉树的高度。

•解释:二叉树的高度 h 可以通过树的层数来确定,根节点所在的层数为 1,依次往下递增。

每个节点都可以有两个子节点,所以二叉树的节点个数 N 可以通过计算 2 的 h 次方再减去 1 来得出。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算节点个数:h = 3,2^3 - 1 = 8 - 1 = 7所以,该二叉树的节点个数为 7。

2. 二叉树的叶子节点个数•公式:L = (N + 1) / 2,其中 L 表示二叉树的叶子节点个数,N 表示二叉树的节点个数。

•解释:在二叉树中,叶子节点是指没有子节点的节点。

根据二叉树的性质,每个节点最多有两个子节点,所以二叉树的叶子节点个数可以通过节点个数加 1 再除以 2 来计算。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算叶子节点个数:N = 7,(7 + 1) / 2 = 8 / 2 = 4所以,该二叉树的叶子节点个数为 4。

3. 二叉树的高度•公式:h = log2(N + 1),其中 h 表示二叉树的高度,N 表示二叉树的节点个数。

•解释:由于二叉树中每个节点都可以有两个子节点,所以可以通过节点个数 N 加 1 后取对数以 2 为底的对数来计算二叉树的高度。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算高度:N = 7,log2(7 + 1) ≈ log2(8) ≈ 3所以,该二叉树的高度为 3。

以上就是关于二叉树结点的计算公式及解释。

通过这些公式,我们可以更方便地计算二叉树的相关属性,进而优化算法或者进行更深入的研究。

二叉树求每个结点高度算法

二叉树求每个结点高度算法

二叉树求每个结点高度算法二叉树是一种非常常见的数据结构,它由一个根结点和最多两个子结点组成。

在解决二叉树相关问题时,经常需要求每个结点的高度,也就是树的深度。

本文将介绍常见的二叉树求每个结点高度的算法。

在介绍求每个结点高度的算法之前,首先需要了解二叉树的定义和性质。

二叉树是一种树的特殊形式,它的每个结点最多只有两个子结点。

二叉树的高度定义为从根结点到叶子结点的最长路径上的结点数,即树中结点的最大深度。

在求解每个结点高度时,需要遍历整个二叉树,计算每个结点距离根结点的深度。

一种常见的求每个结点高度的算法是通过递归实现的。

其基本思想是,对于每个结点,其高度等于其左子树和右子树的高度中较大的那个值加一,再加上该结点本身的高度(1)。

具体实现递归算法的伪代码如下:```function getHeight(node):if node is null:return 0leftHeight = getHeight(node.left)rightHeight = getHeight(node.right)return max(leftHeight, rightHeight) + 1```通过递归算法,可以方便地求出每个结点的高度。

递归算法的停止条件是当结点为空时,返回0作为高度。

在使用递归算法时,需要注意避免重复计算。

可以通过在每个结点处保存其高度,避免重复计算。

在算法的实现中,可以使用一个哈希表或者结构体来保存每个结点的高度。

除了递归算法外,还可以使用层次遍历的方法求每个结点的高度。

层次遍历是一种广度优先搜索的算法,可以按层次遍历二叉树。

在层次遍历的过程中,可以对每个结点进行标记,记录其所在的层数。

具体实现层次遍历的伪代码如下:```function getHeight(root):if root is null:return 0queue = new Queue()queue.enqueue(root)root.level = 1while queue is not empty:node = queue.dequeue()if node.left is not null:queue.enqueue(node.left)node.left.level = node.level + 1if node.right is not null:queue.enqueue(node.right)node.right.level = node.level + 1return max(node.level for node in tree)```通过层次遍历的方法,可以按层次遍历二叉树,同时记录每个结点的层数。

c语言实现二叉树的四种遍历和求深度与叶子个数

c语言实现二叉树的四种遍历和求深度与叶子个数

c语言实现二叉树的四种遍历和求深度与叶子个数二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

在C语言中,我们可以使用指针来实现二叉树的操作。

本文将介绍四种常见的二叉树遍历方式,以及如何求解二叉树的深度和叶子节点个数。

首先,我们需要定义一个二叉树节点的结构体,包含一个数据域和两个指针域,分别指向左子节点和右子节点。

代码如下:```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```接下来,我们可以实现二叉树的四种遍历方式:前序遍历、中序遍历、后序遍历和层序遍历。

前序遍历是指先访问根节点,然后递归地遍历左子树和右子树。

代码如下:```cvoid preorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}printf("%d ", root->data);preorderTraversal(root->left);preorderTraversal(root->right);}```中序遍历是指先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。

