空间向量与立体几何(基础+复习+习题+练习)
空间向量与立体几何基础练习题

焠 焠t
焠t焠
焠焠 ,
焠 焠t
焠t焠
且两向量互相垂直,
所以
焠焠 , t,
解得 .
6. A 则点 所以 又在
【解析】设点 , 在底面 体 鼠 的射影分别为 , ,
为 鼠 的中点,
鼠∽
体,
鼠,
体
中,易得
∽
,
所以
.
不妨设正方体的棱长为 ,以 鼠 为原点,鼠 ,鼠 ,鼠鼠 所在的直线分别为 ,,अ 轴建立空间直角坐 标系,
互相垂直,则 的值是
C.
D.
6. 如图,在正方体 体 鼠 则
体 鼠 中, 为棱 鼠 的中点.设 与平面 体体 鼠 鼠 的交点为 ,
A. 三点 鼠 , ,体 共线,且 体
鼠
B. 三点 鼠 , ,体 不共线,且 体
鼠
C. 三点 鼠 , ,体 共线,且 体 鼠
D. 三点 鼠 , ,体 不共线,且 体 鼠
二、填空题(共 6 小题;共 30 分)
体
体
,
又因为
体
体,
所以
体
.
14. (1) 连接 体 , .
因为 , 分别为 体体 ,体 的中点,
所以 ∥体 ,且
体.
又因为 为 鼠 的中点,
所以 鼠
鼠.
由题设知 体 ∥鼠 且 体 鼠 ,可得 体 ∥ 鼠 且 体
鼠,
故 ∥ 鼠且
鼠,
因此四边形 鼠 为平行四边形, ∥ 鼠.
又
平面 鼠 ,
所以 ∥平面 鼠 . (2) 过 作 的垂线,垂足为 t.
所以 体 平面 体.
因为 体 平面 体,
所以 体 体.
(2) 在
体 中,
空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是 .)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然 ]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-= ∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD ,∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1). 由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1). ∴),1,0,2(),2,1,0(==CN AM 设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角.设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB ∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A ⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB a DC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a a AD a a a AC =-= 23||||cos 111==∴⋅AD AC ADAC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ .30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E .∵P A =AC =1,P A ⊥AC ,∴PC =BC =2,∴CD ⊥PB .∵EA ⊥PB , ∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DCEA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a 得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1). ∴⋅-=>=<⋅33||||,cos b a b a b a ∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP == ∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠⋅AE AD AEAD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2 (B)2 (C)5 (D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( )(A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n(B)θ >ϕ,m <n (C)θ <ϕ,m <n (D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000(B)3cm 38000(C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||. BA BM BA BM = 即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos 〉MS ,GB 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==⋅MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
人教A版高中数学选择性必修第一册第一章空间向量与立体几何 复习参考题

