人教版初二数学上册习题及答案

合集下载

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案(2)51.如图,在每个小正方形边长为1的方格纸中,△ADC的顶点都在方格纸格点上,将△ABC向左平移1格.再向上平移1格,(1)在图中画出平移后的△A′B′C′;(2)画出AB边上的高CE;(3)过点A画BC的平行线;(4)在图中,若△BCQ的面积等于△BCA的面积.则图中满足条件且异于点A的个点Q 共有_____个.(注:格点指网格线的交点)【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)4.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平行线的性质求解;(4)过点A作BC的平行线,然后找出此平行线上的格点即可.【详解】解:(1)如图,△A′B′C′为所作;(2)如图,高线CE为所作;(3)AQ△BC;(4)图中满足条件且异于点A的个点Q共有4个.故答案为4.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.52.已知21(1)(2)12y A B y y y y +=+-+-+,求A 、B 的值.53.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,BE AC ∥,AE BD ∥.(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,8AC =,求菱形AOBE 的面积.,根据菱形的性质易得出AOB 为等边三角形,再根据等的值,最后根据菱形的面积等于对角线证明:BE AC ∥AE BD四边形AOBE 为平行四边形四边形ABCD 为矩形BD =,12OA AC ,OB OB =∠∴AOB 为等边三角形8AC =OA AB ==12AM AB =OM OA =54.设x ,y ,z 为互不相等的非零实数,且x y z y z x +=+=+.求证:2221x y z =.55.如图,将几个小正方形与小长方形拼成一个边长为a b c ++()的正方形.(1)若用不同的方法计算这个边长为a b c ++()的正方形面积,就可以得到一个等式,这个等式可以为 .(2)请利用(1)中的等式解答下列问题:△若三个实数,,a b c 满足l1a b c ++=,+38ab bc ac +=,求222a b c ++的值.△若三个实数,,x y z 满足12484x y z ⨯÷=,2224944x y z ++=,求236xy xz yz --的值. 【答案】(1)2222()222a b c a b c ab bc ac ++=+++++;(2)△45;△-20【分析】(1)根据大正方形的面积等于所有小正方形与矩形的面积和即可得解; (2)△利用(1)中等式可将(a+b+c )直接平方,然后代入式子的值求解即可;(3)△利用幂的乘方与同底数幂的乘除整理得到232x y z +-=-,然后将23x y z +-平△(a b c ++11,c +=22(b c a +=238⨯△24x y ⨯÷222x y ∴⨯÷232x y z +-∴=23x y ∴+-(23x y +-2(2)∴-=23xy xz ∴-【点睛】本题主要考查整式混合运算,幂的混合运算,解此题的关键在于根据题图得到新等式,再利用新等式进行整理计算即可56.如图,点B 、F 、C 、E 在同一直线上,AB △BE ,垂足为B ,DE △BE ,垂足为E ,AC 、DF 相交于点G ,且AC=DF ,BF CE =.求证:FG CG =.【答案】见详解【分析】首先证明借助HL 证明Rt ABC Rt DEF ≌,由全等三角形的性质可知ACB DFE ∠=∠,然后由“等角对等边”即可证明FG CG =.【详解】证明:△AB △BE ,DE △BE ,△90B E ∠=∠=︒,△BF CE =,△BF FC CE FC +=+,△=BC EF ,又△AC=DF ,△()Rt ABC Rt DEF HL ≌,△ACB DFE ∠=∠,△FG CG =.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握相关性质和判定是解题关键.57.计算:(1)2(4)(31)x x -+(2)23331111x x x x x ----+-58.利用因式分解简便计算(要求写出完整计算过程)(1)22201199- (2)21.99 1.990.01+⨯【答案】(1)800;(2)3.98.【详解】试题分析:(1)利用平方差公式得到原式=(201+199)×(201-199),然后进行有理数运算;(2)利用提公因式得到原式=1.99×(1.99+0.01),然后进行有理数运算.试题解析:(1)原式=(201+199)×(201-199)=400×2=800;(2)原式=1.99×(1.99+0.01)=1.99×2=3.98.59.(1)计算:232-÷x x x(912)9(2)分解因式:22-+363x xy y60.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使P A+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【答案】(1)见解析(2)见解析(3)见解析(4)见解析【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.△CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点睛】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.61.如图,已知点A、C分别在△GBE的边BG、BE上,且AB=AC,AD△BE,△GBE 的平分线与AD交于点D,连接CD.(1)求证:CD平分△ECA.(2)猜想△BDC与△BAC之间有何数量关系?并对你的猜想加以证明.62.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?63.下面是小明同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .求作:直线PQ ,使直线PQ l ∥.作法:如图2,△在直线l 上取一点A ,连接PA ;△作PA 的垂直平分线MN ,分别交直线l ,线段PA 于点B ,O ;△以O 为圆心,OB 长为半径作弧,交直线MN 于另一点Q ; △作直线PQ ,所以直线PQ 为所求作的直线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形(保留作图痕迹);(2)完成下面的证明:证明:△直线MN 是PA 的垂直平分线,△PO =___________,90POQ AOB ∠=∠=︒.△OQ =___________,△POQ AOB △≌△.△___________=___________.△PQ l ∥(___________)(填推理的依据)【答案】(1)见解析(2)AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【分析】(1)根据题中描述即可作图;(2)根据垂直平分线的性质证明POQ AOB △≌△,得到QPO BAO ∠=∠,即可根据平行线的判定定理证明.【详解】(1)用直尺和圆规,补全图形如下;(2)证明:△直线MN 是PA 的垂直平分线,△PO AO =,90POQ AOB ∠=∠=︒.△OQ OB =,△POQ AOB △≌△.△QPO BAO ∠=∠.△PQ l ∥(内错角相等,两直线平行).故答案为:AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【点睛】本题考查了作图—复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质,三角形全等的判定和性质,平行线的判定定理.64.如图, ABC C ∠∠=,点E 在线段AC 上,D 在AB 的延长线上,且有BD CE =,连接DE 交BC 于F ,过E 作EG BC ⊥于G .试说明线段BF 、FG 、CG 之间的数量关系.【答案】BF CG FG +=,证明见解析.【分析】如图(见解析),先根据三角形全等的判定定理得出DHB EGC ≅,再根据三角形全等的性质可得BH CG =,DH EG =,然后根据三角形全等的判定定理得出DHF EGF ≅,最后根据三角形全等的性质可得FH FG =,据此根据线段的和差、等量代换即可得证.【详解】BF CG FG +=,理由如下:如图,过点D 作DH CB ⊥,交CB 延长线于点H△ABC C ∠=∠,HBD ABC ∠=∠(对顶角相等)△HBD C ∠=∠在DHB △和EGC 中,90HBD C DHB EGC BD CE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHB EGC AAS ≅△BH CG =,DH EG =在DHF △和EGF △中,90DFH EFG DHF EGF DH EG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHF EGF AAS ≅△FH FG =△BF BH FH FG +==△BF CG FG +=.【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、线段的和差等知识点,通过作辅助线,构造全等三角形是解题关键.65.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?66.小明在学习分式的运算时,计算221x +的解答过程如下:请你指出小明解答过程中第△步的理论依据是 ;过程中错误出现在第 步(写出对应的序号即可),错误的原因是 , 请你给出这道题的正确解的答过程:67.在数轴上,点A 表示数a ,点B 表示数b ,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A 、B 之间的距离记作AB ,定义:AB a b =-,如:点A 表示数1,点B 表示数3,则132AB =-=;1a -表示数a 和1在数轴上对应的两点之间的距离;6a +表示数a 和6-在数轴上对应的两点之间的距离.(1)在数轴上,若点A 表示数2-,点B 表示数6,△AB = ;△动点P 表示数x ,请求出满足2610x x ++-=的x 的值.(2)小林同学对(1)中正整数x 进行如下图操作:若x 为奇数,则先把x 乘以3,再把所得数在数轴上对应的点向右平移1个单位得到另一个数若x 为偶数,则把x 乘以12,如此循环重复操作图中△处应填写___________(用含x 的代数式表示)经过操作,小林发现有循环出现的数,请画出数轴并在数轴上标出这些循环出现的数.【答案】(1)△8;△x 的值为-3或7;(2)3x +1;循环出现的数为4、2、1,数轴见解析68.计算:()()232223122a ab a b ⎛⎫-- ⎪⎝⎭ )()36461142a b a b ⎛⎫-= ⎪⎝⎭【点睛】本题主要考查幂的乘方与积的乘方,熟练掌握运算法则是关键69.先化简,再求值[x 2+y 2﹣(x+y)2+2x(x ﹣y)]÷4x ,其中x =﹣2,y =2【分析】根据整式的运算法则把所给的整式化为最简后,再代入求值即可.70.如图,点A ,M ,B 在同一直线上,以AB 为边,分别在直线两侧作等边三角形ABC 和等边三角形ABD ,连接CM ,DM ,过点M 作MN =DM ,交BC 边于点G ,交DB 的延长线于点N .(1)求证:△BCM =△BDM ;(2)求△CMN 的度数;(3)求证:AM =BN . 【答案】(1)见解析;(2)60CMN ∠=︒;(3)见解析【分析】(1)根据ABC 和ABD △为等边三角形,且AB 为公共边,可以得出条件BC BD =,CBM DBM ∠=∠,即可证明()CBM DBM SAS ≌,由性质即可得出结论;(2)根据,MN DM BCM BDM =∠=∠,得出BDM BNM ∠=∠,BCM BNM ∠=∠,又根据CGM ∠和NGB ∠为对顶角,可得CMN NBC ∠=∠,再根据ABC 和ABD △为全等三角形,DBN ∠为平角,利用等量代换即可求出60CMN ∠=︒;(3)连接CN 由(1)可知:CBM DBM ≌,即可得CM DM =,证出CMN 为等边三角形,进而证明出()AMC BNC SAS ≌,由性质即可得出结论.