代码如下:```cvoid inorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}inorderTraversal(root->left);printf("%d ", root->data);inorderTraversal(root->right);}```后序遍历是指先递归地遍历左子树和右子树,最后访问根节点。

代码如下:```cvoid postorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}postorderTraversal(root->left);postorderTraversal(root->right);printf("%d ", root->data);}```层序遍历是按照树的层次逐层遍历节点。

二叉树前中后序遍历做题技巧

二叉树前中后序遍历做题技巧

二叉树前中后序遍历做题技巧在计算机科学中,二叉树是一种重要的数据结构,而前序、中序和后序遍历则是二叉树遍历的三种主要方式。

下面将分别对这三种遍历方式进行解析,并提供一些解题技巧。

1.理解遍历顺序前序遍历顺序是:根节点->左子树->右子树中序遍历顺序是:左子树->根节点->右子树后序遍历顺序是:左子树->右子树->根节点理解每种遍历顺序是解题的基础。

2.使用递归或迭代二叉树的遍历可以通过递归或迭代实现。

在递归中,每个节点的处理函数会调用其左右子节点的处理函数。

在迭代中,可以使用栈来模拟递归过程。

3.辨析指针指向在递归或迭代中,需要正确处理指针的指向。

在递归中,通常使用全局变量或函数参数传递指针。

在迭代中,需要使用栈或其他数据结构保存指针。

4.学会断点续传在处理大规模数据时,为了避免内存溢出,可以采用断点续传的方式。

即在遍历过程中,将中间结果保存在文件中,下次遍历时从文件中读取上一次的结果,继续遍历。

5.识别循环和终止条件在遍历二叉树时,要识别是否存在循环,并确定终止条件。

循环可以通过深度优先搜索(DFS)或广度优先搜索(BFS)避免。

终止条件通常为达到叶子节点或达到某个深度限制。

6.考虑边界情况在处理二叉树遍历问题时,要考虑边界情况。

例如,对于空二叉树,需要进行特殊处理。

又如,在处理二叉搜索树时,需要考虑节点值的最小和最大边界。

7.优化空间使用在遍历二叉树时,需要优化空间使用。

例如,可以使用in-place排序来避免额外的空间开销。

此外,可以使用懒加载技术来延迟加载子节点,从而减少内存占用。

8.验证答案正确性最后,验证答案的正确性是至关重要的。

可以通过检查输出是否符合预期、是否满足题目的限制条件等方法来验证答案的正确性。

如果可能的话,也可以使用自动化测试工具进行验证。

二叉树结点计算方法

二叉树结点计算方法

二叉树结点计算方法二叉树是一种常见的数据结构,它由结点和连接结点的边组成。

每个结点最多有两个子结点,称为左子结点和右子结点。

在二叉树中,每个结点都有一个值,可以用来存储任何类型的数据。

计算二叉树结点的方法主要有以下几种:1.求二叉树的结点个数:-递归法:计算二叉树的结点个数可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,返回左子树的结点个数加上右子树的结点个数再加1,即根结点自身的个数。

递归地计算左右子树的结点个数,直到叶子结点为空,递归结束。

2.求二叉树的叶子结点个数:-递归法:计算二叉树的叶子结点个数也可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,如果根结点的左右子树都为空,则返回1,表示根结点为叶子结点。

递归地计算左右子树的叶子结点个数,通过累计求和的方式得到最终的结果。

3.求二叉树的深度:-递归法:计算二叉树的深度可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,分别计算左子树和右子树的深度,然后取两者中的较大值,再加上根结点自身的深度,即可得到二叉树的深度。

递归地计算左右子树的深度,直到叶子结点为空,递归结束。

4.求二叉树的最小深度:-递归法:计算二叉树的最小深度可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,如果根结点的左右子树都为空,则返回1,表示根结点为叶子结点。