第一章空间向量与立体几何 复习参考题复习巩固1. 如图,空间四边形OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =( )A.121232a b c -+ B. 211322a b c -++C.111222a b c +- D.221332a b c +- 【答案】B【分析】由空间向量的线性运算求解. 【详解】由题意1121132322MN MA AB BN OA OB OA BC OA OB OC OB =++=+-+=-++-211322OA OB OC =-++,又OA a =,OB b =,OC c =,∴211322MN a b c =-++,2. 如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,1AA c =,P 、M 、N 分别是CA '、CD '、C D ''的中点,点Q 在CA '上,且:4:1CQ QA '=.用空间的一个基底{},,a b c 表示下列向量:(1)AP ; (2)AM ; (3)AN ; (4)AQ .【答案】(1)111222AP a b c =++ (2)1122AM a b c =++(3)12AN a b c =++(4)114555AQ a b c =++【分析】(1)利用空间向量的加法法则可得出AP 在基底{},,a b c 下的表达式;(2)利用空间向量的加法法则可得出AM 在基底{},,a b c 下的表达式; (3)利用空间向量的加法法则可得出AN 在基底{},,a b c 下的表达式; (4)利用空间向量的加法法则可得出AQ 在基底{},,a b c 下的表达式.【小问1详解】解:A C A A AB BC a b c ''=++=+-, 则()1111122222AP AA A P AA A C c a b c a b c ''''=+=+=++-=++; 【小问2详解】解:CD CC CD c a ''=+=-,AD AD AA b c ''=+=+,所以,()11112222AM AD D M AD CD b c c a a b c ''''=+=-=+--=++;【小问3详解】解:1122AN AD D N AD D C a b c '''''=+=+=++. 【小问4详解】解:()1111455555AQ AA A Q AA A C c a b c a b c ''''=+=+=++-=++.3. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,1CB =,2CA =,1AA =M 是1CC 的中点.求证:1AM BA ⊥.【分析】以B 为原点建立如图所示空间直角坐标系,证明10BA AM ⋅=即可. 【详解】由题可以B 为原点建立如图所示空间直角坐标系,则1(0,0,0),1,0,,2B A M A ⎛⎫ ⎪ ⎪⎝⎭,则1(0,3,6),(1,2BA AM ==-, 10330BA AM ⋅=-+=∴,∴1AM BA ⊥.4. 如图,正三棱柱111ABC A B C -的底面边长为a .(1)试建立适当的空间直角坐标系,并写出点A ,B ,1A ,1C 的坐标; (2)求1AC 与侧面11ABB A 所成的角. 【答案】(1)答案见解析;(2)6π【分析】取BC 的中点为O ,11B C 的中点为1O ,连结1OO ,连结OA ,以O 为原点,1,,OA OB OO 为x 、y 、z 轴的正方向建立空间直角坐标系,用向量法求解. 【详解】(1)因为三棱柱111ABC A B C -为正三棱柱,取BC 的中点为O , 取11B C 的中点为1O ,连结1OO ,则1OO ⊥面ABC .连结OA ,则OA ⊥BC . 以O 为原点,1,,OA OB OO 为x 、y 、z 轴的正方向建立空间直角坐标系,由底面边长为a ,侧,则()1110,0,0,,0,0,0,,0,0,,0,,0,,0,,222222a a a a O A a B C A a B C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以点A ,B ,1A ,1C 的坐标为:11,0,0,0,,0,,0,22a a A B A C ⎫⎫⎛⎫⎛⎫-⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭;(2)由(1)知:()1133=,,2=,,0=0,0,222a a AC a a AB a AA ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,.设(),,n x y z =为面11ABB A 的一个法向量,则1·=0·=0n AA n AB ⎧⎨⎩,即1·=00·=002n AA z an AB x y ⎧++⋅⎪⎛⎫⎨-⋅+⋅+= ⎪⎪ ⎪⎝⎭⎩, 不妨设x =1,则()1,3,0n =.设1AC 与侧面11ABB A 所成的角为02πθθ⎛⎫<≤ ⎪⎝⎭,则1111sin =cos ,2AC n AC n AC nθ ⎝===⨯⎛, 所以=6πθ,即1AC 与侧面11ABB A 所成的角为6π.5. 已知空间三点()0,2,3A ,()2,1,6B -,()1,1,5C -. (1)求以AB ,AC为邻边的平行四边形的面积;(2)若向量a 分别与AB ,AC 垂直,且3a =,求向量a 的坐标. 