二叉树的遍历(先序、中序、后序)

合集下载

前序遍历和后续遍历

前序遍历和后续遍历

首先明确:一颗二叉树的前序遍历=根节点+左子树前序遍历+右子树前序遍历
一颗二叉树的中序遍历=左子树中序遍历+根节点+右子树中序遍历
那么从前序遍历中取第一个点,就是根节点,知道了根节点,就可以找到中序遍历中跟节点的位置,那么就可以在中序遍历中找到左子树和右子树。

首先,我们看看前序、中序、后序遍历的特性:
前序遍历:
1.访问根节点
2.前序遍历左子树
3.前序遍历右子树
中序遍历:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树
后序遍历:
1.后序遍历左子树
2.后序遍历右子树
3.访问根节点
好了,先说说用前序遍历和中序遍历求后序遍历
假设前序遍历为adbgcefh, 中序遍历为dgbaechf
前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点
那么把前序的a 取出来,然后查找a 在中序遍历中的位置就得到dgb a echf
那么我们就知道dgb 是左子树echf 是右子树,因为数量要吻合
所以前序中相应的dbg 是左子树cefh 是右子树
然后就变成了一个递归的过程,具体代码如下:
而已知后序遍历和中序遍历求前序遍历的过程差不多,但由于后序遍历是最后才访问根节点的所以要从后开始搜索,例如上面的例子,后序遍历为gbdehfca,中序遍历为dgbaechf
后序遍历中的最后一个元素是根节点,a,然后查找中序中a的位置
把中序遍历分成dgb a echf,而因为节点个数要对应
后序遍历分为gbd ehfc a,gbd为左子树,ehfc为右子树,这样又可以递归计算了
其他一些附带的代码上面已经有,这里就不重复贴了,具体代码如下:。

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

实验三--二叉树的基本运算

实验三--二叉树的基本运算

实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。

2、熟练掌握二叉树的各种遍历算法。

二、实验内容1、问题描述建立一棵二叉树,试编程实现二叉树的如下基本操作:(1). 按先序序列构造一棵二叉链表表示的二叉树T;(2). 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;(3). 求二叉树的深度/结点数目/叶结点数目;(选做)(4). 将二叉树每个结点的左右子树交换位置。

(选做)2、基本要求从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立)。

3、测试数据如输入:abc00de0g00f000(其中ф表示空格字符)则输出结果为:先序:a->b->c->d->e->g->f中序:a->b->c->d->e->g->f后序:a->b->c->d->e->g->f三、程序代码#include<malloc.h>#include<iostream.h>#define OK 1#define ERROR -1typedef char TElemType;int i;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int CreateBiTree(BiTree&T) //创建二叉树{char a;cin>>a;if(a=='0') T=NULL;else{if(!(T=(BiTNode*)malloc(sizeof(BiTNode)))) {return ERROR;}T->data=a;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}int PreOrderTraverse(BiTree&T) //先序遍历二叉树{if(T){//cout<<"此为先序遍历"<<endl;cout<<T->data<<"->";if(PreOrderTraverse(T->lchild))if(PreOrderTraverse(T->rchild))return OK;return ERROR;}else return OK;}int InOrderTraverse(BiTree&T) //中序遍历二叉树{if(T){//cout<<"此为中序遍历"<<endl;if(InOrderTraverse(T->lchild)){cout<<T->data<<"->";if(InOrderTraverse(T->rchild))return OK;}return ERROR;}else return OK;}int PostOrderTraverse(BiTree&T) //后序遍历二叉树{if(T){//cout<<"此为后序遍历"<<endl;if (PostOrderTraverse(T->lchild))if(PostOrderTraverse(T->rchild)){cout<<T->data<<"->";i++;return (OK);}return (ERROR);}elsereturn (OK);}int CountDepth(BiTree&T) //计算二叉树的深度{if(T==NULL){return 0;}else{int depl=CountDepth(T->lchild);int depr=CountDepth(T->lchild);if(depl>depr){return depl+1;}else{return depr+1;}}}void main() //主函数{BiTree T;cout<<"请输入二叉树节点的值以创建树"<<endl;CreateBiTree(T);cout<<"此为先序遍历";PreOrderTraverse(T);cout<<"end"<<endl;cout<<"此为中序遍历";InOrderTraverse(T);cout<<"end"<<endl;cout<<"此为后序遍历";PostOrderTraverse(T);cout<<"end"<<endl<<"此树节点数是"<<i<<endl<<"此树深度是"<<CountDepth(T)<<endl;}四、调试结果及运行界面:五、实验心得通过这次程序上机实验让我认识到了以前还不太了解的二叉树的性质和作用,这次实验的的确确的加深了我对它的理解。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

