单片机的串行扩展技术

合集下载

串行通信及串行扩展技术

串行通信及串行扩展技术

传感器数据采集
01
串行通信接口可以连接各种模拟或数字传感器,实现数据的实
时采集和传输。
数据处理与存储
02
通过串行通信将采集到的数据传输到上位机或数据中心,进行
进一步的处理、分析和存储。
系统监控与控制
03
串行通信可用于实现远程监控和控制,提高数据采集系统的灵
活性和可维护性。
在远程监控系统中的应用
01
特点
传输线少,成本低,适用于远距 离通信,但传送速度较慢。
串行通信协议
异步通信协议
以字符为单位进行传输,字符间通过 特定的起始位和停止位进行同步。
同步通信协议
以数据块为单位进行传输,通过同步 字符或同步信号实现收发双方的时钟 同步。
串行通信接口标准
RS-232C接口标准
定义了数据终端设备(DTE)和数据通信设备(DCE)之间的接口标准,采用 负逻辑电平,最大传输距离约15米。
串行扩展工作原理
01
数据传输
在串行通信中,数据以位为单位进行传输。发送端将数据按位依次发送
到传输线上,接收端按位接收并组合成完整的数据。数据传输过程中需
要遵循特定的通信协议和数据格式。
02
同步与异步通信
串行通信可分为同步通信和异步通信两种方式。同步通信需要发送端和
接收端保持严格的时钟同步,而异步通信则通过特定的起始位和停止位
无线化发展趋势
无线通信技术的普

随着无线通信技术的不断发展, 串行通信逐渐实现无线化,使得 设备间的通信更加灵活方便。
低功耗无线通信技

针对低功耗设备的需求,发展出 低功耗无线通信技术,延长设备 的续航时间。
无线通信安全性增

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法单片机作为一种常见的微控制器,其数字输入输出接口的扩展设计方法是我们在电子工程领域中经常遇到的任务之一。

