第四讲 数列综合检测题
数列综合测试题及答案

高一数学数列综合测试题1.{a n}是首项a1=1,公差为d=3 的等差数列,如果a n=2 005 ,则序号n等于( ).A.667 B.668 C.669 D.6702.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=( ).A.33 B.72 C.84 D.1893.如果a1,a2,?,a8 为各项都大于零的等差数列,公差d≠0,则( ).A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5 D.a1a8=a4a52 24.已知方程(x -2x+m)( x -2x+n)=0 的四个根组成一个首项为14的等差数列,则|m-n|等于( ).A.1 B.34C.12D.385.等比数列{a n}中,a2=9,a5=243,则{a n}的前 4 项和为( ).A.81 B.120 C.168 D.1926.若数列{a n}是等差数列,首项a1>0,a2 003 +a2 004 >0,a2 003 ·a2 004 <0,则使前n 项和S n>0 成立的最大自然数n 是( ).A.4005 B.4006 C.4007 D.40087.已知等差数列{a n}的公差为2,若a1,a3,a4 成等比数列, 则a2=( ).A.-4 B.-6 C.-8 D.-108.设S n 是等差数列{a n}的前n 项和,若a5a3=59,则S9S5=( ).A.1 B.-1 C.2 D.1 29.已知数列-1,a1,a2,-4 成等差数列,-1,b1,b2,b3,-4 成等比数列,则a2b2a1 的值是( ).A.12B.-12C.-12或12D.1410.在等差数列{a n}中,a n≠0,a n-1- 2a +a n+1=0( n≥2,) 若S2n-1=38,则n=( ).nA.38 B.20 C.10 D.9二、填空题..11.设 f (x )=1x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f(-4)+?+f (0) +?+2 2f (5)+f (6) 的值为.12.已知等比数列{a n}中,(1) 若a3·a4·a5=8,则a2·a3·a4·a5·a6=.(2) 若a1+a2=324,a3+a4=36,则a5+a6=.(3) 若S4=2,S8=6,则a17+a18+a19+a20=.13.在83 和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.14.在等差数列{a n}中,3(a3+a5)+2( a7+a10+a13)=24,则此数列前13 项之和为.15.在等差数列{a n}中,a5=3,a6=-2,则a4+a5+?+a10=.16.设平面内有n 条直线(n≥3,) 其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f (n)表示这n 条直线交点的个数,则 f (4) =;当n>4 时,f (n )=.三、解答题217.(1)已知数列{a n}的前n 项和S n=3n -2n,求证数列{a n}成等差数列.(2) 已知1a,1b,1c成等差数列,求证b c c a a b,,a b c也成等差数列.18.设{a n}是公比为q的等比数列,且a1,a3,a2 成等差数列.(1) 求q 的值;..(2)设{b n}是以 2 为首项,q 为公差的等差数列,其前n 项和为S n,当n≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n}的前n 项和记为S n,已知a1=1,a n+1=n 2nS n(n=1,2,3?).求证:数列{ S nn}是等比数列.20.已知数列{a n}是首项为 a 且公比不等于 1 的等比数列,S n 为其前n 项和,a1,2a7,3a4 成等差数列,求证:12 S3,S6,S12-S6 成等比数列...高一数学数列综合测试题参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1+(n-1) d,即 2 005=1+3( n-1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n}的公比为q(q>0),由题意得a1+a2+a3=21,即a1(1+q+q 2 2)=21,又a1=3,∴1+q+q =7.解得q=2 或q=-3(不合题意,舍去),2 2 2∴a3+a4+a5=a1q (1+q+q )=3×2 ×7=84.3.B.解析:由a1+a8=a4+a5,∴排除C.2又a1·a8=a1(a1+7d)=a1 +7a1d,2 2∴a4·a5=(a1+3d )(a1+4d )=a1 +7a1d +12d >a1·a8.4.C解析:..解法1:设a1=14 ,a2=14+d,a3=14+2d,a4=142 2+3d,而方程x -2x+m=0 中两根之和为2,x -2x+n=0中两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴d=12,a1=14,a4=74是一个方程的两个根,a1=34,a3=54是另一个方程的两个根.7 ∴16 ,1516分别为m 或n,∴|m-n|=12,故选C.解法2:设方程的四个根为x1,x2,x3,x4,且x1+x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若+s=p+q,则 a +a s=a p+a q,若设x1 为第一项,x2 必为第四项,则x2=74,于是可得等差数列为14,34,54,74,∴m =716,n=1516,∴|m-n|=12 .5.B解析:∵a2=9,a5=243,a5a23=q=2439=27,∴q=3,a1q=9,a1=3,∴S4=53 3-1 3-=2402=120.6.B解析:解法1:由a2 003 +a2 004 >0,a2 003 ·a2 004 <0,知a2 003 和a2 004 两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2 003>a2 004 ,即a2 003 >0,a2 004<0.∴S4 006 =4006( a1 a )+4 0062=4006( a a+2 003 22004)>0,∴S4 007 =40072·(a1+a4 007 )=40072·2a2 004 <0,故4 006 为S n>0 的最大自然数. 选B.... ..解法2:由a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同解法 1 的分析得a2 003 >0,a2 004 <0,∴S2 003 为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,( 第6 题) ∴2 003 到对称轴的距离比 2 004 到对称轴的距离小,4 ∴0072在对称轴的右侧.根据已知条件及图象的对称性可得 4 006 在图象中右侧零点 B 的左侧, 4 007,4 008 都在其右侧,S n>0 的最大自然数是 4 006 .7.B解析:∵{a n}是等差数列,∴a3=a1+4,a4=a1+6,又由a1,a3,a4 成等比数列,∴(a1+4) 2 =a1(a1+6),解得a1=-8,∴a2=-8+2=-6.8.A9(a1 a )9解析:∵S9S5= 225(a1a )5=95a5a3=9559·=1,∴选A.9.A4 解析:设 d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q,2∴d=-1,q =2,a2 ∴b2 a1d= 2q=12.10.C解析:∵{a n}为等差数列,∴ 2 a =an-1+a n+1,∴n2a =2a n,n...又a n≠0,∴a n=2,{a n}为常数数列,..而a n=S n22n11,即2n-1=382=19,∴n=10.二、填空题11.3 2 .解析:∵f( x)=1x ,2 2∴f (1-x)=11 x =2 2 2x22 2x=1222x2x,∴f (x )+f (1-x)=2 1x2+122x2x2=1122x2x2=12(22x2x2 )=22.设S=f (-5)+f(-4)+?+f (0)+?+f (5) +f (6) ,则S=f (6) +f (5) +?+f (0) +?+f (-4)+f (-5),∴2S=[f(6) +f (-5)] +[f(5) +f (-4)] +?+[f(-5)+f (6)] =6 2 ,∴S=f (-5)+f (-4)+?+f (0) +?+f (5) +f (6) =3 2 .12.(1)32;(2)4;(3)32.解析:(1)由a3·a5= 2a ,得a4=2,4∴a2·a3·a4·a5·a6= 5 a =32.4(2)a1( a1a2a23242)q 362q19,4∴a5+a6=(a1+a2)q=4.S a a a a 2=+++=4 1 2 3 44 (3)q =24S a= a a S S q+++=+8 1 2 8 4 4,16∴a17+a18+a19+a20=S4q =32.13.216....