【详解】解:(1)证明:ABC 和ABD △为等边三角形,且AB 为公共边, ,60BC BD CBM DBM ∴=∠=∠=︒,又在CBM 和DBM △中,CB DB CBM DBM BM BM =⎧⎪∠=∠⎨⎪=⎩,()CBM DBM SAS ∴≌,BCM BDM ∴∠=∠;(2),MN DM BCM BDM =∠=∠,BDM BNM ∴∠=∠,BCM BNM ∴∠=∠,又CGM ∠和NGB ∠为对顶角,CMN NBC ∴∠=∠,又ABC 和ABD △为全等三角形,DBN ∠为平角,60CBM DBM ∴∠=∠=︒,180DBN ∠=︒,180606060CMN NBC DBN DBM CBM ∴∠=∠=∠-∠-∠=︒-︒-︒=︒,(3)证明:连接CN ,如图所示:由(1)可知:CBM DBM ≌,CM DM ∴=,又,60MN DN CMN =∠=︒,CM MN ∴=,CMN ∴为等边三角形,,60CM CN MCN ∴=∠=︒,又ABC 为等边三角形,MCB ∠是ACB ∠和MCN ∠重叠的部分,,AC BC ACM BCN ∴=∠=∠,又在AMC 和BNC 中,AC BC ACM BCN CM CN =⎧⎪∠=⎨⎪=⎩,()AMC BNC SAS ∴≌,AM BN =.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定及性质、解题的关键是掌握全等三角形的判定定理及性质,再利用等量代换的思想进行解答.712+2n+1=0.(1)求﹣2m 2+6m ﹣4n 的值;(2)求m 2+21m﹣n 2013的值.72.某商店欲购进A 、B 两种化妆品,用160元购进的A 种化妆品与用240元购进的B 种化妆品的数量相同,每件B 种化妆品的进价比A 种化妆品的进价贵10元. (1)求A 、B 两种化妆品每件的进价分别为多少元?(2)若该商店A 种化妆品每件售价32元,B 种化妆品每件件价45元,准备购进A 、B 两种化妆品共100件,且这两种化妆品全部售出后总获利高于1300元,则最多购进A 种化妆品多少件?【答案】(1)A 、B 两种化妆品分别为20元、30元;(2)66件.20x , 20x 是原方程的解,且符合题意,则两种化妆品每件的进价分别为20元、)设购进A 种化妆品件,则购进B 种化妆品由题意得:(3220)30)(100)1300m m -->2663, 73.已知m 2=169,n 3=-27,求代数式m -n 的值.【点睛】本题考查了平方根的定义,立方根的定义,求代数式的值,解题的关键是熟练掌握平方根和立方根的定义,正确得到m 、n 的值.74.对于任意一个三位数p ,若个位上数字等于百位上的数字与十位上的数字之和,则称这个三位数p 为“桃园数”.例如:112p =,因为112+=,所以112是“桃园数”;253p =,因为253+≠,所以253不是“桃园数”;(1)判断459,615是否是“桃园数”?说明理由;(2)对于“桃园数”p ,去掉个位上的数字得到的两位数记为m ,去掉百位上的数字后将十位与个位的数字交换得到的两位数记为n ,若m n +能被24整除,求所有的p .75.如图,在直角坐标系中,ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题:(1)写出ABC 关于x 轴的对称图形111A B C △的顶点坐标.(2)求ABC 的面积.1,4(),A B 1(1,4),A ∴-(2)1,4(),A B 5BD BF ∴==-则ABC BDEF ABD BCF ACE S S S S S =---2111222BD AD BD BF CF AE CE -⋅-⋅-⋅ 111233112222-⨯⨯-⨯⨯-⨯⨯【点睛】本题考查了坐标与图形变化等知识点,掌握点坐标关于x 轴对称的变换规律是解题关键.76.边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是_________(请选择正确的一个);A .2222()a ab b a b -+=-B .22(()a b a b a b -=+-C .2()a ab a a b +=+ (2)若22912,34x y x y -=+=,求3x y -的值;(3)计算:2222211111(1)(1)(1)(1)(1)23499100----- )边长为)229x y -3124y =÷77.如图,已知△ABC 中,E 、F 分别是AB 、AC 上的两点,且EF△BC,D 为EF 上一点,且ED=DF ,BD=CD ,请说明:BE=CF.【答案】见解析.【分析】利用SAS 证明△BDE△△CDF ,根据全等三角形的对应边相等即可得结论.【详解】△BD=CD ,△△DBC=△DCB ,又△EF△BC ,△△EDB =△DBC ,△FDC =△DCB ,△△EDB =△FDC ,又△ED =FD ,BD =CD ,△△BDE△△CDF(SAS),△BE =CF.【点睛】本题考查了等腰三角形的性质,平行线的性质,全等三角形的判定与性质,正确把握相关知识是解题的关键.78.计算:(1)()()201433π--+--;(2)()()4235243a a a a ⋅++-; (3)()()213a a +-;(4)()()22m n m m n ---;(5)2202020222021⨯-. 【答案】(1)-4;(2)11a 8;(3)2a 2-5a -3;(4))n 2;(5)-1.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用同底数幂的乘法,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用多项式乘多项式法则计算,合并即可得到结果;(4)原式利用完全平方公式,以及单项式乘多项式法则计算,去括号合并即可得到结果;(5)原式变形后,利用平方差公式计算即可求出值.【详解】(1)原式=4+1-9=5-9=-4;(2)原式=a 8+a 8+9a 8=11a 8;(3)原式=2a 2-6a +a -3=2a 2-5a -3;(4)原式=(m 2-2mn +n 2)-(m 2-2mn )=m 2-2mn +n 2-m 2+2mn=n 2;(5)原式=(2021-1)×(2021+1)-20212=20212-1-20212=-1.