2019届中考数学三角形相似专题复习

合集下载

2019年中考数学试题汇编:相似形选择题部分(解析版)

2019年中考数学试题汇编:相似形选择题部分(解析版)

1. (2019年四川内江市)如图,将△ ABC 沿着过BC 的中点D 的直线折叠,使点 B 落在AC 边上的B i 处,称为第一次操作,折痕DE 到AC 的距离为h 仁还原纸片后,再将△ BDE沿着过BD 的中点D i 的直线折叠,使点 B 落在DE 边上的B 2处, 痕D i E i 到AC 的距离记为h 2;按上述方法不断操作下去……经过第 D n -i E n -i ,到AC 的距离记为h n .若h i = i ,则h n 的值为(h 4、h 5、……h n ,再对h n 进行计算变形即可.【解答】解:••• D 是BC 的中点,折痕 DE 到AC 的距离为 •••点B 到DE 的距离=h i = i ,•••D i 是BD 的中点,折痕 D i E i 到AC 的距离记为h 2, •••点 B 到 D i E i 的距离=h 2= i^h i = i+ ,22同理:h 3= h 2+—h i=i+ 1 + 丄,42 4h 4=h 3+ h i = i+-!-+—+—:: ::-:;.i+l +l +l + + 1 2 1 hn = i+_ —+ +__+••• + ------- = 2 — --------2 4 8211-1 2n_1故选:C .【点评】考查图形变化规律的问题,首先根据变化求出第一个、第二个、第三个……发 现规律得出一般性的结论.2. (20i9 年四川内江市)如图,在△ ABC 中,DE // BC , AD = 9, DB = 3, CE = 2,贝U AC 的 长为()A . 6B . 7C . 8D . 9【分析】利用平行线分线段成比例定理得到二=「,利用比例性质求出AE ,然后计算 AE+EC 即可.【解答】解:• DE // BC ,称为第二次操作,折 n 次操作后得到折痕A . i+— 2n_1B . 1 + 2nC . 2 - 尹1【分析】根据相似三角形的性质,对应高的比对于相似比,得出 D . 2 -2nh 2 = -L ,依次得出h 3、 ::hiAD = AE 即9 = AEDB 丽’3~••• AE= 6,•. AC= AE+ EC= 6+2 = 8.故选:C.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.3. (2019年广西玉林市)如图,AB // EF // DC , AD // BC, EF与AC交于点G,则是相似三角形共有()A . 3对B . 5对C. 6对 D . 8对【分析】图中三角形有:△ AEG ,△ ADC , CFG , △ CBA,因为AB // EF // DC , AD // BC,所以△ AEGADC s CFGCBA,有 6 种组合【解答】解:图中三角形有:△ AEG,^ ADC , CFG , △ CBA ,T AB// EF // DC , AD // BC• △AEG s^ ADC s CFGCBA共有 6 个组合分别为:AEGADC , △ AEG s CFG , △ AEGCBA, △ ADC s CFG , △ ADC CBA , CFG CBA故选:C.【点评】本题主要考查相似三角形的判定.4. (2019年内蒙古赤峰市)如图,D、E分别是△ ABC边AB , AC上的点,/ ADE = /ACB , 若AD = 2 , AB= 6 , AC= 4,贝U AE 的长是()A . 1B . 2 C. 3 D. 4【分析】证明△ ADE ACB,根据相似三角形的性质列出比例式,计算即可.【解答】解:•••/ ADE = / ACB ,Z A=Z A,• △ ADEACB ,.AD AE 0n2 AE-- = ,即__= ,AC AB 4 6解得,AE = 3,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5. (2019年海南省)如图,在Rt△ ABC中,/ C= 90°, AB= 5, BC = 4.点P是边AC上一动点,过点P作PQ // AB交BC于点Q, D为线段PQ的中点,当BD平分/ ABC时,PQ // AB ,• / ABD = Z BDQ ,又/ ABD = Z QBD , • / QBD = Z BDQ , -QB = QD , • QP =2QB , PQ / AB ,• △ CPQ s^ CAB ,CP^Q = PQ:=7T =7T 解得,CP ==,13AP = CA - CP = ,13故选:B .【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定 理是解题的关键.6. (2019年黑龙江省哈尔滨市)如图,在?ABCD 中,点E 在对角线AB 于点M , EN // AB ,交AD 于点N ,则下列式子一定正确的是(D【分析】根据平行四边形的性质以及相似三角形的性质. 【解答】解:•••在?ABCD 中,EM // AD.易证四边形AMEN 为平行四边形15 13AC ,根据角平分线的定义、平行线的性质得到/C .13【分析】根据勾股定理求出BDQ ,得到QB = QD ,根据相似三角形的性质列出比例式,计算即可. 【解答】解:•••/ C = 90°, AB = 5, BC = 4,D .二13QBD = Z2QBBD 上,EM // AD ,交)Alt NE A ------- = ----- .-'i rir. Alt ANB =B .「’ MBC BEC . - r.riD .「厂BE EM)•••易证△ BEM s\ BAD S \ END、' =亠=-,A 项错误BM BN BE=—,B 项错误AD=丄_=二_, C 项错误ME BE=二_=上_, D 项正确ME ME故选:D .【点评】此题主要考查相似三角形的性质及平行四边形的性质,本题关键是要懂得找相 似三角形,利用相似三角形的性质求解.7. (2019年黑龙江省鸡西市)如图,在平行四边形ABCD 中,/ BAC = 90°, AB = AC ,过点A 作边BC 的垂线AF 交DC 的延长线于点 E ,点F 是垂足,连接 BE 、DF , DF 交AC 于点O .则下列结论: ①四边形ABEC 是正方形;②CO : BE = 1: 3;③DE =「BC ; ④S 四边形OCEF = Ss OD ,正确的个数是()A . 1B . 2C . 3D . 4【分析】①先证明厶ABF ◎△ ECF ,得AB = EC ,再得四边形ABEC 为平行四边形,进而 由/BAC = 90。