解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与83 ,272同号,由等比中项的中间数为83 27283=6,插入的三个数之积为×272×6=216...14.26.解析:∵a3+a5=2a4,a7+a13=2a10,∴6(a4+a10)=24,a4+a10=4,∴S13=13( a1 a13 )+2=13( a4 a10 )+2=13 42=26.15.-49.解析:∵d=a6-a5=-5,∴a4+a5+?+a10=7(a a4+)102=7(a5 d a5 5d) -++2=7( a5+2d) =-49.16.5,12(n+1)( n-2).解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f (k -1) +(k-1).由f (3) =2,f (4)=f (3) +3=2+3=5,f (5)=f (4) +4=2+3+4=9,??f (n)=f(n-1)+(n-1),相加得 f (n)=2+3+4+?+(n-1)=12(n+1)( n-2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第 2 项开始每项与其前一项差为常数.证明:(1)n=1 时,a1=S1=3-2=1,... ..2 2当n≥2 时,a n=S n-S n-1=3n -2n-[3( n-1) -2(n-1)]=6n-5,n=1 时,亦满足,∴a n=6n-5( n∈N*).首项a1=1,a n-a n-1=6n-5-[6( n-1)-5]=6(常数)(n∈N*),∴数列{a n}成等差数列且a1=1,公差为6.(2)∵1a,1b,1c成等差数列,2b ∴=1a+1c化简得2ac=b( a+c).b+a c+a+bc=2 2bc+c +a +acab=(ba c ++)ac2+2a c=(a+c)ac2=(ac)+b(ac)+2a+=2·bc,b+∴a c ,c+ba ,a+bc也成等差数列.218.解:(1)由题设2a3=a1+a2,即2a1q =a1+a1q,∵a1≠0,∴2q 2-q-1=0,∴q=1 或-12 .(2)若q=1,则S n=2n+n(n-1)2 =2 nn 3+2.( n-1)( n+2)当n≥2 时,S n-b n=S n-1=>0,故S n>b n.2若q=-12,则S n=2n+n(n-1)2(-12)=- 2 nn +94.当n≥2 时,S n-b n=S n-1=( n 1 n-1)( 0-)4,故对于n∈N+,当2≤n≤9 时,S n>b n;当n=10 时,S n=b n;当n≥11 时,S n<b n.19.证明:∵a n+1=S n+1-S n,a n+1=n+2nS n,∴(n+2) S n=n( S n+1-S n),整理得nS n+1=2( n+1) S n,所以S n+1n 1=2S nn.... +故{ S nn}是以 2 为公比的等比数列.20.证明:由a1,2a7,3a4 成等差数列,得4a7=a1+3a4,即 4 a1q 6 3 =a1+3a1q,3 3变形得(4q +1)( q -1)=0,∴q 3 =-143或q =1(舍)...a (1 16 q )由S612S3=112a (11q 1=3q )3q12=116;1 qa (1112q )S12S6 S6 =S12S6-1=1a (11q6q )6-1=1+q -1=116;得S612S3=S12S6S6 .1 q∴12 S3,S6,S12-S6 成等比数列.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
数列综合练习题以及答案解析

数列综合练习题一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.55.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.86.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣212.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.10117.数列1,,,…,的前n项和为()A.B. C. D.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣100819.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.13620.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<121.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.5523.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.数列综合练习题答案与解析一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)【解答】解:函数f(x)=,数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,∴,解得2<a<4.故选:C.2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)【解答】解:∵{a n}是递增数列,∴a n>a n,+1∵a n=n2+λn恒成立即(n+1)2+λ(n+1)>n2+λn,∴λ>﹣2n﹣1对于n∈N*恒成立.而﹣2n﹣1在n=1时取得最大值﹣3,∴λ>﹣3,故选D.3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负【解答】解:∵f(a11)>f(0)=0,a9+a13=2a11>0,a9>﹣a13,∴f(a9)>f(﹣a13)=﹣f(a13),f(a9)+f(a13)>0,∴f(a9)+f(a11)+f(a13)>0,故选:A.4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.5【解答】解:∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lga n}的前10项和S=lga1+lga2+…+lga10=lga1a2…a10=lg105=5故选:D5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.8【解答】解:杨辉三角形中,每一行的第一个数和最后一个数都是1,首尾之间的数总是上一行对应的两个数的和,∴a=3+3=6;故选C.6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.【解答】解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所(a1q m﹣1)(a1q n﹣1)=16a12,则q m+n﹣2=16,解得m+n=6,+=×(m+n)×(+)=×(17++)≥×(17+2)=,当且仅当=,解得:m=,n=,因为m n取整数,所以均值不等式等号条件取不到,+>,验证可得,当m=1、n=5时,取最小值为.故答案选:B.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.【解答】解:由A(m,n)表示第m行的第n个数可知,A(10,12)表示第10行的第12个数,根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第10行的最后一个项的项数为102=100,即为a100;②每一行都有2n﹣1个项,所以第10行有2×10﹣1=19项,得到第10行第一个项为100﹣19+1=82,所以第12项的项数为82+12﹣1=93;所以A(10,12)=a93=故选A.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)【解答】解:∵======﹣=﹣sin(4d),∴sin(4d)=﹣1,∵d∈(﹣1,0),∴4d∈(﹣4,0),∴4d=﹣,d=﹣,∵S n=na1+==﹣+,∴其对称轴方程为:n=,有题意可知当且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴<<,解得π<a1<,故选:A.9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③【解答】解:不妨设等比数列{a n}中,a n=a1•q n﹣1,①∵f(x)=3x,∴====常数,故当q≠1时,{f(a n)}不是等比数列,故f(x)=3x不是等比函数;②∵f(x)=,∴===,故{f(a n)}是等比数列,故f(x)=是等比函数;③∵f(x)=x3,∴=═q3,故{f(a n)}是等比数列,故f(x)=x3是等比函数;④f(x)=log2|x|,∴==,故{f(a n)}不是等比数列,故f(x)=log2|x|不是等比函数.