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.79.如图,ABC 中,△ABC =90°,AB =BC ,P 为AB 上一动点,连接CP ,以AB为边作△BAD=△BCP,AD交CP的延长线于点D,连接BD,过点B作BE△BD交CP 于点E.(1)当△EBC=15°时,△ABD=°;(2)过点P作PH△AC于点H,是否存在点P,使得BC=HC,若存在,请求出此时△ACP 的度数,若不存在,请说明理由;(3)若AD=2,ED=7,求ADC的面积.80.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0. 【答案】3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键. 81.已知:3a b +=,1x y -=,求222a ab b x y ++-+的值.【答案】8【详解】试题分析:本题可先将原代数式化简得出关于a+b 和x -y 的式子,再把已知代入即可.试题解析:△a+b=3,x−y=1,△a 2+2ab+b 2−x+y=(a+b)2−(x−y) =9−1=8.82.求证:有两边和其中一边上的高对应相等的两个锐角三角形全等. 【答案】见解析【分析】根据题意首先写出已知和求证,进而利用全等三角形的判定与性质得出Rt △ABD △ Rt △A B D '''以及△B=△B′进而得出△ABC△A B C '''.【详解】解:如图:已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD△BC 于D ,A D ''△B C '' 于D 且 AD =A D ''求证:△ABC△△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中△AB A B AD A D ''''=⎧⎨=⎩△Rt △ABD △ Rt △A B D ''' (HL)△△B =△B '(全等三角形对应角相等)在△ABC 与△A B C '''中△AB A B B B BC B C =⎧⎪∠=∠⎨⎪=''''⎩' △△ABC△△'''A B C (SAS)【点睛】本题考查了全等三角形判定的应用,灵活运用全等三角形的判定方法是解题的关键.83.计算:2221244x x x x x x +----+.84.老师给同学们布置了一个“在平面内找一点,使该点到等腰三角形的三个顶点的距离相等”的尺规作图任务:下面是小聪同学设计的尺规作图过程:已知:如图,ABC ∆中,AB AC =,求作:一点P ,使得PA PB PC ==.作法:△作BAC ∠的平分线AM 交BC 于点D ;△作边AB 的垂直平分线EF ,EF 与AM 相交于点P ;△连接,PB PC ,所以,点P 就是所求作的点.根据小聪同学设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( )(填推理依据)△PA PB PC ==.【答案】(1)见解析;(2)等腰三角形的三线合一 线段垂直平分线上的点到线段两端点的距离相等.【分析】(1)利用基本作图作角平分线AD 和AB 的垂直平分线,它们相交于P 点;(2)根据等腰三角形的性质得到PB=PC .再根据线段垂直平分线上的点到线段两端的距离相等得到PA=PC ,从而得到PA=PB=PC .【详解】(1)如图,AD 、点P 为所求;(2)证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( 等腰三角形的三线合一 )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( 线段垂直平分线上的点到线段两端点的距离相等 )(填推理依据) △PA PB PC ==.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 85.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c ,求作Rt △ABC ,使△C =90°,BC =c ,AB =2c .【答案】见解析【分析】在直线l 上取点C ,作CD △l ,在CD 上截取CB =c ,分别以B ,C 为圆心,c 为半径画弧,交于点E ,连接BE 并延长交直线l 于点A ,则AB =2c .【详解】如图所示,Rt △ABC 即为所求.【点睛】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 86.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 . )40B ∠=AE 是ABC ∆的高,AEC ∴∠=60C ∠=CAE ∴∠=AD 是∠CAD ∴∠=DAE ∴∠=(2)BAC ∠+180BAC ∴∠=︒-AE 是ABC ∆的高,90,AEC =︒AD 是∠CAD ∴∠=DAE ∴∠=(11802=︒1C =∠-)CAE ∠和2CAE CAG =∠CAE FCB ∠=∠2FCG AEC ∴∠-∠AE 是ABC ∆的高,AEC ∴∠=45G ∴∠=故答案为:【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.87.把下列各式分解因式:(1)22425x y - (2) 2x y y -(3)224()x y z -- (4)2216()()a b a b --+(5)33327xy x y -+ (6) 2222416a x a y -(7)(2)(80+6a a a +- (8)4481x y -(9)224(23)(3)p q p q +-- (10)22169()196()a b a b --+【答案】(1)(2x+5y)(2x -5y); (2)y(x+1)(x -1); (3)(2x+y -z)(2x -y+z); (4)(5a -3b)(3a -5b);(5)-3xy(y+3x)(y -3x); (6)4a 2(x+2y)(x -2y); (7)(a+4)(a -4); (8)()()229)33x y x y x y ++-(; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b);.