【答案】(1)(2)(3,3,a =或(3,a =-【分析】(1)先求出,AB AC ,然后利用向量的夹角公式求出cos BAC ∠,从而可求出sin BAC ∠,再利用三角形的面积公式可求得答案,(2)设(,,)a x y z =,然后利用向量a 分别与AB ,AC 垂直,且3a =,列方程组可求得答案【小问1详解】因为()0,2,3A ,()2,1,6B -,()1,1,5C -,所以(2,1,3),(1,3,2)AB AC =--=-, 所以71cos 1424AB AC BAC AB AC⋅∠====,因为0180BAC ︒≤∠≤︒,所以60BAC ∠=︒, 所以以AB ,AC 为邻边的平行四边形的面积为sin 60142AB AC BAC ∠=︒=⨯= 【小问2详解】 设(,,)a x y z =,因为向量a 分别与AB ,AC 垂直,所以230320a AB x y z a AC x y z ⎧⋅=--+=⎨⋅=-+=⎩,因为3a =,所以2229x y z ++=,解得x y z ===x y z ===,所以(3,3,a =或(3,a =-6. 设空间两个单位向量(),,0OA m n =,()0,,OB n p =与向量()1,1,1OC =的夹角都等于4π,求cos AOB ∠的值.【答案】cos AOB ∠=cos AOB ∠=.【分析】根据已知可得||||cos4OC OA OC OA π⋅=⋅⋅1m n ===+,2221OA m n =+=,由此可以求出2n ,再根据2cos ||||OA OBAOB n OA OB ⋅∠==⋅,即可求得答案.【详解】因为两个单位向量(,,0)OA m n =,(0,,)OB n p =与向量(1,1,1)OC =的夹角都等于4π, 4AOC BOC π∴∠=∠=,||3OC =,||||1OA OB ==,||||cos4OC OA OC OA π∴⋅=⋅⋅1==OC OA m n ⋅=+, 2221OA m n =+=,2221m n m n ⎧+=⎪∴⎨⎪+=⎩解得22m n ⎧=⎪⎪⎨⎪=⎪⎩或22m n ⎧=⎪⎪⎨⎪=⎪⎩, 2OA OB n ⋅=,2cos ||||OA OBAOB nOA OB ⋅∴∠==⋅,cos AOB ∴∠=cos AOB ∠=7. 正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,使1⊥MN AB . 【答案】满足18CN =. 【分析】以A 为原点建立空间直角坐标系,设(0,1,),02N t t 剟,通过10MN AB ⋅=求解.【详解】如图,以A 为原点建立空间直角坐标系,则131,0,(0,0,0),,242M A B ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,设(0,1,),02N t t 剟, 则13131,,,,,242MN t AB⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,1MN AB ⊥,1112042MN AB t ⋅=-+⨯+∴=,解得18t =,。
高中数学——空间向量与立体几何练习题(附答案)

.空间向量练习题1. 如下图,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠ BCD =60°, E 是 CD的中点, PA ⊥底面 ABCD ,PA =2.〔Ⅰ〕证明:平面 PBE ⊥平面 PAB;〔Ⅱ〕求平面PAD 和平面 PBE 所成二面角〔锐角〕的大小 .如下图,以 A 为原点,建立空间直角坐标系 .那么相关各点的坐标分别是 A 〔 0, 0, 0〕, B 〔 1, 0, 0〕,C(3 ,3,0), D(1 ,3,0), P 〔 0,0, 2〕 , E(1, 3,0).2 22 22〔Ⅰ〕证明因为 BE (0,3,0) ,2平面 PAB 的一个法向量是 n(0,1,0) ,所以 BE 和n 共线 .从而 BE ⊥平面 PAB.又因为 BE平面 PBE ,故平面 PBE ⊥平面 PAB.(Ⅱ)解易知 PB(1,0, 2), BE(0,3,0〕, PA (0,0, 2), AD( 1 ,3,0)22 2n ( x 1 , y 1 , z 1 ) n 1 PB 0,设是平面PBE 的一个法向量,那么由得1n 1 BE 0x 1 0 y 1 2z 1 0,0 x 13y 2 0 z 2 0.所以y 1 0, x 12z 1.故可取 n 1 (2,0,1).2设 n 2( x 2 , y 2 , z 2 )PAD 的 n 2 PA 0, 是 平 面 一个法向量,那么由AD得n 2 00 x 2 0 y 2 2z 2 0,1 3 所以 z2 0, x 23 y 2 .故可取 n 2 ( 3, 1,0).2 x 22 y 2 0 z 20.于是, cosn 1, n 2n 1 n 22 3 15 .n 1 n 2 5 25故平面和平面所成二面角〔锐角〕的大小是15PADPBEarccos..2. 如图,正三棱柱 ABC - A 1B 1C 1 的所有棱长都为 2, D 为 CC 1 中点。
空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
空间向量与立体几何题