故其中是“等比函数”的f(x)的序号②③,故选:D.10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③【解答】解:设数列{a n}的公比为q(q≠1)①由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=ln=﹣lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;②由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=a n+1﹣a n不是常数,∴数列{lnf(a n)}不为等差数列,不满足题意;③由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;④由题意,lnf(a n)=ln(2a n),∴lnf(a n+1)﹣lnf(a n)=ln(2a n+1)﹣ln(2a n)=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①③④故选:C.11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣2【解答】解:∵a1=1,a n+1=,∴=+3,即﹣=3,∴数列{}是以1为首项,3为公差的等差数列,∴=1+(n﹣1)×3=3n﹣2,∴a n=,故选:A.12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣【解答】解:由已知可得﹣=﹣1,设b n=,则数列{b n}是以为首项,公差为﹣1的等差数列.∴b31=+(31﹣1)×(﹣1)=﹣,∴a31=﹣.故选:B.13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列【解答】解:对于A:设b n=,则==()2=q2,∴{b n}成等比数列;正确;对于B:数列{2},=2≠常数;不正确;对于C:当a n<0时lga n无意义;不正确;对于D:设c n=na n,则==≠常数.不正确.故选A.14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.【解答】解:在数列{a n}中,a n+1=a n+2,且a1=1,可得a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,由==(﹣),可得=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故选:A.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)【解答】解:由等差数列的前n项和公式的性质可得:A,B﹣A,C﹣B也成等差数列.∴2(B﹣A)=A+C﹣B,解得3(B﹣A)=C.故选:C.16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.101【解答】解:数列{a n}的通项为a n=(﹣1)n(4n﹣3),前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197)=4+4+4+…+4=4×25=100.故选:C.17.数列1,,,…,的前n项和为()A.B. C. D.【解答】解:===2().数列1,,,…,的前n项和:数列1+++…+=2(1++…)=2(1﹣)=.故选:B.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣1008【解答】解:∵,n=2k﹣1(k∈N*)时,a n=a2k﹣1=(2k﹣1)=0.n=2k时,a n=a2k=2kcoskπ=2k•(﹣1)k.∴s2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=0+(﹣2+4﹣…﹣2014+2016)=1008.故选:B.19.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.136+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a16﹣a15=29.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前16项和为4×2+8×4+=136.故选:D.20.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<1【解答】解:根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,∵++…+=1﹣<1,故反映这个命题本质的式子是++…+<1,故选:D21.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)【解答】解:∵=+,a1=8,则数列{}为等差数列.∴=+(n﹣1)=(n+1).∴a n=2(n+1)2.故选:A.22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.55【解答】解:当0<x≤1时,有﹣1<x﹣1<0,则f(x)=f(x﹣1)+1=2x﹣1,当1<x≤2时,有0<x﹣1≤1,则f(x)=f(x﹣1)+1=2x﹣2+1,当2<x≤3时,有1<x﹣1≤2,则f(x)=f(x﹣1)+1=2x﹣3+2,当3<x≤4时,有2<x﹣1≤3,则f(x)=f(x﹣1)+1=2x﹣4+3,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x﹣1)+1=2x﹣n﹣1+n,所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.然后:①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x 的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0).即当x≤0时,方程f(x)﹣x=0有且仅有一个根x=0.②取①中函数f(x)=2x﹣1和y=x图象﹣1<x≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x﹣1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).即当0<x≤1时,方程f(x)﹣x=0有且仅有一个根x=1.③取②中函数f(x)=2x﹣1和y=x在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)﹣x=0有且仅有一个根x=2.④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.综上所述方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为:0,1,2,3,4,…,其通项公式为:a n=n﹣1,前n项的和为S n=,∴S10=45,故选C.23.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]【解答】解:∵等差数列{a n}满足,∴(sina4cosa7﹣sina7cosa4)(sina4cosa7+sina7cosa4)=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4,∴sina4cosa7﹣sina7cosa4=1,或sina4cosa7+sina7cosa4=0即sin(a4﹣a7)=1,或sin(a4+a7)=0(舍)当sin(a4﹣a7)=1时,∵a4﹣a7=﹣3d∈(0,3),a4﹣a7=2kπ+,k∈Z,∴﹣3d=2kπ+,d=﹣﹣π.∴d=﹣∵S n=na1+=n2+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴8.5<﹣<9.5,∴π<a1<故选:C二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n}是等比数列,公比为3,首项为1.﹣1b1+b3+b5+…+b2n﹣1==.。
高考数学:数列求和