【详解】试题分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式y ,再利用平方差公式进行分解即可;(3)直接利用平方差公式进行分解即可;(4)直接利用平方差公式进行分解即可;(5)首先提取公因式-3xy ,再利用平方差公式进行分解即可;(6)首先提取公因式4a 2,再利用平方差公式进行分解即可;(7)首先进行乘法运算,再利用平方差进行分解即可;(8)直接利用平方差公式进行二次分解即可;(9)首先利用平方差公式进行分解,再把括号里面的同类项进行合并即可; (10)直接利用平方差公式进行分解即可.试题解析:(1)原式=(2x+5y )(2x -5y );(2)原式=y (x 2-1)=y (x+1)(x -1);(3)原式=(2x+y -z )(2x -y+z );(4)原式=(5a -3b )(3a -5b );(5)原式=-3xy (y 2-9)=-3xy (y+3x )(y -3x );(6)原式=4a 2(x 2-4y 2 )=4a 2(x+2y )(x -2y );(7)原式=a 2-16+6a -6a=(a+4)(a -4);(8)原式=(9x 2+y 2)(3x+y )(3x -y );(9)原式=(7p+5q )(p+7q );(10)原式=-(27a+b )(a+27b ).88.在正方形ABCD 的边AB 上任取一点E ,作EF AB ⊥交BD 于点F ,取FD 的中点G ,连接EG 、CG ,如图()1,易证 EG CG =且EG CG ⊥.()1将BEF 绕点B 逆时针旋转90,如图()2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.()2将BEF 绕点B 逆时针旋转180,如图()3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明. 90,90EBC ∠,90BCM ∠,BEMC 是矩形.,90EMC ∠,90ABC =,45,AB ,∵BEF 为等腰直角三角形BE EF =,45.EF CM =90EMC ∠=,FG DG =,12MG FD FG ==45,∵F GMC ∠=∠.∵在GFE与GMC中,FG MG F GMC EF CM=⎧⎪∠=∠⎨⎪=⎩,∵()GFE GMC SAS≅.∵EG CG=,FGE MGC∠=∠.∵90FMC∠=,MF MD=,FG DG=,∵MG FD⊥,∵90FGE EGM∠+∠=,∵90MGC EGM∠+∠=,即90EGC∠=,∵EG CG⊥.【点睛】此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.89.如图,在平面直角坐标系中,已知点()1,A a a b-+,(),0B a,且()220a b-=,C为x轴上点B右侧的动点,以AC为腰作等腰ACD,使AD AC=,CAD OAB∠=∠,直线DB交y轴于点P.(1)求证:AO AB=;(2)求证:AOC ABD△△≌;(3)当点C运动时,点P在y轴上的位置是否发生变化,为什么?【答案】(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出a、b的值,作AE OB⊥于点E,由SAS定理得出AEO AEB∆≅∆,根据全等三角形的性质即可得出结论;(2)先根据CAD OAB∠=∠,得出OAC BAD∠=∠,再由SAS定理即可得出AEO AEB∆≅∆;(3)设AOB ABOα∠=∠=,由全等三角形的性质可得出ABD AOBα∠=∠=,故)证明:(3,9)A ,3OE ∴=在AEO ∆AE AEO =⎧⎪∠⎨⎪)证明:CAD ∠=BAC OAB =∠ABD 中,BAD ⎪∠⎨⎪,由(2OB =,OP ∴长度不变,∴点P 在【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.90.如图,△ABC=90°,点D、E分别在BC、AC上,AD△DE,且AD=DE,点F是AE的中点,FD与AB的延长线相交于点M,连接MC.(1)MF与AC的位置关系是:______.(2)求证:CF=MF.(3)猜想:AD与MC的位置关系,并说明理由.【答案】(1)MF△AC;(2)证明见解析;(3)AD△MC.【分析】(1)只要证明△ADE是等腰直角三角形,即可解决问题;(2)根据等腰直角三角形的性质,得出DF△AE,DF=AF=EF,再证明△DFC△△AFM,得出FC=FM;(3)依据△DFC=90°,DF=EF,△FDE=△FMC=45°,即可得到△DEF、△CFM是等腰直角三角形,进而证明DE△MC,即可得出结论.【详解】(1)△AD△DE,AD=DE,△△ADE是等腰直角三角形,△AF=EF,△DF△AE,即MF△AC.故答案为MF△AC.(2)△AD△DE,且AD=DE,F是AE的中点,△DF△AE,DF=AF=EF,△△AFM=90°,△△FAM+△AMF=90°,△△ABC=90°, △△FAM+△DCF=90°,△△DCF=△AMF ,在△DFC 和△AFM 中,90DFC AFM DCF AMFDF AF ====∠∠︒⎧⎪∠∠⎨⎪⎩, △△DFC△△AFM (AAS ),△FC=FM ;(3)AD△MC .理由:由(2)得:△DFC=90°,DF=EF ,FM=FC,△△DEF 、△CFM 是等腰直角三角形,△△FDE=△FMC=45°,△DE△MC ,△AD△DE ,△AD△MC .【点睛】本题考查了等腰直角三角形的性质与判定以及全等三角形的判定与性质的综合应用,熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键. 91.数学课上,老师在黑板上展示了如下一道探究题:在ABC 中,AB AC m ==,BAC α∠=,点D ,E 分别在边AC ,AB 上,且CE BD =,试探究线段AE 和线段AD 的数量关系.(1)初步尝试如图△,若90α=︒,请探究AE 和AD 的数量关系,并说明理由.(2)类比探究如图△,若120α=︒,小组讨论后,有小组利用120°的角作垂线构造直角三角形,通过证明两次三角形全等,得到AE 和AD 的数量关系仍然成立,请你写出推理过程;(3)延伸拓展如图△,将第(2)中的“点E在边AB上”改为“点E在边BA的延长线上”,其它条件不变,请探究AE和AD的数量关系(用含m的式子表示),并说明理由.试卷第41页,共41页。