空间向量与立体几何练习题一、选择题1、已知向量,,且与互相垂直,则的值是()A.B.C.D.2、若一直线上有相异三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是( )A.l∥α B.l⊥α C.l与α相交且不垂直 D.l∥α或lα3、已知,是两条不同直线,,是两个不同的平面,且,,则下列叙述正确的是(A)若,则(B)若,则(C)若,则(D)若,则4、方体-中,与平面ABCD所成角的余弦值为( )A. B. C. D.5、、正方体的棱长为,M,N分别为和AC上的点,=,则MN与平面BB1C1C的位置关系是()A. 相交B. 平行C. 垂直D. 不能确定6、在棱长为1的如图1所示,已知四边形ABCD,EADM和MDCF都是边长为的正方形,点P是ED的中点,则P点到平面EFB的距离为()A. B. C. D.7如图,棱长为1的正方体ABCD-AC1D1中,点P在侧面BCC1B1及其边界上运动,并1B1且总保持向量在上的投影为0,则线段AP扫过的区域的面积为()A.B.C.D.8、如图,正方体ABCD-A′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积( )A.与点E,F位置有关 B.与点Q位置有关C.与点E,F,Q位置都有关D.与点E,F,Q位置均无关,是定值二、填空题9、向量a=(0,2,1),b=(-1,1,-2),则a与b的夹角为10、正方体ABCD—A1B1C1D1中,M和N分别为和的中点,那么直线与所成角的余弦值是_________.11、平面,且,若在边上存在点,使得,则的取值范围是。
12、如图,120°的二面角的棱上有A,B两点,AC,BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4 cm,AC=6 cm,BD=8 cm,则CD的长为________.三、解答题13、如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB= PA=1,AD=,F是PB中点,E为BC上一点.(1)求证:AF⊥平面PBC;(2)当BE为何值时,二面角C-PE-D为45o.14、如图所示,在棱长为2的正方体中,点分别在棱上,满足,且.(1)试确定、两点的位置.(2)求二面角大小的余弦值.15、如图,在长方体中,为中点.(1)求证:;(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由;(3)若二面角的大小为,求的长.16、如图,设四棱锥的底面为菱形,且∠,,。
高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)

第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
第1章 空间向量与立体几何 章末测试(基础)(解析版)

第1章 空间向量与立体几何章末测试(基础)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·北京)如图,在三棱锥O ABC -中,D 是BC 的中点,若OA a =,OB b =,OC c =,则AD 等于( )A .a b c -++B .a b c -+-C .1122a b c -++D .1122a b c --- 【答案】C 【解析】()11112222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, 因此,11112222AD OD OA OA OB OC a b c =-=-++=-++.故选:C. 2.(2021·广东广州市)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c -+C .131222a b c ++D .113222a b c -+ 【答案】A【解析】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+- ()11131131222222222PB PA PB PC PA PB PC a b c =-+-+=-+=-+. 故选:A.3.(2021·嫩江市高级中学)对空间任意一点O ,若311488OP OA OB OC =++,则A ,B ,C ,P 四点( ) A .一定不共面B .一定共面C .不一定共面D .与O 点位置有关【答案】B 【解析】因为311488OP OA OB OC =++,所以()()()6OP OA OB OP OC OP -=-+-, 所以6AP PB PC =+,即1166AP PB PC =+,故P ,A ,B ,C 四点共面,故选:B. 4.(2021·全国高二课时练习)已知(2,3,1)a =-,则下列向量中与a 平行的是( )A .(1,1,1)B .(-4,6,-2)C .(2,-3,5)D .(-2,-3,5)【答案】B【解析】若(4,6,2)b =--,则2(2,3,1)2b a =-⋅-=-,所以//a b ;而b 为(1,1,1)、(2,-3,5)、(-2,-3,5)时,不存在b a λ=的关系.故选:B 5.(2021·福建泉州市)已知()1,0,1a λ=+,()3,21,2b μ=-,其中λ,R μ∈,若//a b ,则λμ+=( )A .0B .1C .2D .3【答案】B 【解析】因为()1,0,1a λ=+,()3,21,2b μ=-,//a b ,所以1132210λμ+⎧=⎪⎨⎪-=⎩,解得12λμ==, 因此1λμ+=.故选:B.6.(2021·浙江高二单元测试)已知点()1,1,A t t t --,()2,,B t t ,则A ,B 两点的距离的最小值为ABCD .35【答案】C【解析】因为点()1,1,A t t t --,()2,,B t t 所以22222(1)(21)()522AB t t t t t t =++-+-=-+ 有二次函数易知,当15t =时,取得最小值为95 AB ∴故选:C. 7.