二叉树的前序,中序,后序,层序遍历
二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。
{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。
T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。
二叉树的性质及其遍历

12.3.1 顺序存储结构 12.3.2 链式存储
•二叉树的性质及其遍历
12.1 二叉树的基本性质
定理 1:满二叉树第i层上恰好有2i-1个结点 (i≥1).
证:使用归纳法。i=1时,结论显然成立。设i=k时结 论成立,则考虑i=k+1的情形。由于(k+1)层上结点 是k层上结点的儿子,而且满二叉树每个非叶子结 点恰好有两个儿子,故(k+1)层上结点个数为k层上 结点个数的2倍,即2·2k-1 = 2k = 2(k+1)-1. 这表明, i=k+1时结论也成立。由归纳法原理,结论对任意 的k都成立,证毕。
x的相对地址x的编号x的父亲/儿子的编 号(性质7) x的父亲/儿子的相对地址。
•二叉树的性质及其遍历
至于结点的相对地址与编号之间的换算,有下列关系: 结点相对地址 = (结点编号 – 1)×每个结点所
占单元数目
a
b
f
cegh d
1 2 34 56 7 8 a b f ce g h d …
图 12-2 顺序二叉树的顺序存储
•二叉树的性质及其遍历
12.1.7 定理7 若对一棵有n个结点的顺序二叉树的结点按层序 编号,则对任一结点i(1≤i≤n),有(1)若i=1, 则结点i是根, 无父亲;若i〉1,则其父亲是结点i/2。(2)若2i>n,则结点i 无左儿子(从而也无右儿子,为叶子);否则i的左儿子是结 点2i。(3)若2i+1>n,则结点i无右儿子;否则右儿子是结点 2i+1。
12.3.1顺序存储结构
(一) 顺序二叉树的顺序存储结构
这种存储结构是按结点的层序编号的次序,将 结点存储在一片连续存储区域内。由定理 7知, 对顺序二叉树,若已知结点的层序编号,则可推 算出它的父亲和儿子的编号,所以,在这种存储 结构中,很容易根据结点的相对地址计算出它的 父亲和儿子的相对地址,方法是:
数据结构二叉树先序中序后序考研题目

数据结构二叉树先序中序后序考研题目
以下是一些关于二叉树先序、中序和后序遍历的考研题目:
1. 已知二叉树的先序遍历序列为 "A B D E C F",中序遍历序列为 "D B E A F C",请画出该二叉树。
2. 已知二叉树的中序遍历序列为 "D B E A F C",后序遍历序列为 "D E B F C A",请画出该二叉树。
3. 给定一棵二叉树的先序遍历序列为 "A B D E F C",中序遍历序列为 "D B E F A C",请写出该二叉树的后序遍历序列。
4. 请写出一棵二叉树的先序遍历序列为 "A B D E C F",中序遍历序列为 "D B E A F C",后序遍历序列为 "D E B F C A" 的二叉树。
5. 已知一棵二叉树的中序遍历序列为 "D B E A F C",后序遍历序列为 "D E B F C A",请写出该二叉树的先序遍历序列。
6. 给定一棵二叉树的先序遍历序列为 "A B D E F C",后序遍历序列为 "D E F B C A",请写出该二叉树的中序遍历序列。
以上题目可以帮助你练习理解二叉树的遍历方式及其序列之间的关系。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
二叉树序列口诀

二叉树序列口诀
二叉树的序列化和反序列化是二叉树算法中的核心操作,也是面试中的重点考察内容。
对于初学者来说,掌握二叉树的序列化和反序列化需要掌握以下口诀:
一、二叉树序列口诀
1.前序序列化
①根节点放前面,输出数值;
②递归左子树,输出左子树的序列化结果;
③递归右子树,输出右子树的序列化结果。
2.中序序列化
①递归左子树,输出左子树的序列化结果;
②根节点放中间,输出数值;
③递归右子树,输出右子树的序列化结果。
3.后序序列化
①递归左子树,输出左子树的序列化结果;
②递归右子树,输出右子树的序列化结果;
③根节点放后面,输出数值。
二、二叉树反序列口诀
1.前序反序列化
①读取当前节点的值,生成新节点;
②递归读取左子树,将左子树连接到新节点;
③递归读取右子树,将右子树连接到新节点。
2.中序反序列化
①递归读取左子树,将左子树连接到当前节点;
②读取当前节点的值,生成新节点;
③递归读取右子树,将右子树连接到新节点。
3.后序反序列化
①递归读取左子树,将左子树连接到当前节点;
②递归读取右子树,将右子树连接到当前节点;
③读取当前节点的值,生成新节点。
总之,掌握好二叉树的序列化和反序列化操作,可以为你的算法之路打下坚实的基础,让你在职场中游刃有余,赢得更多的机会和成就。
二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。
一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。
2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。
3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。
4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。
5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。
6. 修改节点:根据节点值进行查找,然后进行修改操作。
二叉树的四种遍历方式