人教版数学八年级上因式分解练习题含答案

人教版数学八年级上因式分解练习题含答案

因式分解练习题1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是2.若9x²−12xy+m是两数和的平方式,那么m的值是3.把多项式a4−2a²b²+b4因式分解的结果为4.把(a+b) ²−4(a²−b²)+4(a−b) ²分解因式为5.已知x,y为任意有理数,记M = x²+y²,N = 2xy,则M与N的大小关系为6.将−3x²n−6x n分解因式,结果是7.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是8.若x m-y n=(x+y2)(x-y2)(x²+y4),则m = ,n =9.若x²+2(m-3)x+16是完全平方式,则m =10.若16(a-b)²+M+25是完全平方式,则M =11.若x²+4x-4的值为0,则3x²+12x-5的值是12.若x+y=4,x²+y²=6,则xy =13.分解因式:9a²-4b²+4bc-c² =14.若∣x-2y-1∣+x²+4xy+4y²=0,则x+y =15.若a=99,b=98,则a²-2ab+b²-5a+5b =16.若a、b、c这三个数中有两个数相等,则a²(b-c)+b²(c-a)+c²(a-b)=17.若a+b=5,ab=-14,则a3+a2b+ab2+b3 =18.分解因式:9x4-35x²-4 =19.分解因式:12x²-23x-24 =20.利用分解因式计算:1.22²×9-1.33²×4 =21.已知2x²-3xy+y²=0(xy≠0),则xy+yx=22.已知m、n互为相反数,且满足(m+4)²-(n+4)²=16 ,则m²+n²-mn的值为23.已知a²+a-1=0,则a3+2a²+1999的值为24.已知1+x+x²+…+x2004+x2005=0,则x2006 =25.已知a+b=2,则(a²-b²)²-8(a²+b²)的值是26.分解因式:(x+1)(x+2)(x+3)(x+4)-24 =27.利用分解因式计算:2×56²+8×56×22+2×44² =28.已知4x²+16y²-4x-16y+5=0,则x+y =因式分解练习题答案:1.n=42.m=4y²3.(a+b)²(a-b)²4.(3b-a)²5.M≥N6.-3x n(x n+2)7. x+y−z8.m=4,n=89.m=7或-1 10.M=±40(a-b) 11. 7 12.xy=5 13.(3a+2b-c)(3a-2b+c)14.x+y=1/4 15.-4 16.0 17. 265 18.(9x²+1)(x+2)(x-2)19.(3x-8)(4x+3) 20. 6.32 21.2或21 222. 3 23. 2000 24. 1(两边同乘x) 25.-16 26.x(x+5)(x²+5x+10) 27.20000(完全平方和)28. x+y=1 【(2x-1)²+(4y-2)²=0】。

人教版八年级上册 数学几何习题集含答案

人教版八年级上册 数学几何习题集含答案

1、如图:在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF3、如图,点B和点C分别为∠MAN两边上的点,AB=AC。

(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连结BE;(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择其中的一对全等三角形予以证明。

已知:AB=AC,AD⊥BC,CE平分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE。

AB D CM NE4、如图,PB、PC分别是△ABC的外角平分线且相交于点P.求证:点P在∠A的平分线上AB CP5、如图,△ABC中,p是角平分线AD,BE的交点. 求证:点p在∠C的平分线上6、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等7、如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM平分∠BAC8、如图,AP、CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F.求证:BP为∠MBN的平分线。

9、如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB 的平分线上.10、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.11、八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.12、如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF。

人教版初二上数学配套练习册答案参考

人教版初二上数学配套练习册答案参考

人教版初二上数学配套练习册答案参考§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE —∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC 和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°4. 提示:先使用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E 等; AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)一、1.B 2.B 3.C 4.B 5.D二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,因为五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称一、1.B 2.B 3.A 4.B 5.C二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴ ∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3.82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC∴△ABC是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.§12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE 为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,因为∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm∴BC=C D+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.623.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A。

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。

人教版数学八年级上册:12.2.3 三角形全等的判定(三)ASA、AAS 同步练习(附答案)

第十二章全等三角形12.2.3 三角形全等的判定(三)ASA、AAS1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的是( ) A.甲B.乙C.甲和乙都是D.都不是2.如图,∠ABC=∠DCB,BD,CA分别是∠ABC,∠DCB的平分线.求证:AB=DC.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是( )A.SSS B.SASB.C.ASA D.AAS5.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,CE=BF,∠A =∠D.求证:AB=CD.6.如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加的条件为;(2)若以“ASA”为依据,还需添加的条件为;(3)若以“AAS”为依据,还需添加的条件为.7.如图,AE∥DF,AE=DF,则添加下列条件还不能确定△EAC≌△FDB( ) A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F第7题图第8题图第9题图第10题图8.如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD =2,CF=5,则AB的长为( )A.2 B.5C.7 D.39.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.10.如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,过点D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌.若测得DE的长为25米,则河宽AB的长为.11.如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.13.如图1,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.参考答案1.B2.证明:∵∠ABC =∠DCB ,BD ,CA 分别是∠ABC ,∠DCB 的平分线,∴∠DBC =∠ACB.在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,∴△ABC ≌△DCB(ASA ).∴AB =DC.3.证明:∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA ).∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD.4.D5.证明:∵AB ∥CD ,∴∠B =∠C.∵CE =BF ,∴CE +EF =BF +EF ,即CF =BE.在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS ),∴AB =CD.6. (1) BC =EF 或BE =CF ;(2) ∠A =∠D ;(3) ∠ACB =∠F .7.C8.C9.AC =BC .10.25米.11.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB.(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS ).12.证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM.由(1),得△ABD ≌△ACE ,∴∠B =∠C. 在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ).∴∠M =∠N.13.解:(1)证明:∵∠ACB =90°,∴∠ACM +∠BCN =90°.又∵AM ⊥MN ,BN ⊥MN ,∴∠AMC =∠CNB =90°.∴∠BCN +∠CBN =90°.∴∠ACM =∠CBN. 在△ACM 和△CBN 中,⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS ).∴MC =NB ,MA =NC.∵MN =MC +CN ,∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由如下:同(1)中证明可得△ACM ≌△CBN ,∴CM=BN,AM=CN.∵MN=CN-CM,∴MN=AM-BN.。