(2021·全国高二课时练习)已知(2,1,3),(1,4,2),(3,2,)a b c λ=-=--=,若,,a b c 三向量共面,则实数λ等于( )A .2B .3C .4D .5【答案】C【解析】∵a 与b 不共线,则取a ,b 作为平面的一组基向量,又,,a b c 三向量共面,则存在实数12,λλ使得12c a b λλ=+, ∴121212322432λλλλλλλ=-⎧⎪=-+⎨⎪=-⎩,解得12214λλλ=⎧⎪=⎨⎪=⎩.故选:C8.(2021·天津)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是( ) AB.7 C.6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =, ()0,1,0AB =, 67AB nd n ⋅∴==. 故选:D.二、多选题(每题至少有两个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二课时练习)(多选题)如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B对称的点为(5,8,3)-C .点A 关于直线1BD 对称的点为(0,5,3)D .点C 关于平面11ABB A 对称的点为()8,5,0【答案】ACD【解析】根据题意知:点1B 的坐标为(4,5,3),选项A 正确;B 的坐标为(4,5,0),1C 坐标为()0,5,3,故点1C 关于点B 对称的点为()8,5,3-,选项B 错误;在长方体中15AD BC AB ====,所以四边形11ABC D 为正方形,1AC 与1BD 垂直且平分,即点A 关于直线1BD 对称的点为()10,5,3C ,选项C 正确;点C 关于平面11ABB A 对称的点为()8,5,0,选项D 正确;故选:ACD.10.(2020·朝阳市第一高级中学)下列说法正确的是( )A .若{},,MA MB MC 为空间的一组基底,则,,A B C 三点共线B .若1111ABCD A BCD -为四棱柱,则11AA AB AD AC ++= C .若(),,AB AC AD R λμλμ=+∈则,,,A B C D 四点共面D .若A BCD -为正四面体,G 为BCD △的重心,则3AG AB AC AD =++【答案】CD【解析】A :若{},,MA MB MC 为空间的一组基底,则向量,,MA MB MC 不共面,知,,A B C 三点不共线,故错误;B :若1111ABCD A BCD -为四棱柱且底面为平行四边形,即AB AD AC +=时,才满足11AA AB AD AC ++=,故错误;C :已知(),AB AC AD R λμλμ=+∈,若向量AC 与AD 共线,则AB 也与,AC AD 共线,即,,,A B C D 四点共面;若向量AC 与AD 不共线,则点B 在面ACD 内,即,,,A B C D 四点共面,故正确; D :设G 为BCD △的重心,若M 为BC 的中点,则13MG MD =,所以AG AM MG =+()1123AB AC MD =++()()111232AB AC BD CD =++⋅+ ()()1126AB AC AD AB AD AC =++-+-()13AB AC AD =++, 即3AG AB AC AD =++,故正确.故选:CD.11.(2021·山东泰安市)如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .1D D AF ⊥B .1//A G 平面AEFC .()11110AC A B A A ⋅-=D .向量1A B 与向量1AD 的夹角是60【答案】BC 【解析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,0,0A 、()2,2,0B 、()0,2,0C 、()0,0,0D 、()1,2,0E 、()0,2,1F 、()2,2,1G 、()12,0,2A 、()12,2,2B 、()10,2,2C 、()10,0,2D .对于A 选项,()10,0,2DD =,()2,2,1AF =-,则120DD AF ⋅=≠,故A 选项错误; 对于B 选项,设平面AEF 的法向量为(),,m x y z =,()1,2,0AE =-,()1,0,1EF =-,由200m AE x y m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,可得2x y z x⎧=⎪⎨⎪=⎩,取2x =,可得()2,1,2m =,()10,2,1=-A G , 1220m AG ⋅=-=,1m AG ∴⊥,1A G ⊄平面AEF ,1//AG ∴平面AEF ,故B 选项正确;对于C 选项,()10,2,2AB =,()12,2,2AC =--,()111111440A B C A B A AC A A ⋅=-⋅=-=,故C 选项正确;对于D 选项,()10,2,2A B =-,()12,0,2AD =-,1111111cos ,22A B AD A B AD A B AD ⋅<>===-⋅, 所以,向量1A B 与向量1AD 的夹角是120,故D 选项错误.故选:BC.12.(2021·湖南常德市)如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列结论中正确的是( )A .三棱锥11A PB D -的体积不变B .//DP 平面11AB DC .11A P BD ⊥D .