第四讲 数列求和A 组基础巩固一、选择题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎫12+122+…+12n =n 2+1-12n .2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2.∴1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝⎛ 1-12+12-13⎭⎫+…+1100-1101=2⎝⎛⎭⎫1-1101=200101.故选D . 3.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( D )A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2[解析] 因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1①,2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ②,所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2.4.(2020·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n (2n -1),则S 2021=(B )A .2 021B .-2 021C .-4 041D .4 041[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n ·(2n -1),a 2 021=(-1)2 021(2×2 021-1)=-4 041,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 021=(a 1+a 2)+(a 3+a 4)+…+(a 2 019+a 2 020)+a 2 021=2×1 010-4 041=-2 021.5.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( D )A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2[解析] 因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,① 2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ,②所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2. 6.(2021·江西宁都中学线上检测)已知f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+…+f (a 2 020)=( D )A .2 0192B .1 010C .2 019D .2 020[解析] 本题综合考查函数与数列相关性质.∵f (x )=21+x 2(x ∈R ),∴f (x )+f ⎝⎛⎭⎫1x =21+x 2+21+⎝⎛⎭⎫1x 2=21+x 2+2x 21+x 2=2.∵等比数列{a n }满足a 1a 2 020=1,∴a 1a 2 020=a 2a 2 019=…=a 2 020a 1=1,∴f (a 1)+f (a 2 020)=f (a 2)+f (a 2 019)=…=f (a 2 020)+f (a 1)=2,∴f (a 1)+f (a 2)+…+f (a 2 020)=2 020.7.(2021·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2nn -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则下列不正确的是( C )A .a 2=-8B .a n =-2n ·nC .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×nn -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n ·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n ·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n +n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.(理)数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法不正确的是( B ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57(文)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .(n -1)24C .n (n -1)4D .n (n +1)4[解析] (理)对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n 4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选B .(文)依题意可得新数列为n 2,n 4,n 6,…,1n ×n 2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎡ 11×2+12×3+…+⎦⎤1(n -1)n=n 24⎝⎛⎭⎫1-12+12-13+…+1n -1-1n =n 24×n -1n =n (n -1)4.故选C . 二、填空题 9.122-1+132-1+142-1+…+1(n +1)2-1= 34-12⎝⎛⎭⎫1n +1+1n +2 .[解析] ∵1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2,∴122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 10.(2021·山东、湖北部分重点中学联考)已知数列{a n }的前n 项之和为S n ,若a 1=2,a n+1=a n +2n -1+1,则S 10=__1_078__.[解析] a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1⇒a n =2n -2+2n -3+…+2+1+n -1+a 1.=1-2n -11-2+n -1+2=2n -1+n .S 10=1+2+22+…+29+10×112=1 078.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4=__24__,T 30=__650__.[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018=__4_709__. [解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.三、解答题13.(2021·山东枣庄八中模拟)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .[解析] (1)设数列{a n }的公比为q ,由a 23=9a 2a 6得a 23=9a 24,所以q 2=19,又q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.所以数列{a n }的通项公式为a n =13n .(2)由(1)及题意可得b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2,故1b n =-2n (n +1)=-2⎝⎛⎭⎫1n -1n +1, T n =1b 1+1b 2+…+1b n =-2⎣⎡ ⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎦⎤⎝⎛⎭⎫1n -1n +1=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n =-2n n +1.14.(2021·云南省红河州高三复习统一检测)等差数列{a n }的首项a 1>0,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为S n =n2n +1.(1)求{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .[解析] (1)由⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为S n =n2n +1知⎩⎨⎧1a 1a 2=131a 1a 2+1a 2a 3=25,可得⎩⎪⎨⎪⎧a 1a 2=3a 2a 3=15,设等差数列{a n }的公差为d ,从而⎩⎪⎨⎪⎧ a 1(a 1+d )=3(a 1+d )(a 1+2d )=15,解得⎩⎪⎨⎪⎧ a 1=1d =2或⎩⎪⎨⎪⎧a 1=-1d =-2,又a 1>0,则⎩⎪⎨⎪⎧a 1=1d =2,故a n =a 1+(n -1)d =1+(n -1)×2=2n -1. (2)由(1)知b n =(a n +1)·2a n =2n ·22n -1=n ·4n ,则T n =b 1+b 2+b 3+…+b n -1+b n =1×41+2×42+3×43+…+(n -1)×4n -1+n ×4n , 两边同时乘以4得4T n =1×42+2×43+3×44+…+(n -1)×4n +n ×4n +1,两式相减得-3T n =41+42+43+44+…+4n -n ×4n +1=4×(1-4n )1-4-n ×4n +1,故T n =49+3n -19·4n +1.B 组能力提升1.