人教版八年级上册数学13.1 轴对称 课后训练及答案解析

课后训练基础巩固1.在以下四个标志中,是轴对称图形的是().2.下列说法中错误的是().A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为().A.48°B.54°C.74°D.78°4.从商场试衣镜中看到某件名牌服装标签上的后5位编码是,则该编码实际上是__________.5.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.能力提升6.我国的文字非常讲究对称美,分析如图四个图案,图案________有别于其余三个图案().7.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是().8.(创新应用题)如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换........在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对...称变换...过程中,两个对应三角形(如图乙)的对应点所具有的性质是().A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点F,E,连接EF 交OA于N,交OB于M,EF=15,求△PMN的周长.10.如图,将一张正六边形纸沿虚线对折3次,得到一个多层的60°角的三角形纸.用剪刀在折叠好的纸上随意剪出一条线.(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有五条对称轴的图形,你应该取什么形状的纸?应该如何折叠?11.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.参考答案1.A点拨:只有A图沿中间竖直的一条直线折叠,左右两边能够重合,故选A.2.C点拨:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C.3.B点拨:因为关于某直线对称的两图形全等,所以∠A=∠A′=78°,∠C′=∠C=48°,所以∠B=54°,故选B.4.BA629点拨:假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到BA629,或将此图案从反面观察,也可得到BA629.5.6点拨:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12①,由△EDC的周长为24可知CE+CD+DE=24,由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24②,②-①,得2DE=12,所以DE=6.6.D点拨:都是轴对称图形,但图案D有两条对称轴,其余三个图案都只有一条对称轴.7.D点拨:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D适合,故选D.8.B点拨:因为对称且平移,所以原有的性质已有变化,A、C、D都已不成立,只有B选项正确,故选B.9.解:∵点P与点E关于OB轴对称,∴CE=CP,MC⊥PE.∴∠MCE=∠MCP=90°.在△MCE和△MCP中,∵,,,CE CPMCE MCP CM CM=⎧⎪∠=∠⎨⎪=⎩∴△MCE≌△MCP.∴MP=ME,同理NP=NF.∴MP+MN+NP=ME+MN+NF=EF=15,即△PMN的周长是15.10.解:(1)轴对称图形.(2)至少有3条对称轴.(3)取一张正十边形的纸,沿它的通过中心的五条对角线折叠5次,得到一个多层的36°角的图形,用剪刀在叠好的纸上任意剪出一条线,打开就可以得到一个至少含五条对称轴的图形.11.解:DE、GF分别是AB、AC的垂直平分线,∴BE=AE,CG=AG.∴△AEG的周长=AE+EG+AG=BE+EG+CG=BC=7.答:△AEG的周长为7.。