平面1ACP ⊥平面PBD 【答案】ABD【解析】对于A ,11AB D 的面积是定值,11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D , ∴1//BC 平面11AB D ,故P 到平面11AB D 的距离为定值,∴三棱锥11P AB D -的体积是定值,即三棱锥11A PB D -的体积不变,故A 正确;对于B ,111111111/,,///,AD BC B D BD AD B D D BC BD B ⋂=⋂=,∴平面11//AB D 平面1BDC ,DP ⊂平面1BDC ,//DP ∴平面11AB D ,故B 正确;对于C ,以1D 为原点,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,P 在1BC 上,故可设(,2,),02P a a a ,则11(2,0,0),(2,2,2),(0,0,0)A B D ,1(2,2,)A P a a =-,1(2,2,2)BD =---,则()1122424A P BD a a a ⋅=----=-不一定为0,1A P ∴和1BD 不垂直,故C 错误;对于D ,设(,2,),02P a a a ,则11(2,0,0),(0,2,2),(2,2,2),(0,0,0),(0,0,2)A C B D D ,1(2,2,)A P a a =-,1(2,2,2)AC =-,(,2,2)DP a a =-,(2,2,0)DB =, 设平面平面1A CP 的法向量(,,)n x y z =,则11(2)202220n A P a x y az n ACx y z ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,取1x =,得221,,22a a n a a -⎛⎫= ⎪--⎝⎭, 设平面PBD 的法向量(,,)m a b c =,则20220m DP ax y az m DB x y ⎧⋅=+-=⎨⋅=+=⎩,取1x =,得()1,1,1m =--,221022a a m n a a-⋅=--=--. ∴平面1A CP 和平面PBD 垂直,故D 正确.故选:ABD.三.填空题(每题5分,4题共20分)13.(2021·全国高二单元测试)若(2,3,5),(3,1,4)a b =-=--,则2a b -=______.【解析】因为(2,3,5),(3,1,4)a b =-=--所以2(8,5,13)a b -=-,所以228(a b -=+=14.(2021·安徽芜湖市)已知空间三点A (0,2,3),B (2-,1,1),C (1,1-,3),四边形ABCD 是平行四边形,其中AC ,BD 为对角线,则||BD =___________.【解析】空间三点(0A ,2,3),(2B -,1,1),(1C ,1-,3),四边形ABCD 是平行四边形, 设(D x ,y ,)z , (2AB =-,1-,2)-,(1DC x =-,1y --,3)z -,AB DC =, 21x ∴-=-,11y -=--,23z -=-,解得3x =,0y =,5z =,(3D ∴,0,5),∴(5BD =,1,4),||BD ∴==15.(2021·浙江高二期末)已知点(1,1,3),(2,0,0),(3,3,9)--A B C λμ三点共线,则λ=_____,μ=_____. 【答案】0 0【解析】因为(1,1,3),(2,0,0),(3,3,9)--A B C λμ,所以()21,1,3AB λ=--,()2,2,6AC μ=- 因为,,A B C 三点共线,所以//AB AC ,所以=AB k AC ,即()()21,1,32,2,6k λμ--=-,即()2121236k k k λμ-=⎧⎪=-⎨⎪-=⎩,解得1200k λμ⎧=-⎪⎪=⎨⎪=⎪⎩故答案为:0;0;16.(2021·浙江舟山市)已知空间向量()()2,1,1,1,1,2a b =-=,则a b +=__________;向量a 与b 的夹角为___________.【答案】060【解析】由()()2,1,1,1,1,2a b =-=,则()3,0,3a b +=,所以23a b +=+=2111121cos ,241a ba b a b⨯+-⨯+⨯⋅===+, 所以向量a 与b 的夹角为060. 故答案为:060四.解答题(17题10分,其余每题12分,7题共70分)17.(2021·全国高二课时练习)已知长方体1111ABCD A B C D -中,1||||2,3AB BC D D ===,点N 是AB 的中点,点M 是11B C 的中点.建立如图所示的空间直角坐标系.(1)写出点,,D N M 的坐标; (2)求线段,MD MN 的长度;(3)判断直线DN 与直线MN 是否互相垂直,说明理由.【答案】(1)(0,0,0),(2,1,0),(1,2,3)D N M ;(2;(3)不垂直,理由见解析. 【解析】(1)由于D 为坐标原点,所以(0,0,0)D由1||||2,3AB BC D D ===得:11(2,0,0),(2,2,0),(0,2,0),(2,2,3),(0,2,3)A B C B C 点N 是AB 的中点,点M 是11B C 的中点,(2,1,0),(1,2,3)N M ∴;(2)由两点距离公式得:MD ==,MN ==(3)直线DN 与直线MN 不垂直 理由:由(1)中各点坐标得:(2,1,0),(1,1,3),(2,1,0)(1,1,3)10DN MN DN MN ==--∴⋅=⋅--=≠DN ∴与MN 不垂直,所以直线DN 与直线MN 不垂直18.