二叉树的四种遍历方式
(实用版)
目录
1.前序遍历
2.中序遍历
3.后序遍历
4.层次遍历
正文
二叉树是一种非常重要的数据结构,它在计算机科学和信息处理领域有着广泛的应用。
在二叉树中,有四种常见的遍历方式,分别是前序遍历、中序遍历、后序遍历和层次遍历。
1.前序遍历:先访问根节点,然后遍历左子树,最后遍历右子树。
这种遍历方式的特点是先访问根节点,然后按照左子树、右子树的顺序进行遍历。
2.中序遍历:先遍历左子树,然后访问根节点,最后遍历右子树。
这种遍历方式的特点是先遍历左子树,然后访问根节点,最后遍历右子树。
3.后序遍历:先遍历左子树,然后遍历右子树,最后访问根节点。
这种遍历方式的特点是先遍历左子树,然后遍历右子树,最后访问根节点。
4.层次遍历:按照树的层次,从上到下,从左到右进行遍历。
这种遍历方式的特点是按照树的层次进行遍历,每一层的节点都会被依次访问。
第1页共1页。
二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <iostream>
using namespace std;
#define queuesize 100
#define ERROR 0
#define OK 1
typedef struct BiTNode//二叉树
{
char data;
struct BiTNode *lchild,*rchild;
}BinNode;
typedef BinNode *BiTree;//定义二叉链表指针类型
typedef struct
{
int front,rear;
BiTree data[queuesize];//循环队列元素类型为二叉链表结点指针
int count;
}cirqueue;//循环队列结构定义
void leverorder(BiTree t)
{
cirqueue *q;
BiTree p;
q=new cirqueue;//申请循环队列空间
q->rear=q->front=q->count=0;//将循环队列初始化为空
q->data[q->rear]=t;q->count++;q->rear=(q->rear+1)%queuesize;//将根结点入队
while (q->count) //若队列不为空,做以下操作
if (q->data[q->front]) //当队首元素不为空指针,做以下操作
{
p=q->data[q->front];//取队首元素*p
cout<<p->data;
q->front=(q->front+1)%queuesize;q->count--;//队首元素出队
if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行
cout<<"error,队列满了!";
else
{//若队列不满,将*p结点的左孩子指针入队
q->count++;q->data[q->rear]=p->lchild;
q->rear=(q->rear+1)%queuesize;
}
if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行
cout<<"error";
else
{//若队列不满,将*p结点的右孩子指针入队
q->count++;q->data[q->rear]=p->rchild;
q->rear=(q->rear+1)%queuesize;
}
}
else
{q->front=(q->front+1)%queuesize;q->count--;}//当队首元素为空指针,将空指针出队}
int CreatBiTree(BiTree& root)
{
char ch;
BiTree p;
BiTree q[100];
int front=1,rear=0;
int jj=0;
ch=getchar();
while(ch!='#')
{
p=NULL;
if(ch!=',')
{
p=(BiTNode*)malloc(sizeof(BiTNode));
if(NULL==p)
return ERROR;
jj++;
p->data=ch;
p->lchild=p->rchild=NULL;
}
rear++;
q[rear]=p;
if(1==rear)
root=p;
else
{
if(p&&q[front])
{
if(0==(rear%2))
q[front]->lchild=p;
else
q[front]->rchild=p;
}
if(p&&(NULL==q[front]))
{
free(p);
return ERROR;
}
if(1==rear%2)
front++;
}
ch=getchar();
}
return OK;
}
void PreOrder(BiTree root) //先序遍历
{
if(root!=NULL)
{
cout<<root->data; //根
PreOrder(root->lchild);//左
PreOrder(root->rchild);//右
}
}
void InOrder(BiTree root) //中序遍历
{
if(root!=NULL)
{
InOrder(root->lchild); //左
cout<<root->data; //根
InOrder(root->rchild); //右
}
}
void PostOrder(BiTree root) //后序遍历
{
if(root!=NULL)
{
PostOrder(root->lchild);//左
PostOrder(root->rchild);//右
cout<<root->data; //根
}
}
int shuru()
{cout<<"输入二叉树(,表示空)安#结束输入:\n";}
int main()
{
shuru();
BiTree ss;
int i=CreatBiTree(ss);
cout<<endl<<"先序遍历二叉树:";
PreOrder(ss);
cout<<endl<<"中序遍历二叉树:";
InOrder(ss);
cout<<endl<<"后序遍历二叉树:";
PostOrder(ss);
cout<<endl<<"层序遍历二叉树:";
leverorder(ss);
cout<<endl;
return 0;
}
程序结果:。