二叉树及其先序遍历

合集下载

二叉树的遍历和应用

二叉树的遍历和应用

内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。

目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。

完全二叉树非递归无堆栈先序遍历算法的研究

完全二叉树非递归无堆栈先序遍历算法的研究

又 被 Mateti等人于 1988年改进 0 。国内也一直有 学者在做 相 关 的 研 究 。可 从 文 献 [4.12]的研 究 主 题 可 以看 出 ,近 10年 来 对 此 主 题 的研 究 从 未 间 断 ,并 且 近 几 年 的 关 注 度 更 高 。
0 引 言
二 叉 树 作 为 一种 重 要 的 数 据 结 构 是 工农 业 应 用 与 开 发 的 重要工 具。满 二叉树 的中序序列 能够与一 条有 向连续 曲线上 的 点 列 建 立 自起 点 到 终 点 的 一 一 对 应 的 关 系 ;二 叉 树 的 先 序 序 列 ,能 与 植 物 从 根 部 向枝 叶 的生 长 发 育 过 程 建 立 关 联 ,可 作 为 植 物 生 产 建 模 的 基 本 数 据 结 构 模 型 。因 此 ,研 究 二 叉 树 的 先 序 、中序 相 关 算 法 成 为 工 农 业 信 息 技 术 领 域 的关 注 点 。
Abstract: Through a study on the analytic relationship am ong a full binary tree, its sequential storage sequence a n d its preorder-traversal sequence, a algorithms is obtained,which can conve ̄ a full binary t ree a n d its sequential storage sequence into its preorder-traversal se· quence. Consequentl ̄ non—recursive and stack-free algorithms are deduced for preorder t raversal ofa complete binary tree and for inter- conversionsbetweenthe sequential storage sequen ce andthepreorder-tmversal seque n ce. The algor ithms carla1]SWe r a quer y ofanode in constant tim e an d perform a traversal in linear tim e. Being derived from exact m athem atical a n alysis and inosculated with deductions ofbinary encodes that naturally fit the bitwise operation, the algorithms are available for both conventional programming and professional developments such as embedded system and SO on. A sample example is presented to demonstrate the application of the algorithms in virtual-plants modeling. Key words: binary t ree; sequential storage m odel; preorder traversal; non--recursive and stack--free; virtual pla n ts

数据结构应用-二叉树

数据结构应用-二叉树

数据结构应⽤-⼆叉树1.表达式树描述:表达式树的叶节点为操作数,其他节点为运算符。

对表达式式树采⽤不同的遍历策略可以分别得到前中后缀三种表达式。

先序遍历:前缀表达式(不常⽤)中序遍历:中缀表达式后序遍历:后缀表达式构造表达式树:把后缀表达式转化为表达式树(中缀转后缀已经在栈的应⽤中提到过),本质上还是借助了栈。

类似后缀表达式求值,从头开始逐字符读⼊表达式,遇到操作数则建⽴⼀个单节点树,将其指针压⼊栈中,当遇到运算符时,将栈顶的两个指针弹出并作为当前运算符的⼦节点构成⼀棵⼆叉树,将该树的指针压⼊栈中。

读到表达式末尾时,留在栈中的只剩下指向最终的表达式树的指针。

2.编码树编码:将信息转化为⼆进制码传输的过程就是编码。

解码:将接受到的⼆进制码恢复为原信息就是解码。

编码表:字符集中的任意字符都能在编码表中找到唯⼀对应的⼆进制串。

字符集到编码表是单射。

解码歧义:编码可以做到⼀⼀对应,解码却未必。

⽐如,规定S->11,M->111,那么现有⼆进制串“111111”,这个⼆进制串应该解码为SSS还是MM呢?这就产⽣了歧义。

产⽣歧义的根源在于,编码表中的某些编码,是其他编码的前缀。

在上例中,S对应的11就是M对应的111的前缀。

前缀⽆歧义编码(PFC):既然知道了产⽣歧义的根源,就可以针对此根源来避免歧义。

避免歧义的本质要求就是,保证字符集中的每⼀个字符所对应的⼆进制串不是编码表中其他任何⼆进制串的前缀。

⼆叉编码树:⽤⼆叉树来描述编码⽅案。

我们知道从⼆叉树的根节点到任⼀其他节点的通路是唯⼀的,那么如果,我们使每⼀个节点之间的通路都表⽰⼆进制码0和1(左通路0,右通路1),这样从根节点出发到某节点的通路就变成了⼀个唯⼀的⼆进制串。

↑⼀棵普通的⼆叉编码树,来⾃《数据结构(C++语⾔版)》邓俊辉PFC编码树:由上图可以清晰地看出,S所对应的⼆进制码之所以会成为M(所对应的⼆进制码)的前缀,是因为S是M的⼦节点。

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

《数据结构及其应用》笔记含答案 第五章_树和二叉树

《数据结构及其应用》笔记含答案 第五章_树和二叉树

第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。

二、判断题1、二叉树是树的特殊形式。

()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。

()3、对于有N个结点的二叉树,其高度为。

()4、满二叉树一定是完全二叉树,反之未必。

()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。

()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。

()7、不使用递归也可实现二叉树的先序、中序和后序遍历。

()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。

()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。

()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。

A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。

4、一个具有1025个结点的二叉树的高h为(C)。

A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。

已知二叉树的先序遍历和中序遍历画出该二叉树

已知二叉树的先序遍历和中序遍历画出该二叉树

已知⼆叉树的先序遍历和中序遍历画出该⼆叉树对⼀棵⼆叉树进⾏遍历,我们可以采取3中顺序进⾏遍历,分别是前序遍历、中序遍历和后序遍历。

这三种⽅式是以访问⽗节点的顺序来进⾏命名的。

假设⽗节点是N,左节点是L,右节点是R,那么对应的访问遍历顺序如下:前序遍历 N->L->R中序遍历 L->N->R后序遍历 L->R->N所以,对于以下这棵树,三种遍历⽅式的结果是前序遍历 ABCDEF中序遍历 CBDAEF后序遍历 CDBFEA已知⼆叉树的前序遍历和中序遍历,如何得到它的后序遍历其实,只要知道其中任意两种遍历的顺序,我们就可以推断出剩下的⼀种遍历⽅式的顺序,这⾥我们只是以:知道前序遍历和中序遍历,推断后序遍历作为例⼦,其他组合⽅式原理是⼀样的。