在本文中,我们将讨论单片机数字输入输出接口的扩展设计方法,并探讨其中的原理和应用。

在单片机系统中,数字输入输出(I/O)接口在连接外围设备时起着至关重要的作用。

通过扩展数字 I/O 接口可以为单片机系统提供更多的输入输出通道,从而提高系统的功能和性能。

下面将介绍几种常见的单片机数字 I/O 接口扩展设计方法。

1. 并行输入输出接口扩展并行输入输出接口扩展是最常见和直接的扩展方法之一。

通常,单片机的内部I/O口数量有限,无法满足一些复杂的应用需求。

通过使用外部并行输入输出扩展芯片,可以将单片机的I/O口扩展到更多的通道,同时保持高速数据传输。

这种方法可以使用注册器和开关阵列来实现数据的输入和输出。

2. 串行输入输出接口扩展串行输入输出接口扩展是一种节省外部引脚数量的方法。

使用串行输入输出扩展器,可以通过仅使用几个引脚实现多个输入输出通道。

这种方法适用于具有较多外设设备且外围设备数量有限的应用场景。

通过串行接口(如SPI或I2C)与扩展器通信,可以实现高效的数据传输和控制。

3. 矩阵键盘扩展矩阵键盘扩展是一种常见的数字输入接口扩展方法。

很多应用中,需要通过键盘输入数据或控制系统。

通过矩阵键盘的使用,可以大大减少所需的引脚数量。

通过编程方法可以实现键盘按键的扫描和解码,从而获取用户输入的数据或控制信号。

4. 脉冲编码调制(PCM)接口扩展脉冲编码调制是一种常见的数字输出接口扩展方法。

它通过对数字信号进行脉冲编码,将数字信号转换为脉冲信号输出。

这种方法适用于需要输出多个连续的数字信号的应用,如驱动器或步进电机控制。

通过适当的电路设计和编程,可以实现高效的数字信号输出。

5. PWM(脉冲宽度调制)接口扩展PWM接口扩展是一种常用的数字输出接口扩展方法。

PWM技术通过改变信号的脉冲宽度来实现模拟信号输出。

单片机系统的扩展技术

单片机系统的扩展技术

INC R0
INC DPTR
; 修改数据指针
DJNZ R7, AG
END
4.2.3 MCS-51对外部存储器的扩展
下 图 所 示 的 8031 扩 展 系 统 中 , 外 扩 了 16KB 程 序 存 储 器 ( 使 用 两 片 2764芯片)和8KB数据存储器(使用一片6264芯片)。采用全地址译码方 式,用于控制2―4译码器的工作,参加译码,且无悬空地址线,无地址重 叠现象。1# 2764, 2# 2764, 3# 6264的地址范围分别为:0000H~1FFFH, 2000H~3FFFH, 4000~5FFFH。
4.2 存储器的扩展
存储器是计算机系统中的记忆装置,用来存放要运行的程序和程序 运行所需要的数据。单片机系统扩展的存储器通常使用半导体存储器, 根据用途可以分为程序存储器(一般用ROM)和数据存储器(一般用 RAM)两种类型。
MCS-51单片机对外部存储器的扩展应考虑的问题:
(1)选择合适类型的存储器芯片
引脚符号的含义和功能如下:
D7~D0:三态数据总线; A0~Ai:地址输入线,i=12~15。2764的地址线为13位,i=12; 27512的地址线为16位,i=15; CE :片选信号输入线; OE :输出允许输入线;
CE
VPP:编程电源输入线; PGM :编程脉冲输入线; VCC:电源; GND:接地; NC:空引脚。
8051扩展2764的电路连接方法:
数据线:P0口接EPROM的D0~D7 ;
地址线: 2764容量为8KB,213=8KB,需要A0~A12共13根地址线。P0口
经地址锁存器后接EPROM的A0~A7 ; 为了与片内存储器的空间地址衔 接,~接EPROM的A8~A11 , 经非门后与A12连接。