二叉树的先序,中序,后序遍历c语言

二叉树的先序,中序,后序遍历c语言

二叉树的先序,中序,后序遍历c语言
二叉树是常见的数据结构,具有广泛的应用场景,例如搜索树、哈夫曼树等。

其中比较重要的一点就是对二叉树的遍历。

二叉树遍历有三种方式:先序遍历、中序遍历、后序遍历。

接下来,我将通过C语言来详细介绍这三种遍历方式。

一、先序遍历(Preorder Traversal)
先序遍历是指根节点->左子树->右子树的遍历方式。

C语言中的先序遍历算法如下:
```
void preorderTraversal(Node *node) {
if (node != NULL) {
printf("%d ", node->data); // 打印节点值
preorderTraversal(node->left); // 递归遍历左子树
preorderTraversal(node->right); // 递归遍历右子树
}
}
```
先序遍历的实现通过递归调用实现,当节点为空即遍历完成时返回。

总结:
以上三种遍历方式是二叉树遍历中最基本的方法,它们都是基于递归实现的。

通过学习这三种遍历方式,可以更好地理解二叉树的结构特点,提高数据结构算法的学习效果。

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

数据结构二叉树先序中序后序考研题目

数据结构二叉树先序中序后序考研题目

数据结构二叉树先序中序后序考研题目在考研所涉及的数据结构中,二叉树以及与之相关的先序、中序和后序遍历是一个重要的考察点。

通过对二叉树的各种遍历方式的理解和掌握,可以帮助考生更好地理解树这个数据结构,提高解题的效率和正确率。

本文将针对数据结构中关于二叉树先序、中序和后序遍历的考研题目进行深入探讨,并希望能为考生提供一些帮助和启发。

一、先序、中序和后序遍历的概念在开始具体讨论考研题目之前,我们先来回顾一下先序、中序和后序遍历的概念。

在二叉树中,所谓的先序、中序和后序遍历,是指对二叉树中的节点进行遍历的顺序方式。

1. 先序遍历:先访问根节点,然后依次递归地访问左子树和右子树。

在遍历过程中,对于任一节点,先访问该节点,然后再访问其左右子树。

2. 中序遍历:先递归地访问左子树,然后访问根节点,最后再递归地访问右子树。

在遍历过程中,对于任一节点,先访问其左子树,然后访问该节点,最后再访问其右子树。

3. 后序遍历:先递归地访问左子树,然后再递归地访问右子树,最后再访问根节点。

在遍历过程中,对于任一节点,先访问其左右子树,然后再访问该节点。

二、考研题目解析1. 题目一:给出一个二叉树的中序遍历和后序遍历序列,构建该二叉树。

这是一个典型的二叉树重建题目,考查对中序和后序遍历结果的理解和利用。

解题的关键在于根据后序遍历序列确定根节点,在中序遍历序列中找到对应的根节点位置,然后再将中序遍历序列分为左右两个子树部分,分别递归构建左右子树。

考生需要对二叉树遍历的特点有清晰的认识,以及对递归构建树结构有一定的掌握。

2. 题目二:给出一个二叉树的先序遍历和中序遍历序列,构建该二叉树。

这个题目与上一个题目相似,同样是考察对二叉树重建的理解和应用。

解题思路也类似,首先根据先序遍历的结果确定根节点,在中序遍历序列中找到对应的根节点位置,然后递归构建左右子树。

需要注意的是,先序遍历序列的第一个元素即为根节点,而中序遍历序列中根节点的左边是左子树,右边是右子树。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实践三:树的应用
1.实验目的要求
通过本实验使学生深刻理解二叉树的性质和存储结构,熟练掌握二叉树的遍历算法。