2019-2020中考数学试题分类汇编 考点36 相似三角形(含解析)

2019-2020中考数学试题分类汇编 考点36 相似三角形(含解析)

2019中考数学试题分类汇编:考点36 相似三角形一.选择题(共28小题)1.(2019•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.2.(2019•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.3.(2019•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得: =,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.4.(2019•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.5.(2019•铜仁市)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.6.(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:A.7.(2019•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.8.(2019•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.9.(2019•自贡)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.10.(2019•崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.11.(2019•随州)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.∵S△ADE=S四边形BCED,∴=,∴===﹣1.故选:C.12.(2019•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. = B. = C. = D. =【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=, =,∴==.故选:D.13.(2019•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.14.(2019•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.15.(2019•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.16.(2019•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP 和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠B AC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.17.(2019•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.18.(2019•临安区)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.19.(2019•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.20.(2019•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.21.(2019•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.22.(2019•香坊区)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE∥BC,EF∥AB,则下列比例式一定成立的是()A. = B. = C. = D. =【分析】用平行线分线段成比例定理和相似三角形的判定即可得出结论.【解答】解:∵DE∥BC,∴,∵DE∥BC,∴△ADE∽△ABC,∴,∵EF∥AB,∴,∵EF∥AB,∴△CEF∽△CAB,∴,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,EF=BD,∴,,,,∴正确,故选:C.23.(2019•荆门)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S:S△ABG=()△EFGA.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.24.(2019•达州)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A.B.C.D.1【分析】首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得==()2=()2=, =,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC=S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥AC,∴△BGH∽△BAC,∴==()2=()2=,∵=,∴=×=,故选:C.25.(2019•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.26.(2019•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.27.(2019•长春)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈 B.四丈五尺 C.一丈 D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.28.(2019•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.二.填空题(共7小题)29.(2019•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF .【分析】利用平行四边形的性质得到AD∥CE,则根据相似三角形的判定方法可判断△ADF∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.30.(2019•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.31.(2019•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF=1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC=S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF=S△ADC=×=,故答案为:.32.(2019•资阳)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为9 .【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得=()2,据此建立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.33.(2019•泰安)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.34.(2019•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【分析】如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.35.(2019•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.三.解答题(共15小题)36.