(2021·全国高二课时练习)如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .【答案】证明见解析【解析】由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E 1(0,0,)2,则1AA =(0,0,1),AC =(-2,2,0),1AC =(-2,2,1),AE =1(2,0,)2-. 设平面AA 1C 1C 的一个法向量为1n =(x 1,y 1,z 1).则111110,.0,2200z n AA x y n AC ⎧=⎧=⎪⇒⎨⎨-+=⋅=⎪⎩⎩令x 1=1,得y 1=1.⊥1n =(1,1,0).设平面AEC 1的一个法向量为2n =(x 2,y 2,z 2).则22.0,.0n AC n AE ⎧=⎪⎨=⎪⎩⊥22222220,120,2x y z x z -++=⎧⎪⎨-+=⎪⎩令z 2=4,得x 2=1,y 2=-1.⊥2n =(1,-1,4). ⊥21n n ⋅=1×1+1×(-1)+0×4=0. ⊥12n n ⊥,⊥平面AEC 1⊥平面AA 1C 1C .19.(2021·全国高二课时练习)如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,1190,1,2,BAC AB BC BB C D CD ∠======1CC D ⊥平面11ACC A(1)求证:1AC DC ⊥;(2)若M 为1DC 中点,求证://AM 平面1DBB ; 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)在直三棱柱111ABC A B C -中,∴1CC ⊥ 平面ABC ,又AC ⊂ 平面ABC ,⊥1CC AC ⊥,⊥平面1CC D ⊥平面11ACC A ,且平面1CC D ⋂平面111ACC A CC =, 又AC ⊂ 平面11ACC A ,⊥AC ⊥平面1CC D ,又1DC ⊂平面1CC D ,⊥1AC DC ⊥ (2)直三棱柱111ABC A B C -中,⊥1AA ⊥平面111A B C ,而1111,A B A C ⊂平面111A B C ⊥111111,AA A B AA AC ⊥⊥, 又90BAC ∠=,建立如图所示的空间直角坐标系,则()()()()()()112,0,0,,,2,0,1,0,0,1,A C C B B D ,所以()()12,0,0,1,1BB BD =-=--,设平面1DBB 的一个法向量为(),,n x y z =,则100n BB n BD ⎧⋅=⎨⋅=⎩,即200x x z -=⎧⎪⎨--=⎪⎩,令1y =,则(0,1,n =, ⊥M 为1DC的中点,则12M ⎛⎫⎪⎝⎭,所以32AM ⎛⎫=- ⎪⎝⎭, 因为0AM n ⋅=,所以AM n ⊥,又AM ⊄ 平面1DBB ,⊥//AM 平面1DBB . 20.(2021·广西)如图,在正方体1111ABCD A B C D -中,点E 在BD 上,且13BE BD =;点F 在1CB 上,且113CF CB =.求证:(1)EF BD⊥;(2)1EF CB ⊥.【解析】(1)如图建立空间直角坐标系,令正方体的棱长为3,则()0,0,0D ,()3,3,0B,()0,3,0C ()13,3,3B ,因为13BE BD =,113CF CB =,所以()2,2,0E ,()1,3,1F ,所以()1,1,1EF =-,()3,3,0DB =,所以1313100DB EF =-⨯+⨯+⨯=,所以EF BD ⊥(2)由(1)可知()13,0,3CB =,所以11313100CB EF =-⨯+⨯+⨯=,所以1EF CB ⊥22.(2021·河南商丘市·高二月考(理))如图,在正三棱柱111ABC A B C -中,124AB AA ==,1CE EC =,13AF FA =.(⊥)证明:BE ⊥平面1B EF ;(⊥)求二面角E BF A --的余弦值.【答案】(⊥)证明见解析;(⊥)20-.【解析】(⊥)由条件可知BE =BF =EF =,满足222BF BE EF =+,EF BE ∴⊥.1BE B E ==14BB =,满足22211B E BE BB +=,1BE B E ∴⊥.又1B EEF E =,BE ∴⊥平面1B EF .(⊥)以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则()B,()1,0,2E -,()1,0,3F .()1,BF ∴=,()1,BE =-,设平面BEF 的法向量为(),,n x y z =,00n BF n BE ⎧⋅=⎨⋅=⎩,30,20,x z x z ⎧+=⎪∴⎨-=⎪⎩取y =()3,5n =-. 易得平面ABF 的一个法向量为()3,1,0m =,3cos ,2m n m n m n⋅-〈〉===由图可知,二面角E BF A -=的平面角是m ,n 夹角的补角,故二面角E BF A --的余弦值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:空间向量与立体几何
考纲要求:
① 理解直线的方向向量和平面的法向量.② 能向量语言表述直线与直线、直线与平面、平面与平面的垂直关系、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理;④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的作用.