要完成这个任务,我们⾸先要利⽤以下⼏个特性:特性A,对于前序遍历,第⼀个肯定是根节点;特性B,对于后序遍历,最后⼀个肯定是根节点;特性C,利⽤前序或后序遍历,确定根节点,在中序遍历中,根节点的两边就可以分出左⼦树和右⼦树;特性D,对左⼦树和右⼦树分别做前⾯3点的分析和拆分,相当于做递归,我们就可以重建出完整的⼆叉树;我们以⼀个例⼦做⼀下这个过程,假设:前序遍历的顺序是: CABGHEDF中序遍历的顺序是: GHBACDEF第⼀步,我们根据特性A,可以得知根节点是C,然后,根据特性C,我们知道左⼦树是:GHBA,右⼦树是:DEF。

C/ \GHBA DEF第⼆步,取出左⼦树,左⼦树的前序遍历是:ABGH,中序遍历是:GHBA,根据特性A和C,得出左⼦树的⽗节点是A,并且A没有右⼦树。

C/ \A DEF/GBH第三步,使⽤同样的⽅法,前序是BGH,中序是GHB,得出⽗节点是B,GH是左⼦树,没有右⼦树。

C/ \A DEF/B/GH第四步,前序是GH, 中序是GH, 所以 G是⽗节点, H是右⼦树, 没有左⼦树.C/ \A DEF/B/G\H第四步,回到右⼦树,它的前序是EDF,中序是DEF,依然根据特性A和C,得出⽗节点是E,左右节点是D和F。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

前序后序中序详细讲解

前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。

它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。

通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。

前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。

中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。

后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。

它们的不同之处在于访问根节点的时机不同。

前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。

中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。

后序遍历常用于删除二叉树或者释放二叉树的内存空间。

在实际应用中,前序、中序和后序遍历算法有着广泛的应用。

它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。

在图像处理中,前序遍历可以用于图像压缩或者图像识别。

另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。

综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。

通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。

1.2文章结构文章结构是指文章中各个部分的布局和组织方式。

一个良好的文章结构可以使读者更好地理解和理解文章的内容。

本文将详细讲解前序、中序和后序三个部分的内容和应用。

首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。

接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。

在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。

通过详细的解释和实例,读者将能更好地理解前序的概念和用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二叉树及其先序遍历
一、实验目的:
1.明确了解二叉树的链表存储结构。

2.熟练掌握二叉树的先序遍历算法。

一、实验内容:
1.树型结构是一种非常重要的非线性结构。

树在客观世界是广泛存在的,在计算
机领域里也得到了广泛的应用。

在编译程序里,也可用树来表示源程序的
语法结构,在数据库系统中,数形结构也是信息的重要组织形式。

2.节点的有限集合(N大于等于0)。

在一棵非空数里:(1)、有且仅

一个特定的根节点;(2)、当N大于1时,其余结点可分为M(M大于0)
个互不相交的子集,其中每一个集合又是一棵树,并且称为根的子树。


的定义是以递归形式给出的。

3.二叉树是另一种树形结构。

它的特点是每个结点最多有两棵子树,并且,二叉
树的子树有左右之分,其次序不能颠倒。

4.二叉树的结点存储结果示意图如下:
二叉树的存储(以五个结点为例):
三、实验步骤
1.理解实验原理,读懂实验参考程序。

2.
(1)在纸上画出一棵二叉树。

A
B E
C D G F
(2) 输入各个结点的数据。

(3) 验证结果的正确性。

四、程序流程图
先序遍历
五、参考程序
# define bitreptr struct type1 /*二叉树及其先序边历*/ # define null 0
# define len sizeof(bitreptr)
bitreptr *bt;
int f,g;
bitreptr /*二叉树结点类型说明*/
{
char data;
bitreptr *lchild,*rchild;
};
preorder(bitreptr *bt) /*先序遍历二叉树*/
{
if(g==1) printf("先序遍历序列为:\n");
g=g+1;
if(bt)
{
printf("%6c",bt->data);
preorder(bt->lchild);
preorder(bt->rchild);
}
else if(g==2) printf("空树\n");
}
bitreptr *crt_bt() /*建立二叉树*/ {
bitreptr *bt;
char ch;
if(f==1) printf("输入根结点,#表示结束\n"); else printf("输入结点,#表示结束\n");
scanf("\n%c",&ch);
f=f+1;
if(ch=='#') bt=null;
else
{
bt=(bitreptr *)malloc(len);
bt->data=ch;
printf("%c 左孩子",bt->data);
bt->lchild=crt_bt();
printf("%c 右孩子",bt->data);
bt->rchild=crt_bt();
}
return(bt);
}
main()
{
f=1;
g=1;
bt=crt_bt();
preorder(bt);
}
六、思考问题
1. 画出给出的各类型的数据示意图,理解为不同目的而建立的不同数据结构意义。

2. 改写程序完成中、后序遍历。

3. 考虑用非递归算法完成二叉树遍历。

相关文档
最新文档