(2021·江苏连云港月考)设i 是虚数单位,则2i +3i 2+4i 3+…+2 020i 2 019的值为( B ) A .-1 010-1 010i B .-1 011-1 010i C .-1 011-1 012iD .1 011-1 010i[解析] 本题考查等比数列的求和公式,错位相减法以及复数的乘除法运算,设S =2i +3i 2+4i 3+…+2 020i 2 019,可得i S =0+2i 2+3i 3+4i 4+…+2 019i 2 019+2 020i 2 020,两式相减可得(1-i)S =2i +i 2+i 3+i 4+…+i 2 019-2 020i 2 020=i +i +i 2+i 3+i 4+…+i 2 019-2 020i 2 020=i +i (1-i 2 019)1-i -2 020i 2 020=i +i (1+i )1-i -2 020=i +i (1+i )22-2 020=-2 021+i ,可得S =-2 021+i 1-i=(-2 021+i )(1+i )2=-1 011-1 010i.2.(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( C )A .a 5=-32B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n +1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选C .3.(2021·益阳、湘潭调研考试)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( B ) A .4 0352 018B .4 0332 017C .2 0172 018D .2 0162 017[解析] 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n.当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1.b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.故选B .4.若{a n }是公比为q (q ≠0)的等比数列,记S n 为{a n }的前n 项和,则下列说法正确的是( D )A .若{a n }是递增数列,则a 1<0,q <0B .若{a n }是递减数列,则a 1>0,0<q <1C .若q >0,则S 4+S 6>2S 5D .若b n =1a n,则{b n }是等比数列[解析] A 选项中,a 1=2,q =3,满足{a n }单调递增,故A 错误;B 选项中,a 1=-1,q =2,满足{a n }单调递减,故B 错误;C 选项中,若a 1=1,q =12,则a 6<a 5,S 6-S 5<S 5-S 4,故C 错误;D 选项中,b n +1b n =a n a n +1=1q(q ≠0),所以{b n }是等比数列.故D 正确.故选D .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧ q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2. ∴a n =3+2(n -1)=2n +1,b n =2n -1. (2)由a 1=3,a n =2n +1得S n =n (n +2), 则n 为奇数,c n =2S n =1n -1n +2,n 为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n )1-4=2n 2n +1+23(4n -1).。
数列测试题及答案

数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。
答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。
答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。
答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。
答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。
答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。
答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。
数列专题复习综合检测题及答案①

高考数学数列专题复习综合检测一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.等差数列{}n a 中,155=a ,则8642a a a a +++的值为( ) A. 30 B. 45 C. 60 D. 1202.等比数列{}n a 的前4项和为240,第2项与第4项的和为180,则数列{}n a 的首项为( ) A. 2 B. 4 C. 6 D. 83.设n S 为数列{}n a 的前n 项和,492-=n a n ,则n S 达到最小值时,n 的值为( ) A. 12 B. 13 C. 24 D. 254.设n S 为数列{}n a 的前n 项和,122221-++++=n n a ,则n S 的值为( )A. 12-nB. 121--n C. 22--n nD. 221--+n n5.等比数列{}n a 中,2321=++a a a ,4654=++a a a ,则=++121110a a a ( ) A. 32 B. 16 C. 12 D. 86.数列{}n a 中,11++=n n a n ,若前n 项和9=n S ,则项数n 等于( )A. 96B. 97C. 98D. 997.某工厂去年的产值为P ,计划在5年内每年比上一年产值增长10%,则从今年起5年内该工厂的总产值为( )A.P )11.1(115- B.P )11.1(114- C.P )11.1(105- D.P )11.1(104-8.已知n S 为等比数列{}n a 的前n 项和,21=a ,若数列{}n a +1也是等比数列,则n S 等于( )A. n 2B. n 3C. 221-+n D. 13-n二、填空题:(本大题共7小题,每小题5分,共30分) 9.已知n S 是数列{}n a 的前n 项和,,52n nS n +=则=n a .10.在等差数列{}n a 中,0≠n a ,且431,,a a a 成等比数列,则其公比=q . 11.已知4个实数1,,,921--a a 成等差数列,5个实数1,,,,9321--b b b 成等比数列,则)(122a a b -⋅ . 12.已知等比数列{}n a 中,991,,0a a a n >为016102=+-x x的两个根,则=⋅⋅605040a a a .13..对正整数n ,设曲线)1(x x y n-=在2=x 处的切线与y 轴交点的纵坐标为n a ,则数列⎭⎬⎫⎩⎨⎧+1n a n 的前n 项和=n S . 三、解答题:.解答应写出文字说明、证明过程或演算步骤.14. 已知等差数列{}n a 中,n S 是其前n 项和,155,7209==S a ,求:11a 及10S .15. 已知等比数列{}n a 各项为正数,n S 是其前n 项和,且,3451=+a a 6442=⋅a a . 求{}n a 的公比q 及n S .16. (14分)已知:公差不为零的等差数列{}n a 中,n S 是其前n 项和,且421,,S S S 成等比数列. ⑴求数列421,,S S S 的公比q ;⑵若42=S ,求等差数列{}n a 的通项公式.17.已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b = ,且1n T =,求n 的值.18.数列{}n a 首项11a =,前n 项和n S 与n a 之间满足22 (2)21nn n S a n S =≥-.⑴求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; ⑵求数列{}n a 的通项公式;19.(本小题满分12分)已知函数321(),3f x x ax bx =++且'(1)0f -=(Ⅰ)试用含a 的代数式表示b ;(Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x Nxf x ,证明:线段M N 与曲线()f x 存在异于M 、N 的公共点;1.