教材复习
与b 的夹角 ,a b π<
,a b a b a b
⋅=
⋅
cos ,a b θ= 直线与平面所成的角:①直线与平面所成角的范围是a 是斜线l 的方向向量,n 是平面α的一个法向量,设斜线与平面α所成的角为sin θ=cos ,a n = 3.两平面的夹角:设1n 和2n 分别是平面α和β的一个法向量,
平面α和β的夹角为θ,则cos θ=12cos ,n n =
n
l
a
1n
2n
1n
2n
a b
4.空间任意两点A 、B 间的距离即线段AB 的长度: 设()111,,A x y z 、()222,,B x y z ,则AB AB ==
.
5.点到平面距离:如右图,斜线AB 交平面α于点A ,
平面α一个法向量为n ,斜线的一个方向向量为AB ,
则点B 到平面α的距离为sin cos ,d AB AB n AB θ==⋅=
6.直线l 的方向向量是a ,平面α的法向量为n ,则l ∥α⇔ .
7.直线l 的方向向量是a ,平面α的法向量为n ,则l α⊥⇔ .
8.平面α的法向量为1n ,平面β的法向量为2n ,则αβ⊥⇔ .
9.平面α的法向量为1n ,平面β的法向量为2n ,则α∥β⇔ .
典例分析:
考点一 异面直线所成的角
问题1. (2012陕西)如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为
.
A 55 .
B 53 .
C 255 .
D 35
考点二 直线和平面所成的角
问题2.(2013山东)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为
9
4
,底面
的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为
.A
512π .B 3π .C 4π .D 6
π
考点三 平面和平面的夹角
问题3. (2013陕西)如图, 四棱柱1111ABCD A B C D -的底面ABCD 是正方形, O 为底面中心, 1A O ⊥平面ABCD
, 1AB AA ==()1证明: 1A C ⊥平面11BB D D ; ()2求平面1OCB 与平面11BB D D 的夹角θ的大小.
1
A
考点四 求点到平面的距离 问题4.(05江西)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =, 点E 在棱AB 上移动.()1略;()2当E 为AB 的中点时,求点E 到面1ACD 的距离;()3略.
(请用多种方法,至少要用向量法)
A B E
D 1A 1B 1C
1D
考点五 存在性问题
问题5:(2013北京)如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形,
平面ABC ⊥平面11AAC C ,3AB =,5BC =.()1求证:1AA 平面ABC (这里不做);()2求二面角111A BC B --的余弦值(这里不做);()3证明:在线段1BC 存在点D ,使得
1AD A B ⊥,并求
1
BD
BC 的值.
1B
1A
课后作业:
1. (2013洛阳联考)
在平面直角坐标系中,点A 的坐标为()2,3,点B 的坐标为()1,1--,将直角坐标平面沿x 轴折成直二面角,则,A B 两点间的距离为
.A 3
.B .C 5 .D
2. (2013辽宁六校联考)如图,平面AED ⊥平面ABCD ,AED △为正三角形,四边形ABCD 为矩形,F 为CD 的中点,EB 与平面ABCD 所成的角为30︒.()1当AD 长度
时,求点A 到平面EFB 的距离;()2二面角A BF E --的大小是否与AD 长度有关?请说明理由.
走向高考:
1.(05辽宁)如图,正方体的棱长为1,C 、D A 、B 、M 是顶点,那么点M 到截面ABCD
2.如图,正方体1111ABCD A B C D 的棱长为1,O 是底面
1111A B C D 的中心,则O 到平面11ABC D 的距离为
.A 21
.B 42 .C 2
2 .D 23
A B
C
D
1C
1D
1A
1B
O
3.(2012福建)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点. (Ⅰ)求证:11AD E B ⊥(这里不做);(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由;(Ⅲ)若二面角11A E B A --的大小为30︒,求AB 的长(这里不做);。