(2019•张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB的面积最大,并求岀这个最大值;(2)求证:△PAN∽△PMB.【分析】(1)当M在弧AB中点时,三角形MAB面积最大,此时OM与AB垂直,求出此时三角形面积最大值即可;(2)由同弧所对的圆周角相等及公共角,利用两对角相等的三角形相似即可得证.【解答】解:(1)当点M在的中点处时,△MAB面积最大,此时OM⊥AB,∵OM=AB=×4=2,∴S△ABM=AB•OM=×4×2=4;(2)∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.37.(2019•株洲)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=,求tan∠ABM的值.【分析】(1)利用HL证明即可;(2)想办法证明△DNT∽△AMT,可得由AT=,推出,在Rt△ABM中,tan∠ABM=.【解答】解:(1)∵AD=AB,AM=AN,∠AMB=∠AND=90°∴Rt△ABM≌Rt△AND(HL).(2)由Rt△ABM≌Rt△AND易得:∠DAN=∠BAM,DN=BM∵∠BAM+∠DAM=90°;∠DAN+∠ADN=90°∴∠DAM=∠AND∴ND∥AM∴△DNT∽△AMT∴∵AT=,∴∵Rt△ABM∴tan∠ABM=.38.(2019•大庆)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧的长度.【分析】(1)根据等角的余角相等证明即可;(2)只要证明△CBE∽△CPB,可得=解决问题;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,即AC平分∠FAB.(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴=,∴BC2=CE•CP;(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴的长==π.39.(2019•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE 的长.【分析】根据角平分线定义和平行线的性质求出∠D=∠CBD,求出BC=CD=4,证△AEB∽△CED,得出比例式,求出AE=2CE,即可得出答案.【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.40.(2019•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.41.(2019•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.42.(2019•南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)首先证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠D GF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.43.(2019•滨州)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.44.(2019•十堰)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若tanC=2,求的值.【分析】(1)欲证明FG是⊙O的切线,只要证明OD⊥FG;(2)由△GDB∽△GAD,设BG=a.可得===,推出DG=2a,AG=4a,由此即可解决问题;【解答】(1)证明:连接AD、OD.∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AC=AB,∴CD=BD,∵OA=OB,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴FG是⊙O的切线.(2)解:∵tanC==2,BD=CD,∴BD:AD=1:2,∵∠GDB+∠ODB=90°,∠ADO+∠ODB=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠GDB=∠GAD,∵∠G=∠G,∴△GDB∽△GAD,设BG=a.∴===,∴DG=2a,AG=4a,∴BG:GA=1:4.45.(2019•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.【分析】(1)想办法证明∠B=∠C,∠DEB=∠ADC=90°即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;【解答】解:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.46.(2019•烟台)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F 为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.【分析】(1)根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再根据三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;根据(1)的结论计算∠MBE=30°,证明△CDE是等边三角形,得CD=CE=DE=EF=AD=,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE=,代入化简可得结论.【解答】解:(1)连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.47.(2019•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【分析】由BC∥DE,可得=,构建方程即可解决问题.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.48.(2019•济宁)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【分析】(1)结论:CF=2DG.只要证明△DEG∽△CDF即可;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK;【解答】解:(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK中,DK===2,∴△PCD的周长的最小值为10+2.49.(2019•聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.50.(2019•乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH 的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD∥AC,∴,即,∵a=,解得BD=r.(10分)。

专题17 相似三角形问题-2019年中考数学年年考的28个重点微专题(原卷版)

专题17 相似三角形问题-2019年中考数学年年考的28个重点微专题(原卷版)

专题17 相似三角形问题一、基础知识1.相似三角形的定义:三个角分别相等,三条边成比例的两个三角形相似。

2.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。

3.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

4.相似三角形的判定定理判定1:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

判定2:三边成比例的两个三角形相似。

判定3:两边成比例且夹角相等的两个三角形相似。

判定4:两角分别相等的两个三角形相似。

5.相似三角形的性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;(3)相似三角形对应线段的比等于相似比;(4)相似三角形周长的比等于相似比;(5)相似三角形面积的比等于相似比的平方。