【解析】C. 8642a a a a +++.6045==a5. 【解析】B. 由题意,得 23=q ,=++121110a a a .16)(6654=++q a a a7.【解析】A.8.【解析】A. 数列{}n a +1是等比数列,∴1)21(3)21(22=⇒+=+q q q ,.2n S n =9.【解析】42+n .利用).2(1≥-=-n S S a n n n 10.【解析】1或21.11.【解析】8-. 1,,,921--a a 成等差数列,∴3814)9(112=----=-a a1,,,,9321--b b b 成等比数列,∴32-=b (32-=b 不合)∴8)(122-=-⋅a a b .12. 【解析】64.13. 【解析】.221-+n 1)1(+-=-=n nnx x x x y ,nn x n nxy )1(1+-='-, 122)2(-=⋅+-='n x n y ,当2=x 时,n y 2-=,切线:)2(2)2(21-⋅+-=+-x n y n n令0=x ,得 nn n a 2)1(+=,∴nn n a 21=+,∴.2221)21(21-=--=+n nn S14. 【解析】设等差数列{}n a 的公差为d ,则⎩⎨⎧=+==+=155190207812019d a S d a a (4分)解得,,21,31==d a (8分)∴ 82110311=⨯+=a ,2105219102131010=⨯⨯⨯+⨯=S . (13分)15. 【解析】 数列{}n a 是等比数列,∴645142=⋅=⋅a a a a , (2分)又 ,3451=+a a ∴ 32,251==a a 或2,3251==a a , (4分) 由0>n a ,当32,251==a a 时,nn S q 2,2==, (8分) 当2,3251==a a 时,4)21(,21+==n n S q (12分) 16.【解析】⑴设等差数列{}n a 的公差为d ,则4122S S S ⋅= ,即)64()2(1121d a a d a +=+(2分)0≠d ,∴12a d =,(5分) ∴421112=+==a d a S S q (7分)⑵由⑴知,12a d =, ① 42412=+⇒=d a S ② (9分) 由①②解得,2,11==d a ,∴12)1(21-=-+=n n a n . (14分)17. 【解析】解:⑴设数列{}n a 的公差为d ,则11202828a d a d +=-⎧⎨+=-⎩ 2分,解得1222a d =-⎧⎨=⎩ 4分222(1)224n a n n ∴=-+-=- 6分⑵2242log 2242n n n b n b -=-∴= 8分2(12)24(1)241222n nn n nn n T b b b +++-+-∴=== 10分令(1)240n n n +-=,得23n = 12分 ∴当23n =时,1n T = 13分18. 【解析】⑴因为2n ≥时,2112 21nn n n n n n S a S S S S S --=-∴-=-得112n n n n S S S S ---=⋅由题意 0 (2)n S n ≠≥ ()1112 2nn n S S -∴-=≥又111S a == 1n S ⎧⎫∴⎨⎬⎩⎭是以111S =为首项,2为公差的等差数列. (4分) ⑵由⑴有11(1)221nn n S =+-⨯=- ()1 21n S n Nn *∴=∈-2n ∴≥时,1112212(1)1(21)(23)n n n a S S n n n n -=-=-=------又111a S == 1 (1)2(2)(21)(23)n n a n n n =⎧⎪∴=⎨-≥⎪--⎩(8分) (Ⅰ)依题意,得2'()2f x x ax b =++ 由'(1)120f a b -=-+=得21b a =- (Ⅱ)由(Ⅰ)得321()(21)3f x x ax a x =++-故2'()221(1)(21)f x x ax a x x a =++-=++- 令'*()0f x =,则1x =-或12x a =-①当1a >时,121a -<- 当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a -- ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a -- 综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a -- (Ⅲ)当1a =-时,得321()33f x x x x =--由3'()230f x x x =--=,得121,3x x =-=由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)- 所以函数()f x 在121.3x x =-=处取得极值。
数列综合检测试卷总结.doc

大,这样可引起低血糖并造成大脑疲劳,从而影响大脑的正常发挥, 对考试成绩产生重大影响。 因此建议考生, 在用脑 60 分钟时, 开始补 饮 25%浓度的葡萄糖水 100 毫升左右,为一个高效果的考试 加油 。
二、考场记忆“短路”怎么办呢?
对于考生来说,掌握有效的应试技巧比再做题突击更为有效。
1.草稿纸也要逐题顺序写草稿要整洁,草稿纸使用要便于检查。不要 在一大张纸上乱写乱画,东写一些,西写一些。打草稿也要像解题一 样,一题一题顺着序号往下写。最好在草稿纸题号前注上符号,以确 定检查侧重点。 为了便于做完试卷后的复查, 草稿纸一般可以折成 4-8 块的小方格, 标注题号以便核查,保留清晰的分析和计算过程。
形数,这是因为这些数目的点可以排成一个正三角形(如图) .
1
3
6
试问三角形数的一般表达式为(
A. n
B.
1 n(n 1)
2
10
) C.
15
n2 1
D.
1 n(n 1)
2
10.一个等比数列 { an} 的前 n 项和为 48,前 2n 项和为 60,则前 3n 项和为(
)
A、 63
B
二、填空题 1. 在数列 an 中, a1
Tn
1 bn
1.
2
(1)求数列 an 的通项公式; (2)求证:数列 bn 是等比数列;
(3)记 cn
an 2 4
bn ,求
cn
的前 n 项和 Sn .
资料
赠送以下资料 考试知识点技巧大全
一、 考试中途应饮葡萄糖水
大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活 动,大脑细胞活动需要大量能量。 科学研究证实 ,虽然大脑的重量只占人 体重量的 2%-3%,但大脑消耗的能量却占食物所产生的总能量的 20%, 它的能量来源靠葡萄糖氧化过程产生。
数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
数列多选题单元综合模拟测评检测试题

数列多选题单元综合模拟测评检测试题一、数列多选题1.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +为等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.4.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列. 并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列结论正确的是( ) A .20192g = B .()()()()222123222022210f f f f f f -+-=C .12320192688g g g g ++++=D .22221232019201820202f f f f f f ++++=【答案】AB 【分析】由+2+1+n n n f f f =可得()2+112121n n n n n n n n f f f f f f f f +++++=-=-,可判断B 、D 选项;先计算数列{}n g 前几项可发现规律,使用归纳法得出结论:数列{}n g 是以6为最小正周期的数列,可判断A 、C 选项. 【详解】 对于A 选项:12345678910111211,2,3,1,0,1,12310g g g g g g g g g g g g ============,,,,,,,所以数列{}n g 是以6为最小正周期的数列,又20196336+3=⨯,所以20192g =,故A 选项正确;对于C 选项:()()12320193361+1+2+3+1+0+1+1+22692g g g g ++++=⨯=,故C 选项错误;对于B 选项:斐波那契数列总有:+2+1+n n n f f f =,所以()()22222232122232221f f f f f f f f =-=-,()()22121222021222120f f f f f f f f =-=-, 所以()()()()222123222022210f f f f f f -+-=,故B 正确; 对于D 选项:()212+2+1112+n n n f f f f f f f f ==∴=,,,()222312321f f f f f f f f =-=-, ()233423432f f f f f f f f =-=-,,()2+112121n n n n n n n n f f f f f f f f +++++=-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 数列综合检测题一.