二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告
实验报告二叉树

递归遍历右子树输出根结点数data}void postOrder1 (struct btnode *bt){概念栈,结点参数p,prebt入栈While(栈或p是不是为空){提取栈顶元素值if判定p是不是为空或是pre的根结点输出根结点数data栈顶元素出栈栈顶元素p赋给pre记录else if右结点非空将右结点压栈if左结点将左结点压栈}}void main(){struct btnode *root=NULL;root=createbt(root);preOrder(root); midOrder(root); postOrder(root);preOrder1(root); midOrder1(root); postOrder1(root);
数据结构二叉树实验报告

一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。
(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。
(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(4)掌握二叉树的性质。
(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。
(6)重点掌握二叉树的基本运算和各种遍历算法的实现。
(7)掌握线索二叉树的概念和相关算法的实现。
(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。
(9)掌握并查集的相关概念和算法。
(10)灵活运用二叉树这种数据结构解决一些综合应用问题。
二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。
实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。
并对图7-123所示的二叉树b 给出求解结果。
b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。
二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。
{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。
T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。
数据结构实验报告——中序遍历二叉树

实验报告一,实验目的:·掌握二叉树的链式存储结构;·掌握构造二叉树的方法;·加深对二叉树的中序遍历的理解;二,实验方法:·用递归调用算法中序遍历二叉树。
三,实验步骤:·通过链式存储建立一颗二叉树。
·设计一个算法实现中序遍历二叉树。
四,具体实验步骤:#include<stdio.h>#include<stdlib.h>#define LEFT 0#define RIGHT 1#define TRUE 1#define FALSE 0typedef struct _BTNODE{char c;struct _BTNODE *lchild;struct _BTNODE *rchild;}BTNODE,*PBTNODE;void PrintBTree(PBTNODE p,int depth);void ConstructBTree(PBTNODE p);void InorderTraverse(PBTNODE p);void main(){PBTNODE p;p=(PBTNODE)calloc(1,sizeof(BTNODE));printf("Input the data:");ConstructBTree(p);PrintBTree(p,0);printf("Now InorderTraverse:");InorderTraverse(p);printf("\nPress any key to continue...");getchar();}void PrintBTree(PBTNODE p,int depth){int i;if(p==NULL){return;}else{for(i=0;i<depth;i++){printf("--");}printf(">");printf("%c\n",p->c);PrintBTree(p->lchild,depth+1);PrintBTree(p->rchild,depth+1);}}void ConstructBTree(PBTNODE p){int side;char c;side=LEFT;while(TRUE){scanf("%c",&c);if(c=='\n'){//printf("EOF\n");return;}// printf("%d\n",c);switch(c){case '|':break;case')':return;case',':side=RIGHT;break;case'(':if(side==LEFT){if(p->lchild==NULL){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->lchild);}else{if(p->rchild==NULL){p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->rchild);}break;default:if(side==LEFT){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->lchild->c=c;}else{p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->rchild->c=c;}}}}void InorderTraverse(PBTNODE p){if(p==NULL){return;}else{InorderTraverse(p->lchild);printf("[%c] ",p->c);InorderTraverse(p->rchild);}return;}五,实验过程:·输出:Input the date;·输入:1(2(3,4),5(6,7));·输出:Now InorderTraverse:【3】【2】【4】【1】【6】【5】【7】;六,上机实验体会:·体会到熟练掌握各种程序算法的重要性;·通过上机练习,充分理解了链式建立二叉树的算法;·形象的了解二叉树的结构,能够熟练的进行先序,中序,后序遍历二叉树。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。
二叉树作为一种常见的数据结构,广泛应用于各个领域。
本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。
一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。
1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。
二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。
在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。
2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。
2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
后序遍历常用于计算二叉树的表达式或释放二叉树的内存。
三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。
链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。
3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。
二叉搜索树常用于实现查找、插入和删除等操作。
(2)堆:堆是一种特殊的二叉树,它满足堆序性质。
堆常用于实现优先队列,如操作系统中的进程调度。
(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。
四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。
在实践中,我进一步理解了二叉树的定义、性质和应用。
二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。
[精品]【数据结构】二叉树实验报告
![[精品]【数据结构】二叉树实验报告](https://img.taocdn.com/s3/m/5d561ae96e1aff00bed5b9f3f90f76c661374c27.png)
[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。
二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。
三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。
四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。
二叉树实验心得(优秀5篇)