单片机系统扩展技术

单片机系统扩展技术

单片机系统扩展技术1. 引言单片机是一种集成了处理器、存储器和各种输入输出接口的微型计算机系统。

单片机系统的应用范围广泛,涵盖了从工业自动化到家电控制等多个领域。

然而,随着应用需求的不断增加,单片机系统的功能往往面临着限制。

为了满足更高的要求,需要使用扩展技术来增强单片机系统的功能。

本文将介绍一些常见的单片机系统扩展技术。

2. 外部存储器扩展技术在某些应用场景中,单片机的内部存储器容量可能不足以存储所有的数据和程序。

这时可以通过外部存储器扩展技术来扩大系统的存储容量。

常见的外部存储器包括SD卡、EEPROM和闪存等。

2.1 SD卡扩展SD卡是一种常用的便携式存储介质,具有容量大、速度快和易于移植的特点。

通过使用SD卡模块,可以将SD卡连接到单片机系统中,并使用相应的驱动程序实现对SD卡的读写操作。

这样可以使单片机系统具备更大的存储容量,以便存储更多的数据和程序。

2.2 EEPROM扩展EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种可擦写的非易失性存储器。

通过使用外部连接的EEPROM芯片,可以在单片机系统中实现额外的存储容量。

EEPROM的读写速度相对较慢,但具有较高的可擦写次数和较低的功耗,适合存储一些需要长期保存的数据。

2.3 闪存扩展闪存是一种常见的存储介质,具有容量大、读写速度快和抗震动的特点。

通过使用外部连接的闪存芯片,可以在单片机系统中实现更大的存储容量。

闪存的读写速度相对较快,适合存储需要频繁读写的数据和程序。

3. 通信接口扩展技术在一些应用中,单片机系统需要与外部设备进行通信,例如传感器、执行器和其他单片机等。

为了实现与这些外部设备的通信,可以通过扩展通信接口来满足需求。

3.1 UART扩展UART(Universal Asynchronous Receiver/Transmitter)是一种常见的串行通信接口。

单片机原理及接口技术AT89S51单片机系统的串行扩展

单片机原理及接口技术AT89S51单片机系统的串行扩展

单片机原理及接口技术AT89S51单片机系统的串行扩展在单片机系统中,为了扩展其功能和使用,需要与其他外部设备进行通信。

串行通信是一种常见的通信方式,它通过将数据逐位地进行传输和接收。

AT89S51单片机具有多种功能引脚,可以用来实现串行扩展。

包括UART串口、SPI接口和I2C总线等。

UART串口是一种常用的串行通信接口,它使用两根引脚(TXD和RXD)进行数据传输。

在AT89S51单片机中,可以使用其内置的UART模块来实现串行扩展。

首先,需要设置串口的波特率、数据位、停止位和校验位等参数。

然后,在程序中通过读写串口数据寄存器来进行数据的传输和接收。

SPI接口是一种全双工的串行通信接口,它使用四根引脚(SCLK、MISO、MOSI和SS)进行数据的传输和接收。

在AT89S51单片机中,可以使用其内置的SPI模块来实现串行扩展。

首先,需要设置SPI的工作模式、数据位、时钟极性和相位等参数。

然后,在程序中通过读写SPI数据寄存器来进行数据的传输和接收。

I2C总线是一种双向的串行通信总线,它使用两根引脚(SDA和SCL)进行数据的传输和接收。

在AT89S51单片机中,可以通过软件实现I2C总线的功能。

首先,需要设置I2C的时钟频率和器件地址等参数。

然后,在程序中通过控制I2C总线的起始、停止、发送和接收来进行数据的传输和接收。

串行扩展可以实现单片机与其他外设的数据交互,包括和PC机的通信、与传感器的连接等。

通过串行扩展,单片机能够实现更复杂的功能和应用。

在编程过程中,需要合理地使用串口、SPI接口和I2C总线等技术,根据具体的应用需求选择合适的通信方式。

总之,单片机原理及接口技术是一种重要的扩展技术,可以极大地增强单片机的功能和使用。

在AT89S51单片机系统中,串行扩展是一种常见的技术。

通过合理地使用UART串口、SPI接口和I2C总线等技术,可以实现单片机与其他外设的数据交互,进而实现更复杂的功能和应用。

51单片机串行口扩展电路设计及其应用

51单片机串行口扩展电路设计及其应用
h r wae cru ta d p o rm o c at o u r iin s se i e wae w r s ad r ic i n r ga f w h rsfr s p vso y tm n t tr o k . l e h Ke r s: ige c i o u e ; e a p e d n ; n o sv n e tn i g y wo d sn l— hp c mp tr s r ls r a i g o e t e xe d n i e
随着 单 片机 技 术 的 不 断 发展 , 别是 网络 技 术 特 在测 控领 域 的广 泛应 用 , 由单 片 机 构成 的多 机 网络 测 控系统 已成 为单 片 机技术 发 展 的一个 方 向 l。笔 1 j 者在 研究 水 厂 的数 据 采 集 和控 制 系 统 的过 程 中 , 设 计 了 主从 式 多机 测控 系 统 。在 系 统 中 ,1 片机 一 5单 方面要和 P C机 通 信 , 方 面 又 要 和 下 位 机 及 仪 表 一
扩展 串 口数 量 多 、 扩 展单 片机 的软 硬 件 资 源 占用 对 少 、 占用 上位 机外 部 中断资 源 ( 不 其他并 口数据 总线 扩 展方 案都 需 要至 少一 条或 者多 条外 部 中断 )使 用 ,
方法简单 、 待扩展串口可实现较高的波特率 、 l o t f 1Sn l hpMi oo S M ) ei r igeC i c c ( C ap o 5 y
L U n - u I Xig h a
( ua n e i f eh o g ,uhu30 1 ,hn) Fj nU i rt oT cnl yF zo 504 C ia i v sy o
Jn u.
2 0 07

如何扩展51单片机的串行口?

如何扩展51单片机的串行口?