二、对理解本节课知识点的例题及其解析【例题1】如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:1【例题2】如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【例题3】如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25三、相似三角形问题训练题及其答案和解析1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.=D.=2.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B. C.D.3.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:14.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A. B. C. D.5.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法不正确的是()A.DE=BC B. =C.△ADE∽△ABC D.S△ADE:S△ABC=1:26.在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10 B. 8 C. 9 D. 67.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD= cm.8.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.。

2019全国中考真题解析考点汇编☆相似三角形

2019全国中考真题解析考点汇编☆相似三角形

相似三角形(2019,北京)如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于( )D (A) 3 (B) 4 (C) 6 (D) 8。

(2019,宁德)图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.(2019,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米. 9.6(2019,珠海)天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.3(2019,梧州)如图(2),在Y ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。

ABCD EFA E BCD(2019,桂林)如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ). A . 1:2 B . 1:4C . 2:1D . 4:1(2019,黔东南)如图,若CD C ABC Rt ,90,0=∠∆为斜边上的高,ACD n AB m AC ∆==则,,的面积与BCD ∆的面积比SsACDBCD ∆∆的值是 ( )A. 22mn B. 221m n -C. 122-m nD. 122+mn(2019,河南)如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有【 】 (A )3个 (B )2个 (C )1个 (D )0个(2019,河南)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范EDCBA围是___________________.(2019,沈阳)如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2, 连接AE 交BD 于点F ,则△BFE 的面积与△DF A 的面积之 比为 。

2019年中考数学一轮复习第二讲空间与图形第四章三角形4.4相似三角形课件

2019年中考数学一轮复习第二讲空间与图形第四章三角形4.4相似三角形课件

平行线分线段成比例 1.平行线分线段成比例定理 两条直线被一组平行线所截,所得的 对应线段 成比例. 2.推论( 三角形一边的平行线的性质定理 ) 平行于三角形一边的直线截其他两边( 或两边的延长线 ),所得的 例.
对应线段
考点扫描
考点1 考点2
典例2 ( 2018·广西梧州 )如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是
=
85.
【答案】 D
考点扫描
考点扫描
考点1 考点2
比例线段和比例的性质
1.线段的比和比例线段
( 1 )线段的比:用同一个长度单位去度量两条线段a,b,得到它们的长度,我们把这
线段
长度
的比叫做这两条线段的比,记作
������ ������
或a∶b.
( 2 )比例线段:在四条线段a,b,c,d中,如果a与b的比 等于
c与d的比,即
4.4 相似三角形
了解比例的基本性质,了解线段的比、成比例线段的概念,了解黄金分割.了解 似的概念,了解相似多边形和相似比,理解相似三角形的概念和性质.理解并掌握 线被一组平行线所截,所得的对应线段成比例.理解并掌握相似三角形的判定定 利用相似三角形的判定定理和相似三角形的性质定理证明和解决有关的问题.了 似图形的概念,能够利用位似将一个图形放大或缩小,能利用图形的相似解决一 实际问题.
线段分割叫做黄金分割,分割点叫做这条线段的黄金分割点,比值
5-1 2
叫做黄金
考点扫描
考点1 考点2
拓展延伸
黄金三角形:①顶角是 36°的等腰三角形(底等于腰的 52-1);②底角是 36°的等腰
形(腰等于底的 52-1). 黄金矩形:宽与长的比等于黄金分割数的矩形,即宽等于长的 52-1.

2019年全国中考真题分类汇编(相似三角形)

2019年全国中考真题分类汇编(相似三角形)