八年级数学上册《第十四章整式的乘法》练习题附带答案-人教版

八年级数学上册《第十四章整式的乘法》练习题附带答案-人教版一、选择题1.计算a·5ab=( ).A.5ab B.6a2b C.5a2b D.10ab2.计算:(﹣x)3•2x的结果是( )A.﹣2x4B.﹣2x3C.2x4D.2x33.若□×3xy=3x2y,则□内应填的单项式是( )A.xyB.3xyC.xD.3x4.计算-3x(2x2-5x-1)的结果是( )A.-6x3+15x2+3xB.-6x2-15x2-3xC.-6x3+15x2D.-6x3+15x2-15.如果一个长方体的长为(3m-4),宽为2m,高为m,则它的体积为( )A.3m3-4m2B.m2C.6m3-8m2D.6m2-8m6.满足2x(x-1)-x(2x-5)=12的x的值为( )A.0B.1C.2D.47.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣68.若(x+a)与(x+3)的乘积中不含x的一次项,则a的值为( )A.3B.﹣3C.1D.﹣19.计算(2x-1)(5x+2)等于( )A.10x2-2B.10x2-x-2C.10x2+4x-2D.10x2-5x-210.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),(1﹣x)(1+x+x2+x3),…,猜想(1﹣x)(1+x +x2+…+x n)的结果是( )A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二、填空题11.计算:.12.如果x n y4与2xy m相乘的结果是2x5y7,那么mn= .13.计算:2x(3x2-x+1)=14.如图是一个L形钢条的截面,它的面积为________15.计算(1+a)(1-2a)+a(a-2)=________.16.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.三、解答题17.化简:(-3ab2)3·(-13 ac)218.化简:ab(3a﹣2b)+2ab2.19.化简:(2x﹣5)(3x+2);20.化简:x(4x+3y)-(2x+y)(2x-y)21.市环保局将一个长为2×106分米,宽为4×104分米,高为8×102分米的长方体废水池中的满池废水注入正方体贮水池净化,那么请你想一想,能否恰好有一个正方体贮水池将这些废水刚好装满?若有,求出正方体贮水池的棱长;若没有,请说明理由.22.先化简,再求值:3ab[(-2ab)2-3b(ab-a2b)+ab2],其中a=-1,b=13 .23.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?24.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.25.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=_______,S2=_______;(2)求a,b满足的关系式,写出推导过程.参考答案1.C2.A.3.C4.A5.C6.D7.B.8.B.9.B10.A11.答案为:12.答案为:1213.答案为:6x3-2x2+2x.14.答案为:ac+bc-c2.15.答案为:-a2-3a+116.答案为:817.原式=-3a5b6c218.原式=3a2b﹣2ab2+2ab2=3a2b.19.原式=6x2+4x﹣15x﹣10=6x2﹣11x﹣10.20.原式=3xy+y2;21.解:有.因为长方体废水池的容积为(2×106)×(4×104)×(8×102)=64×1012=(4×104)3所以正方体水池的棱长为4×104分米22.解:原式=21a3b3-6a2b3.将中a=-1,b=13代入,原式=-1.23.解:(1)卧室的面积是2b(4a﹣2a)=4ab(平方米)厨房、卫生间、客厅的面积和是b·(4a ﹣2a﹣a)+a·(4b﹣2b)+2a·4b=ab+2ab+8ab=11ab(平方米)即木地板需要4ab平方米,地砖需要11ab平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元),即王老师需要花23abx元.24.解:原式=mx3+(m-3)x2-(3+mn)x+3n由展开式中不含x2和常数项,得到m-3=0,3n=0解得m=3,n=0.25.解:(1)a(x+a),4b(x+2b);(2)由(1)知:S1=a(x+a),S2=4b(x+2b)∴S1-S2=a(x+a)-4b(x+2b)=ax+a2-4bx-8b2=(a-4b)x+a2-8b2∵S1与S2的差总保持不变∴a-4b=0.∴a=4b.。

初二上册数学练习题及答案人教版

初二上册数学练习题及答案人教版精品文档初二上册数学练习题及答案人教版一、选择题 1、如图,两直线a?b,与?1相等的角的个数为 A、1个B、2个C、3个D、4个总分:150 时间:120分钟?x>32、不等式组?的解集是?x A、33D、无解、如果a>b,那么下列各式中正确的是 A、a?3 ab?bD、?2a B4、如图所示,由?D=?C,?BAD=?ABC推得?ABD??BAC,所用的的判定定理的简称是 A、AASB、ASAC、SASD、SSSA5、将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E、D分别落在E′,D′,已知?AFC=76?,则?CFD′等于A(31? B(28? C(24?D(22? 、下列说法错误的是A、长方体、正方体都是棱柱;B、三棱住的侧面是三角形;C、六棱住有六个侧面、侧面为长方形;D、球体的三种视图均为同样大小的图形;、下列各组中的两个根式是1 / 9精品文档同类二次根式的是A.和B.和C.和D.和8、如果不等式组??x?5有解,那么m的取值范围是11、不等式2x-1>3的解集是__________________; 12、已知13、在实数范围内因式分解 .,则.14、计算2a1??(a?4a?215、如图,已知?B=?DEF,AB=DE,请添加一个条件使?ABC??DEF,则需添加的条件是__________; 16、如图,AD和BC相交于点O,OA=OD,OB=OC,若?B=40?,?AOB=110?,则?D=________度;?x?m?117、若不等式组?无解,则m的取值范围是_______(x?2m?1?F2 / 9精品文档D第15题图第16题图11121x218、如果记 y? =f,并且f表示当x=1时y的值,即f=;f表示当x=时y的值,?2221?11?x221211111即f=?;……那么f+f+f+f+f+…+f+f=(三、解答题 19、解不等式20、填空: 如图:已知:AD?BC于D,EF?BC于F,?1=?3,求证:AD平分?BAC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq (2)2x2+8x+8
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2
4.分解因式:
(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2
5.因式分解:
(1)2am2﹣8a (2)4x3+4x2y+xy2
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2
7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1
9.分解因式:a2﹣4a+4﹣b2
10.分解因式:a2﹣b2﹣2a+1
11.把下列各式分解因式:
(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq;(2)2x2+8x+8
分析:(1)提取公因式3p整理即可;
(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)3p2﹣6pq=3p(p﹣2q),
(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);
(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.
分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.
解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.
4.分解因式:
(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.
分析:(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
解答:解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.
5.因式分解:
(1)2am2﹣8a;(2)4x3+4x2y+xy2
分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;
(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);
(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.
分析:(1)先提公因式3x,再利用平方差公式继续分解因式;
(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.
解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.
7.因式分解:
(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.
分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;
(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.
解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;
(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.
分析:(1)提取公因式n(m﹣2)即可;
(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);
(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.
9.分解因式:a2﹣4a+4﹣b2.
分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.
解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.
解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).
11.把下列各式分解因式:
(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;
(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;
(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;
(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.
解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);
(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x
﹣a)(x2+1﹣x+a);
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1
﹣y)]2=(1+y﹣x2+x2y)2
(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;
(3)x5+x+1;(4)x3+5x2+3x﹣9;
(。

相关文档
最新文档