如果根结点的左子树为空,则取右子树的最小深度;如果根结点的右子树为空,则取左子树的最小深度;否则,取左右子树中的较小深度。

递归地计算左右子树的最小深度,通过取较小值的方式得到最终的结果。

以上是常见的计算二叉树结点的方法,它们都可以通过递归的方式实现。

在实际应用中,可以根据具体的需求选择适当的方法来计算二叉树的结点。

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。

还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。

后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

top--;printf("%c-",p->data ); //访问p=p->rchild ; //扫描*p的右孩子节点}}printf("\n");}}/*下面后序遍历二叉树*//*void postorder(Bitree T) //后序遍历{if(T){postorder(T->lchild);postorder(T->rchild);printf("%c-",T->data);}}*//*二叉树后序遍历非递归算法设计*/void postorder(Bitree T) //后序遍历非递归{Bitree st[Maxsize];Bitree p=T,q;int flag; //作为一个标志处理栈定时候用int top=-1; //栈置空if(T){do{while(p) //将*p所在的左节点进栈{top++;st[top]=p;p=p->lchild ;}q=NULL;flag=1; //设置flag=1表示处理栈顶节点while(top!=-1&&flag==1){p=st[top];if(p->rchild==q) //右孩子不存在或者右孩子已被访问,访问之{printf("%c-",p->data );top--;q=p; //让q指向刚被访问的节点}else{p=p->rchild ; //p指向右孩子flag=0; //设置flag=0表示栈顶节点处理完毕}}}while(top!=-1) ;//栈不空是循环printf("\n");}}/*下面层序遍历二叉树*/ //(层序遍历的模板)void levelorder(Bitree T) //层序遍历二叉树{Bitree p;Bitree qu[Maxsize]; //定义一个循环队列int front, rear; //定义队头队尾指针front=0; //队列置空rear=0;rear++; //根节点进队qu[rear]=T;while(front!=rear) //队列不空{front=(front+1)%Maxsize; //对头出队列p=qu[front];printf("%C-",p->data ); //访问对头节点if(p->lchild !=NULL) //左子树不空进队{rear=(rear+1)%Maxsize;qu[rear]=p->lchild ;}if(p->rchild !=NULL) //右子树不空进队{rear=(rear+1)%Maxsize;qu[rear]=p->rchild ;}}}/*计算二叉树节点数*//*方法一*//*int num(Bitree T){if(T==NULL)return 0;else{return num(T->lchild )+num(T->rchild )+1;}}*//*方法二*/int num (Bitree T){if(T!=NULL)return num(T->lchild )+num(T->rchild )+1;return 0;/*下面程序段计算二叉树的叶子节点个数*/int countleaf(Bitree T){if(T==NULL) //如果节点为空,则返回0return 0;else if((T->lchild==NULL) && (T->rchild==NULL))//否则如果节点左右孩子有一个为空,另一个存在,则返回1return 1;elsereturn(countleaf(T->lchild)+countleaf(T->rchild));//否则返回左右子树叶子节点之和}/*下面程序段计算二叉树的单分支节点个数*/int Sfenzhi(Bitree T)if(T==NULL)return 0;else if (T->lchild==NULL&&T->rchild!=NULL||T->lchild!=NULL&&T->rchild==NULL) //为单分支节点return Sfenzhi(T->lchild )+Sfenzhi(T->rchild )+1;elsereturn Sfenzhi(T->lchild )+Sfenzhi(T->rchild );}/*下面程序段计算二叉树的双分支节点个数*/int Dfenzhi(Bitree T){if(T==NULL)return 0;else if (T->lchild!=NULL&&T->rchild!=NULL||T->lchild!=NULL&&T->rchild!=NULL) //为单分支节点return Dfenzhi(T->lchild )+Dfenzhi(T->rchild )+1;elsereturn Dfenzhi(T->lchild )+Dfenzhi(T->rchild );}/*计算二叉树的高度(深度*/int depth (Bitree T){int lh,rh;if (T==NULL)return 0;else{lh=depth(T->lchild); //递归左子树rh=depth(T->rchild); //递归右子树return (lh>rh)?(lh+1):(rh+1); //高度等于左子树和右子树中大者加1 }}/*下面为主函数*/void main(){Bitree T;printf("先序创建二叉树,用空格代表虚结点:\n"); T=Createtree();printf("先序遍历:\n");preorder(T);printf("\n");printf("中序遍历:\n");inorder(T);printf("\n");printf("后序遍历:\n");postorder(T);printf("\n");printf("层序遍历:\n");levelorder(T);printf("\n");printf("二叉树的节点数为:"); printf("%d个",num(T));printf("\n");printf("二叉树的叶子节点数为:"); printf("%d个",countleaf(T)); printf("\n");printf("二叉树的单分支节点数为:"); printf("%d个",Sfenzhi(T));printf("\n");printf("二叉树的双分支节点数为:"); printf("%d个",Dfenzhi(T)); printf("\n");printf("二叉树的高度(深度)为:"); printf("%d",depth(T));printf("\n");}。

相关文档
最新文档