第18讲相似三角形知识点1 比例线段知识点2 平行线分线段成比例知识点3 相似三角形的性质知识点4 相似三角形的判定知识点5 相似多边形知识点6 相似三角形的实际应用知识点1 比例线段(2019·郴州)知识点2 平行线分线段成比例(2019·淮安)(2019·哈尔滨)(2019·杭州)如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.AE AN AN AD = B.CE MN MN BD = C. MC NE BM DN = D.BMNEMC DN =(2019·凉山州)知识点3 相似三角形的性质 (2019·常州)(2019·重庆B 卷)(2019·淄博)(2019·重庆A 卷)答案:C(2019·常德)(2019·兰州)(2019·巴中)答案:D(2019·黔东南)如右图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF, 点D在边BC 上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A. 200cm2B. 170cm2C. 150cm2D.100 cm2(2019·凉山州)(2019·乐山)(2019·苏州)答案:B(2019·枣庄)(2019·毕节)知识点4 相似三角形的判定(2019·玉林)(2019·海南)(2019·贺州)(2019·贵港)(2019·绵阳)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG =45°,则HK =( B )A .B .C .D .(2019·陇南)(2019·眉山)如图,一束光线从点A (4,4)出发,经y 轴上的点C 反射后经过点B (1,0).则点C 的坐标( B )A .(0,21) B .(0,54) C .(0,1) D .(0,2)(2019·连云港)答案:B(2019·安徽)答案:B(2019·通辽)答案:(2019·泸州)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,9.垂足为F,则AD的长为2(2019·大庆)(2019·哈尔滨)(2019·襄阳)(2019·威海)答案:3(2019·聊城)答案:(2019·自贡)(2019·宜宾)(2019·南京)答案:(2019·江西)在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D 在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为 .(2019·龙东)知识点5 相似多边形知识点6 相似三角形的实际应用(2019·吉林)(2019·金华)答案:(2019·荆门)第18讲相似三角形11/ 11。

2019年中考数学冲刺总复习第一轮横向基础复习第三单元三角形第14课相似三角形课件PPT

2019年中考数学冲刺总复习第一轮横向基础复习第三单元三角形第14课相似三角形课件PPT

知识点4 相似三角形的判定
判定1
平行于三角形一边的直线和其他两边相交,所 构成的三角形与原三角形相似.
判定2 三边成比例的两个三角形相似.
判定3 两边成比例且夹角相等的两个三角形相似.
判定4 两角分别相等的两个三角形相似.
判定5
满足斜边和一条直角边成比例的两个直角三角 形相似.
知识点5 相似三角形的性质
于点D,∠B=∠C=90°,测得BD=120m,DC=60m,
EC=50m,求得河宽AB= 100
m.
4.(2018·毕节)如图,在平行四边形ABCD中,E是DC上 的点,DE∶EC=3∶2,连接AE交BD于点F,则△DEF与
△BAF的面积之比为( C )
A. 2∶5 B. 3∶5 C. 9∶25 D. 4∶25
建筑物CD的高是( B )
A. 9.3m B. 10.5m C. 12.4m D. 14m
【点拨】用相似三角形对应边的比相等的性质求物体的 高度.
考点三 位似图形
例3 (2018·毕节)在平面直角坐标系中,△OAB各顶 点的坐标分别为:O(0,0),A(1,2),B(0,
3),以O为位似中心,△OA′B′与△OAB位似,
其面积之比是(
A. 2 : 3
C. 4∶9
C)
B. 2∶3 D. 8∶27
3.(相似三角形的性质)如图,已知△ADE∽△ABC,
若∠ADE=37°,则∠B= 37° .
4.(相似三角形的判定)如图,在△ABC中,点D、E分 别在边AB、AC上,下列条件中不能判断△ABC∽△AED
的是( D )
A. ∠AED=∠B B. ∠ADE=∠C C. A D A E
(1)位似图形上任意一对对应点到位似中心的距 离之比等于相似比(位似比);