选择题1.已知数列{a n }是等差数列,若a 3+a 11=50,a 4=13,则数列{a n }的公差等于( ) A .1 B .4 C .5 D .6解析:由a 3+a 11=2a 7=50可得a 7=25;又由a 4=13可得,公差d =a 7-a 47-4=25-133=4.答案:B2.(2010年高考重庆卷)在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8解析:∵a 2 010=8a 2 007,∴q 3=a 2 010a 2 007=8.∴q =2.答案:A3.(2010年高考全国卷Ⅰ)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2解析:∵a 1a 2a 3=5,a 7a 8a 9=10,且{a n }是各项均为正数的等比数列,∴a 2=35,a 8=310.∴a 8a 2=32,即q 6=32.∴q 3=62.∴a 4a 5a 6=a 35=(a 2q 3)3=(35·62)3=5 2. 答案:A4.已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于( ) A .18 B .36 C .54 D .72解析:因为a 4=18-a 5,所以a 4+a 5=18.故S 8=8×(a 1+a 8)2=4×(a 4+a 5)=4×18=72,选D. 答案:D5.等差数列{a n }的前n 项和为S n ,若S 5=35,点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,则S n 的最大值为( ) A .16 B .35 C .36 D .32解析:根据题意有a 5-a 35-3=-2,故公差d =-2,由S 5=35得5a 1-20=35,即a 1=11,所以a n =11+(n -1)×(-2)=13-2n ,由于a 6>0,a 7<0,故S n 的最大值为S 6=6×11+6×52×(-2)=36. 答案:C6.(2010年高考北京卷)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12解析:在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.又∵a m =qm -1,∴m -1=10,∴m =11. 答案:C 7.数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若前n 项的和为10,则项数n 为( )A .11B .99C .120D .121解析:∵a n =1n +n +1=n +1-n ,∴a 1=2-1,a 2=3-2,…,a n =n +1-n .∴S n =n +1-1=10. ∴n =120,故选C. 答案:C8.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n ,则a 2010=( )A .-2B .-13C .-12D .3解析:由条件可得:a 1=-2,a 2=-13,a 3=12,a 4=3,a 5=-2,…,即{a n }是以4为周期的周期数列,所以a 2010=a 2=-13.故选B.答案:B9.已知m ∈(0,+∞),数列{x n }满足log 2x n +1=1m+log 2x n ,设x 1+x 2+…+x m =a 1=1,…,x 1+(n -1)m x 2+(n -1)m +…+x nm =a n ,则a n =( )A .2nB .2n -1C .2n +1 D .22n解析:由log 2x n +1=1m +log 2x n 知,x n +1x n=m 12,设m 12=q ⇒q m =2,且x 1+x 2+…+x m =a 1=1,则x 1+(n -1)m +x 2+(n -1)m +…+x nm =a n =x 1q (n-1)m +x 2q (n -1)m +…+x m q (n -1)m =a 1q (n -1)m=q (n -1)m =2n -1. 答案:B10.等比数列{a n }的首项为3,公比为2,其前n 项和记为S n ;等比数列{b n }的首项为2,公比为3,其前n 项和记为T n ,则li m n →∞a n +b nS n +T n等于( ) A.12 B .1 C.23D .2 解析:由已知,得a n =3·2n -1,S n =3·(1-2n )1-2=3·2n -3;b n =2·3n -1,T n =2·(1-3n )1-3=3n -1.∴a n +b n S n +T n =3·2n -1+2·3n -13·2n +3n-4=3·(23)n -1+26·(23)n -1+3-4(13)n -1, ∴li m n →∞ a n +b n S n +T n =23. 答案:C11.(2010年广州模拟)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第4个数(从左往右数)为( )A.11 260B.1840C.1504D.1360解析:由“第n 行有n 个数且两端的数均为1n ”可得:第10行第一个数为110,由“每个数是它下一行左右相邻两数的和”可得:第10行第二个数等于19-110=190,同理,可得第9行第二个数为172,从而第10行第三个数等于172-190=1360;第9行第三个数为1252,从而第10行第四个数等于1252-1360=1840.答案:B12.(2010年高考湖北卷)如图中,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设S n 为前n 个圆的面积之和,则li m n→∞S n =( )A .2πr 2 B.83πr 2C .4πr 2D .6πr 2 解析:由题意,知后一个圆的半径是前一个圆的半径的32.∴S n 是以πr 2为首项,34为公比的等比数列的前n 项和. ∴li m n →∞S n =πr 21-34=4πr 2. 答案:C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.(2010年高考福建卷)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________. 解析:∵等比数列{a n }的前3项之和为21,公比q =4, 不妨设首项为a 1,则a 1+a 1q +a 1q 2 =a 1(1+4+16)=21a 1=21,∴a 1=1,∴a n =1×4n -1=4n -1.答案:4n -114.(2010年宝鸡模拟)设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为________.解析:由题意得⎩⎨⎧a 4=a 1+3d =1S 5=5a 1+10d =10,所以a 1=4,d =-1,所以S n =4+5-n 2×n =-12(n -92)2+818,故当n =4或n =5时,S n 最大.答案:4或515.数列{a n }的通项a n =n 2(cos 2n π3-sin 2n π3),其前n 项和为S n ,则S 30为________.解析:a n =n 2(cos 2n π3-sin 2n π3)=n 2·cos 2n π3,令b n =a 3n -2+a 3n -1+a 3n =(3n -2)2×(-12)+(3n -1)2×(-12)+(3n )2=9n -52,故S 30=a 1+a 2+…+a 30=b 1+b 2+…+b 10=(9-52+9×10-52)×102=470.答案:47016.已知li m x →2x 2+ax +2x -2=b ,则函数y =x 2+ax +b 的单调递减区间是________. 解析:由已知,得,x =2是x 2+ax +2=0的解.∴a =-3.∴y =x 2+ax +b 可化为y =x 2-3x +b ,其减区间为(-∞,32].答案:(-∞,32]三、解答题(本题有6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(满分12分)(2010年高考陕西卷)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n . 解析:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d,解得d =1或d =0(舍去).故{a n }的通项a n =1+(n -1)×1=n .