在以单片机为核心的多级分布式系统中,常常需要扩展单片机的串行通信口,本文分别介绍了基于SP2538专用串行口扩展芯片及Intel8251的两种串行口扩展方法,并给出了实际的硬件电路原理及相应的通信程序段。

关键词:串口扩展;单片机;SP2538;Intel82511 引言在研究采场瓦斯积聚模拟试验台的过程中,笔者设计了主从式多机采控系统结构。

主从式多机控制系统是实时控制系统中较为普遍的结构形式,它具有可靠性高,结构灵活等优点。

当选用单串口51单片机构成这种主从式多机系统时,51单片机一方面可能要和主机Computer通信,一方面又要和下位机通信,这时就需要扩展串行通道。

本文具体介绍了两种串行通道的扩展方法。

2 串行口的扩展方法常用的标准51单片机内部仅含有一个可编程的全双工串行通信接口,具有UART的全部功能。

该接口电路不仅能同时进行数据的发送和接收,也可作为一个同步移位寄存器使用。

当以此类型单片机构成分布式多级应用系统时,器件本身的串口资源就不够用了。

笔者在实际开发中,查阅了有关资料,总结出如下两种常用而有效的串行通道扩展方法。

2.1 基于SP2538的扩展方法SP2538是专用低功耗串行口扩展芯片,该芯片主要是为解决当前基于UART串口通信的外围智能模块及器件较多,而单片机或DSP原有的UART串口又过少的问题而推出的。

利用该器件可将现有单片机或DSP 的单串口扩展至5个全双工串口。

使用方法简单、高效。

在应用SP2538扩展串行通道时,母串口波特率K1=2880*Fosc_in,单位是MHz,且Fosc_in小于20.0MHz 在SP2538输入时钟Fosc_in =20.0MHz时母串口可自适应上位机的56000bps和57600bps两种标准波特率输入。

子串口波特率K2=480*Fosc_in。

母串口和所有子串口都是TTL电平接口,可直接匹配其他单片机或TTL数字电路,如需连接PC机则必须增加电平转换芯片如MAX202 、MAX232 等。

单片机串行口IO端口扩展介绍

单片机串行口IO端口扩展介绍
是否兼容
08
检查串行口IO端 口的电源供应是
否正常
09
检查串行口IO端 口的接地是否正

10
检查串行口IO端 口的抗干扰措施
是否正确
串行口IO端口扩展应 用案例
实际应用场景
智能家居:通过串行口IO端口扩展,实现对家电 设备的远程控制和监测。
工业自动化:通过串行口IO端口扩展,实现对工 业设备的远程监控和操作。
单片机与网络设备通信:通过串行口扩展IO端口,实现 单片机与网络设备的通信,实现网络控制和数据传输。
串行口IO端口扩展硬 件设计
硬件结构设计
单片机串行口IO端口 扩展硬件主要包括单 片机、串行口、IO端 口扩展芯片等部分。
IO端口扩展芯片负责 将单片机的IO端口进 行扩展,增加硬件的
IO端口数量。
利用单片机的IO 端口进行扩展
使用串行口扩展 板进行扩展
扩展应用实例
单片机与传感器通信:通过串行口扩展IO端口,实现单 片机与各种传感器的通信。
单片机与显示屏通信:通过串行口扩展IO端口,实现单 片机与显示屏的通信,显示各种信息。
单片机与无线模块通信:通过串行口扩展IO端口,实现 单片机与无线模块的通信,实现无线数据传输。
端口扩展程序
1 端口扫描:检测可用端口并进行编号 2 端口配置:设置端口参数,如波特率、数据位、停止位等 3 数据收发:实现数据的接收和发送 4 错误处理:检测并处理通信错误,如超时、数据丢失等 5 端口管理:实现端口的添加、删除、修改等操作 6 用户界面:提供友好的用户界面,方便用户操作和查看端口状态
校验方式等
串行通信接口:用于连 接串行设备的物理接口
串行通信波特率:数据 传输的速率,单位为bps
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档