2019年中考数学真题知识点分类汇总—相似三角形

2019年中考数学真题知识点分类汇总—相似三角形

2019年中考数学真题知识点分类汇总—相似三角形一、选择题1. (2019广西省贵港市,题号11,分值3分)如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为( )A .B .C .D .5 【答案】C .【思路分析】设2AD x =,BD x =,所以3AB x =,易证ADE ABC ∆∆∽,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆∽,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度.【解题过程】解:设2AD x =,BD x =,3AB x ∴=,//DE BC ,ADE ABC ∴∆∆∽, ∴DE AD AE BC AB AC==, ∴263DE x x=, 4DE ∴=,23AE AC =, ACD B ∠=∠,ADE B ∠=∠,ADE ACD ∴∠=∠,A A ∠=∠,ADE ACD ∴∆∆∽,∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=,AD ∴=, ∴4CD=,CD ∴=,故选:C .【知识点】相似三角形的判定与性质2. (2019贵州省毕节市,题号15,分值3分)如图,在一块斜边长30cm 的直角三角形木板(Rt △ACB )上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .100cm 2B .150cm 2C .170cm 2D .200cm 2 【答案】A .【思路分析】设AF =x ,根据正方形的性质用x 表示出EF 、CF ,证明△AEF ∽△ABC ,根据相似三角形的性质求出BC ,根据勾股定理列式求出x ,根据三角形的面积公式、正方形的面积公式计算即可.【解题过程】解:设AF =x ,则AC =3x ,∵四边形CDEF 为正方形,∴EF =CF =2x ,EF ∥BC ,∴△AEF ∽△ABC , ∴EF BC =AF AC =13, ∴BC =6x ,在Rt △ABC 中,AB 2=AC 2+BC 2,即302=(3x )2+(6x )2,解得,x=∴AC=BC=∴剩余部分的面积=12100(cm2),故选:A.【知识点】正方形的性质;相似三角形的应用.3.(2019贵州黔西南州,10,4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB=√(3x)2+(6x)2=3√5x,∴3√5x=30,解得x=2√5,∴AC=6√5,BC=12√5,∴剩余部分的面积=12×6√5×12√5−(4√5)2=100(cm2).故选:D.【知识点】正方形的性质;相似三角形的应用4..(2019海南,12题,3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为( )A.813B.1513C.2513D.3213第12题图【答案】B【思路分析】根据平行和平分线得到等腰三角形,作DE⊥BC,得到相似三角形,结合中点和相似比,得到线段关系,列出方程,进而求得AP长度.【解题过程】在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC=3,过点D作DE⊥BC于点E,易证△ABC∽△DQE,∵BD平分∠ABC,PQ∥AB,∴BQ=QD,设QD=BQ=4x,则AP=3x,DP=4x,∴PQ=8x,CP=245x,∴AC=395x=3,∴x=513,AP=3x=1513,故选B.第12题答图【知识点】等腰三角形,相似三角形,一元一次方程5.(2019黑龙江哈尔滨,10,3分)如图,在平行四边形ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习(7)——《三角形相似》学号:____姓名:_______________三角形的相似是解决数学中图形问题的重要的工具,也是初中数学的重点内容,因此也是中考的重要考查内容。

主要考查以下几方面的内容:1.会运用三角形相似的性质与判定进行有关的计算和推理。

2.能运用三角形相似的知识解决相关的实际问题。

3.能探索解决一些与三角形相似有关的综合性题型。

一、基础训练 1、(07宁德)若23a b =,则a bb += . 2、若如图所示的两个四边形相似,则α∠的度数是( )A .87B .60C .75D .1203、如果两个相似三角形的相似比为2:3, 那么这两个相似三角形周长比为________;对应角平分线的比为_______,对应高的比为__________,对应中线的比为__________,面积比为 。

4、(08海珠)若梯形的上底为m ,下底为5㎝,则此梯形的中位线长为 ㎝. 5、(08越秀)如图,D 是ABC ∆的重心,则下列结论正确的是( ) A .DE AD =2 B .DE AD 2= C .DE AD 23= D .DE AD 3=6、如图,已知DE ∥BC ,EC=6cm ,DE=5cm ,AE=m ,AB=14cm , 求AD 、BC的长.•二、例题分析:例1、如图5所示为农村一古老的捣碎器,已知支撑柱AB 的高为0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在从捣头点E着地的位置开始,让踏脚着地,则捣头点E 上升了 米. 例2、 (2018南京)如图,在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=,点E F ,分别在线段AD DC ,上(点E 与点A D ,不重合),且120BEF ∠=,设A E x =,DF y =.⑴ 求y 与x 的函数表达式; ⑵ 当x 为何值时,y 有最大值,最大值是多少?6075α60138第2题图ABCD E·(第5题图)A E D FCBC图3A BD O第2题三、巩固练习:(A组)1.如图1,若DE ∥BC ,且AD=2cm ,AB=4cm ,AC=m ,则AE=_______.2、如图,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,S △AOD :S △COB =1:9,则OD:OB = 。