二叉树实验心得(优秀5篇)二叉树实验心得篇1二叉树实验心得在进行二叉树实验的过程中,我不仅掌握了一个重要的数据结构——二叉树,还从中体验到了深入理解一个数据结构的魅力和乐趣。
在实验开始时,我首先学习了二叉树的基本概念,如节点、左子树、右子树等。
我明白了二叉树是一种重要的数据结构,它具有层次结构,每个节点最多有两个子节点,且没有祖先节点的左或右子树中的任何一个节点。
接下来,我学习了二叉树的遍历,包括前序遍历、中序遍历和后序遍历。
通过实验,我明白了这些遍历方式的实现原理,并能够灵活地应用它们。
此外,我还学习了递归和迭代两种方法来实现这些遍历方式,这两种方法各有优点和缺点,我深入了解了它们之间的差异。
在进行实验的过程中,我遇到了一些问题,如递归方法导致的栈溢出,以及中序遍历中的栈和队列的使用。
我通过查阅资料和讨论,解决了这些问题,并从中获得了宝贵的经验。
通过这次实验,我更加深入地理解了二叉树的结构和遍历方式,并能够在实际应用中灵活使用。
我明白了数据结构的重要性,以及深入理解数据结构的过程中的乐趣。
同时,我也学会了如何解决问题,并从中获得了宝贵的经验。
总的来说,这次实验是一个非常有意义的经历,我不仅掌握了新的知识,还锻炼了自己的解决问题的能力。
我相信,这次实验将对我未来的学习和工作产生积极的影响。
二叉树实验心得篇2二叉树实验心得这次实验我们了解了二叉树的基本概念,包括二叉树、结点、左子树、右子树、祖先节点等概念。
通过实验,我们对二叉树的性质有了更深刻的理解,比如二叉树只有左子树或右子树,没有左右子树的情况,即空子树。
在实现二叉树时,我们了解了二叉树节点的定义和插入节点的多种方法,包括先插法、后插法等。
我们还学会了利用二叉树来解决实际问题,比如快速查找等问题。
在实验过程中,我们对二叉树的知识进行了深入探究,收获颇丰。
通过这次实验,我对二叉树有了更深刻的认识,明白了二叉树在计算机科学中的重要性。
同时,我对自己的编程能力也有了新的认识,发现自己可以在理解算法的基础上更好地实现它们。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的
编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
实验内容
编程序并上机调试运行。
编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
编写程序
/***********二叉树的遍历**************/
#include<stdio.h>
#include<stdlib.h>
typedef struct BiTNode
{
char data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
/*************************************************/
//按先序次序构建的二叉树链表
void CreatBiTree(BiTree *T)
{
char ch;
if((ch=getchar())==' ')
*T=NULL;
else
{
*T=(BiTNode*)malloc(sizeof(BiTNode));
if(!(*T))
exit(1);
(*T)->data=ch;
CreatBiTree(&(*T)->lchild);
CreatBiTree(&(*T)->rchild);
}
}
/*************************************************/ //先序遍历--递归算法
void PreOrderTraverse(BiTree T)
{
if(T)
{
printf("%c",T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
}
}
/*************************************************/ //中序遍历--递归算法
void InOrderTraverse(BiTree T)
{
if(T)
{
InOrderTraverse(T->lchild);
printf("%c",T->data);
InOrderTraverse(T->rchild);
}
}
/*************************************************/ //后序遍历--递归算法
void PostOrderTraverse(BiTree T)
{
if(T)
{
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
printf("%c",T->data);
}
}
/*************************************************/ //main函数
void main()
{
BiTree T;
printf("请按先序次序输入二叉树中结点的值,空格字符表示空树:\n" );
CreatBiTree(&T);
printf("\n");
printf("先序遍历为:\n");
PreOrderTraverse(T);
printf("\n\n");
printf("中序遍历为:\n");
InOrderTraverse(T);
printf("\n\n");
printf("后序遍历为:\n");
PostOrderTraverse(T);
printf("\n\n");
getchar();
}
运行程序:
结果分析:
按先序输入的二叉树为ABC^^DE^G^^F^^^(^为空格)
该二叉树画成树形为:
其先序遍历为:ABCDEGF
其中序遍历为:CBEGDFA
其后序遍历为:CGEFDBA
可以看出运行结果是正确的。
程序解析:
1.首先是将程序的开头写好,因为后面要用到malloc,所以要有stdlib.h的声明。
然后建立指针表struct BiTNode,定义其数据类型为char型,指针指向lchild,rchild,下一个指针为BiTNode.
2.按先序次序构建二叉树链表T。
函数CreatBiTree为构建二叉树链表的函数,T为指针,定义ch为字符型,如果输入为空格的话,指针就为空。
否则,就新开辟一个单元,如果开辟失败,则强制错误退出,如果开辟成功,就让ch指向新单元的数据,然后再指向左孩子,再指向右孩子。
遇到的问题:一开始写的是以下程序:
没有指针形式,调试的时候没有错误,也可以执行,但是执行的时候就发生以下错误:
所以在T的前面加一个指针符号,因为要用指针指向新的结点,所以将后面的T都加上一个*,结果还是错误:
最后实在不知道错在哪,就上网百度了一下,发现是在指向左孩子和右孩子的时候要加一个地址符,因为函数CreatBiTree是指针函数。
这样结果就对了。
3.建立先序遍历函数。
用递归算法建立先序遍历的函数PreOrderTraverse,如果T不为0,则先输出其根,再输出左孩子,在输出右孩子。
这种方法为递归算法,以下的中序,后序均与此类似。
4.建立中序遍历函数。
用递归算法建立中序遍历函数InOrderTraverse,其函数的写法与先序的类似,先输出其左孩子,再输出根节点,再输出其右孩子。
书上的中序遍历用的是非递归算法,非递归算法用的是栈,所以还要建栈,入栈,出栈等函数,相较于递归算法麻烦很多。
5.建立后序遍历函数。
用递归算法建立后序遍历函数PostOrderTraverse,先输出其左孩子,再输出其右孩子,再输出其根节点。
以%C的格式输出。
6.建立main函数。
先定义一个二叉树链表T,然后再依次调用各个函数,在调用CreatBiTree函数的时候注意要加一个地址符&,因为该函数是指针函数。