(2)由(1)知2a n =2n ,由等比数列的前n 项和公式得S n =2+22+23+…+2n =2(1-2n)1-2=2n +1-2.18.(满分12分)(2010年高考课标全国卷)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解析:(1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1. 而当n =1时,a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1,①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].19.(满分12分)已知数列{a n }中,a 1=3,a n =3a n -1-2a n -1(n ≥2,n ∈N *).(1)若数列{b n }满足b n =a n -21-a n,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式以及最大值,并说明理由.解析:(1)∵a n =3a n -1-2a n -1(n ≥2,n ∈N *),∴b n =a n -21-a n =3a n -1-2a n -1-21-3a n -1-2a n -1=3a n -1-2-2a n -1a n -1-(3a n -1-2)=a n -1-22(1-a n -1)=12b n -1.∴b n b n -1=12,又∵b 1=-12,故数列{b n }是首项为b 1=-12,公比为12的等比数列.(2)由(1)知,b n =-(12)n .从而可得a n -21-a n=-(12)n ,解得a n =1+11-(12)n =2n +1-12n -1(n ∈N *).∴数列{a n }为单调递减数列.∴当n =1时,a n 有最大值3,即数列{a n }的最大值是a 1=3.20.(满分12分)(2010年高考湖北卷)已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.解析:(1)由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·()23n -1, 故1-a 2n =34·()23n -1⇒a 2n =1-34·()23n -1. 又a 1=12>0,a n a n +1<0, 故a n =(-1)n-11-34·()23n -1.b n =a 2n +1-a 2n =⎣⎡⎦⎤1-34·()23n-⎣⎡⎦⎤1-34·()23n -1=14·()23n -1.(2)证明:(反证法) 假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立.∴2·14·()23s -1=14·()23r -1+14·()23t -1,两边同乘3t -121-r , 化简得3t -r+2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.21.(满分12分)(2010年山东师大附中二次模拟)已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n +12,n =2k -1(k ∈N *),2n 2,n =2k (k ∈N *).设b n =a 2n -1a 2n,S n =b 1+b 2+…+b n .证明:当n ≥6且n ∈N *时,|S n -2|<1n.证明:由已知得a 2n -1=2n -1+12=n ,a 2n =22n2=2n ,故b n =a 2n -1a 2n =n2n,S n =b 1+b 2+…+b n =1×12+2×(12)2+3×(12)3+…+n (12)n ,12S n =1×(12)2+2×(12)3+3×(12)4+…+(n -1)·(12)n +n ·(12)n +1,两式相减得12S n =12+(12)2+(12)3+(12)4+…+(12)n -n ·(12)n +1 =1-(12)n -n (12)n +1.化简得S n =2-(n +2)(12)n .故|S n -2|=(n +2)(12)n ,所以|S n -2|<1n ⇔(n +2)(12)n <1n⇔n (n +2)<2n .问题转化为证明:当n ≥6时,n (n +2)<2n. 采用数学归纳法:(1)当n =6时,n (n +2)=6×8=48,2n =26=64,48<64,此时不等式成立; (2)假设n =k (k ≥6且k ∈N *)时,不等式成立,即k (k +2)<2k ,那么当n =k +1时,2k +1=2×2k >2k (k +2)=2k 2+4k =k 2+4k +k 2>k 2+4k +3=(k +1)(k +3)=(k +1)[(k +1)+2], 这说明,当n =k +1时,不等式也成立.综上可知,当n ≥6时,n (n +2)<2n 成立,原命题得证.22.(满分14分)(2010年高考全国卷Ⅰ)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围.解析:(1)a n +1-2=52-1a n -2=a n -22a n,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4()b n +23.又a 1=1,故b 1=1a 1-2=-1,所以{}b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,即b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1,得c >2. 用数学归纳法证明:当c >2时,a n <a n +1.①当n =1时,a 2=c -1a 1>a 1,命题成立;②设当n =k 时,a k <a k +1,则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由①②,知当c >2时,a n <a n +1.当c >2时,因为c =a n +1+1a n >a n +1a n,所以a 2n -ca n +1<0有解.所以c -c 2-42<a n <c +c 2-42. 所以令a =c +c 2-42,当2<c ≤103时,a 在(]2,103上单调递增,所以a n <a ≤3;当c >103时,a >3,且1≤a n <a ,a =c +c 2-42,1a =2c +c 2-4=c -c 2-42,所以c =a +1a .又c =a n +1+1a n ,所以a +1a =a n +1+1a n,所以a -a n +1=1a n -1a =1a n a(a -a n ).又a n ·a >3,所以a -a n +1=1a n a (a -a n )<13(a -a n )<132(a -a n -1)<133(a -a n -2)<…<13n 1(a -a 2)<13n (a -1),所以当n >log 3a -1a -3时,a -a n +1<a -3,所以a n +1>3,与已知矛盾.所以c >103不符合要求.故c 的取值范围是(]2,103.22.数列{a n }中a 1=t ,a 2=t 2(t >0且t ≠1).函数f(x)=3a n -1x 2-3[(t +1)a n -a n +1](n ≥2)且f (t )=0.(1)证明数列{a n -1-a n }是等比数列,并求数列{a n }的通项公式;(2)记b n =2(1-1a n),当t =2时,数列{b n }的前n 项和为S n ,求使S n >2010的n 的最小值.解析:(1)证明:f ′(x )=.由题意知f ′(t )=0,即3a n -1(t )2-3[(t +1)a n -a n +1]=0(n ≥2), ∴a n +1-a n =t (a n -a n -1)(n ≥2). ∵t >0且t ≠1,a 2-a 1=t (t -1)≠0,∴数列{a n +1-a n }是以t 2-t 为首项,t 为公比的等比数列,∴a n +1-a n =(t 2-t )t n -1=(t -1)t n ,∴a 2-a 1=(t -1)t ,a 3-a 2=(t -1)t 2,…,a n -a n -1=(t -1)t n -1, 以上各式两边分别相加得a n -a 1=(t -1)(t +t 2+…+t n -1), ∴a n =t n (n ≥2),当n =1时,上式也成立, ∴a n =t n .(2)当t =2时,b n =2-12n -1,∴S n =2n -(1+12+122+…+12n -1)=2n -1-12n1-12=2n -2(1-12n )=2n -2+22n .又S n +1-S n =2-12n >0,所以数列{S n }是单调递增数列.由S n >2 010,得2n -2+2(12)n >2 010,n +(12)n >1 006,当n ≤1 005时,n +(12)n <1 006,当n ≥1 006时,n +(12)n >1 006,因此当S n >2 010时,n 的最小值为1 006.。