3.如图3,在平行四边形ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若20DAE ∠=,90AED ∠=,则B ∠=____度;若13EC AB =,4AD =厘米,则CF = 厘米.4.如图4,在矩形ABCD 中,E 在AD 上,EF BE ⊥,交CD 于F ,连结BF ,则图中与ABE △ 一定相似的三角形是( )A .EFB △ B .DEF △C .CFB △D .EFB △和DEF △5.如图5,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树, 在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北 岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵 树之间还有三棵树,则河宽为 米.6、(07泉州)25.(8分)如图,在梯形ABCD 中,AD BC ∥, B ACD ∠=∠. (1)请再写出图中另外一对相等的角; (2)若6AC =,9BC =,试求梯形ABCD 的中位线的长度.(B 、C 组)7、如图5,△ABC 内接于⊙O ,D 是弧AC 的中点求证:CD 2=DE ·DB 。

C 组8、(2018长沙)如图,□ABCD 中,4AB =,3BC =,120BAD =∠,E 为BC 上一动点(不与B 重合),作EF AB ⊥于F ,FE ,DC 的延长线交于点G ,设BE x =,DEF △的面积为S . (1)求证:BEF CEG △∽△;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 运动到何处时,S 有最大值,最大值为多少?9:如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB图1E D CBA 图5 AP 南岸北岸图5 (第6题图)A C BDEF G边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。

如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6),那么:(1)当t为何值时,三角形QAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论。

(变式:当点P、Q运动时,四边形QAPC的面积是否改变?若不变,求出它的面积;若改变,请说明理由。

)(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似。

10、(陕西)王师傅有两块板材边角料,其中30cm,下底为一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,•两块板子的重叠部分为五边形ABCFE 围成的区域(如图②).由于受材料纹理的限制,•要求裁出的矩形要以点B 为一个顶点. (1)求FC 的长;(2)利用图②求出矩形顶点B 所对的顶点到BC 边的距离x (cm )为多少时,矩形的面积y (cm 2)最大?最大面积是多少?(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.例2、【解题分析】⑴ 由18012060AEB ABE ∴+=-=∠∠和 18012060AEB DEF ∴+=-=∠∠得ABE DEF ∴=∠∠. 从而可得ABE DEF ∴△∽△∴y 与x 的函数表达式是216y x x =-+ 解:(1)ACB CAD ∠=∠(或BAC ADC ∠=∠) ·············································· 3分 (2)B ACD ∠=∠,又ACB CAD ∠=∠ ABC DCA ∴△∽△ ······················································································· 5分AC BC AD AC∴=,即2AC BC AD = ·························· 6分 6AC =,9BC =,269AD ∴=, 解得4AD = ······················································· 7分∴梯形ABCD 的中位线长为496.52+= ····························································· 8分 9:分析:(1)当三角形QAP 为等腰三角形时,由于∠A 为直角,只能是AQ=AP ,建立等量关系,t t -=62,即2=t 时,三角形QAP 为等腰三角形;(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积=6)212(211221612⨯--⨯⨯-⨯x x =36,即当P 、Q 运动时,四边形QAPC 的面积不变。

(3)显然有两种情况:△PAQ ∽△ABC ,△QAP ∽△ABC ,由相似关系得61262=-x x 或12662=-x x ,解之得3=x 或2.1=x 10、(1)由题意,得△DEF ∽△CGF ,∴6030,60DF DE FC FC CG FC -=∴=,∴FC=40(cm ). (2)如图,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x=60, y 的最大值为60×30=1 800(cm 2).②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M . 根据题意,得△GFC ∽△GPN .∴PN FC NG CG =.∴NG=32x ,∴BN=120-32x . ∴y=x (120-32x )=-32(x -40)2+2 400.∴当x=40时,y 的最大值为2 400(cm 2).③当顶点P 在FC 上时,y 的最大值为60×40=2 400(cm 2). 综合①②③,得x=40cm 时,矩形的面积最大,最大面积为2 400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm )满足的函数表达式为: y=-32x 2+120x . 当y=x 2时,正方形的面积最大. ∴x 2=-32x 2+120x . 解之,得x 1=0(舍去),x 2=48(cm ). ∴面积最大的正方形的边长为48cm .。

相关文档
最新文档