认识哈夫曼树、哈夫曼编码的作用和意义。

实验要求:建一个二叉树并按照前序、中序、后序三种方法遍历此二叉树,正确调试本程序。

能够建立一个哈夫曼树,并输出哈夫曼编码,正确调程序。

写出实验报告。

2.实验主要内容
2.1 对二叉树进行先序、中序、后序递归遍历,中序非递归遍历。

2.2 根据已知的字符及其权值,建立哈夫曼树,并输出哈夫曼编码。

3.实验步骤
2.1实验步骤
●输入p127二叉链表的定义
●录入调试p131算法6.4,实现二叉树的构造函数
●编写二叉树打印函数,可以通过递归算法将二叉树输出为广义表的
形式,以方便观察树的结构。

●参考算法6.1,实现二叉树的前序、中序和后序的递归遍历算法。

为简化编程,可以将visit函数直接使用printf函数输出结点内容来
代替。

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#define OK 1
#define ERROR 0
#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
typedef char TElemType;
typedef char Status;
// 构造书的结构体
typedef struct BiTNode{
TElemType data;
struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;
// 构造栈的结构体
typedef BiTree SElemType;
typedef struct{
SElemType *base;
SElemType *top;
int stacksize;
}SqStack;
Status InitStack(SqStack &S){
//构造一个空栈
S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType)); if(!S.base)exit(-2);
S.top = S.base;
S.stacksize = STACK_INIT_SIZE;
return OK;
}
Status StackEmpty(SqStack S){
//若栈S为空栈,则返回TRUE,否则返回FALSE
if(S.top==S.base)
return 1;
else
return 0;
}
Status Push(SqStack &S,SElemType e){
//插入元素e为新的栈顶元素
if(S.top - S.base >= S.stacksize){
S.base = (SElemType *)realloc(S.base,(S.stacksize + STACKINCREMENT) * sizeof(SElemType));
if(!S.base)exit(-2);
S.top = S.base + S.stacksize;
S.stacksize += STACKINCREMENT;
}
*S.top++ = e;
return OK;
}
Status Pop(SqStack &S,SElemType &e){
//若栈不空,则删除S的栈顶元素,用e返回其值并返回OK,否则返回ERROR
if(S.top == S.base) return ERROR;
e = * --S.top;
return OK;
}
Status InOrderTraverse(BiTree T,Status(*Visit)(TElemType e)){
//非递归中序遍历二叉树
SqStack S;
BiTNode * p;
InitStack(S);
p = T;
while(p||!StackEmpty(S)){
if(p){Push(S,p); p=p->lchild; }
else {
Pop(S,p); if(!Visit(p->data)) return 0;
p=p->rchild;
}
}
return 1;
}
//以下是递归遍历
Status CreateBiTree(BiTree &T){
//构造二叉树T
char ch;
scanf("%c",&ch);
if(ch == ' ') T=NULL;
else{
if(!(T=(BiTNode*)malloc(sizeof(BiTNode)))) exit(-2);
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
return 1;
}
Status PreOrderTraverse(BiTree T, Status(* Visit)(TElemType e)){ //递归先序遍历
if(T){
if(Visit(T->data))
if(PreOrderTraverse(T->lchild,Visit))
if(PreOrderTraverse(T->rchild,Visit)) return 1;
return 0;
}else return 1;
}
Status MinOrderTraverse(BiTree T, Status(* Visit)(TElemType e)){ //递归中序遍历
if(T){
if(MinOrderTraverse(T->lchild,Visit))
if(Visit(T->data))
if(MinOrderTraverse(T->rchild,Visit)) return 1;
return 0;
}else return 1;
}
Status PostOrderTraverse(BiTree T, Status(* Visit)(TElemType e)){ //递归后续遍历
if(T){
if(PostOrderTraverse(T->lchild,Visit))
if(PostOrderTraverse(T->rchild,Visit))
if(Visit(T->data)) return 1;
return 0;
}else return 1;
}
Status PrintElement(TElemType e){
//Visit函数,输出元素
printf("%c ",e);
return 1;
}
//主函数
void main(){
BiTNode* p;
printf("Enter Node:\n");
CreateBiTree(p);
printf("递归先序遍历:");
PreOrderTraverse(p,PrintElement);
printf("\n递归中序遍历:");
MinOrderTraverse(p,PrintElement);
printf("\n递归后序遍历:");
PostOrderTraverse(p,PrintElement);
printf("\n");
printf("\n非递归中序遍历:");
InOrderTraverse(p,PrintElement);
printf("\n");
}
输入:ABCE000DF00G00HJ00K0L00 (“0”表示空格) 输出:。

相关文档
最新文档