烟台市 高一上期末数学试题(有答案)

合集下载

2020-2021学年山东省烟台市高一(上)期末数学试卷 (解析版)

2020-2021学年山东省烟台市高一(上)期末数学试卷 (解析版)

2020-2021学年山东省烟台市高一(上)期末数学试卷一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x33.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.98.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.二、多项选择题(共4小题).9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)三、填空题(共4小题).13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是.14.若幂函数的图象不经过原点,则实数m的值为.15.函数y=的定义域为.16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.参考答案一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.解:sin17°cos13°+sin73°cos77°=sin17°cos13°+cos17°sin13°=sin(17°+13°)=,故选:B.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x3解:y=tan x在定义域上不具备单调性,不满足条件.y=3x是增函数,为非奇非偶函数,不满足条件.y=的定义域为[0,+∞),为非奇非偶函数,不满足条件.y=x3是增函数,是奇函数,满足条件.故选:D.3.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a 解:∵log0.33<log0.31=0,,log23>log22=1,∴c>b>a.故选:A.4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.解:函数f(x)=x3+3x﹣2是连续函数且单调递增,∵f()=+﹣2=﹣<0,f()=+﹣2=>0∴f()f()<0,由零点判定定理可知函数的零点在(,).故选:C.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.解:令x+3=0,求得x=﹣3,y=4,函数y=a x+3+3(a>0,且a≠1)的图象恒过点P(﹣3,4),角α的终边经过点P,则cosα==﹣,故选:B.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.解:由三角函数的图象知M=,=8﹣5=3,即T=12,则,得ω=,则y=sin(x+φ),由函数过B(5,),得sin(×5+φ)=,得sin(+φ)=1,即+φ=2kπ+,得φ=2kπ﹣,∵|φ|<,∴当k=0时,φ=﹣,则y=sin(x﹣),(4≤x≤8),排除B,D,当x=4时,y=sin(×4﹣)=sin=×=2,即A(4,2),y=log a(x+b)过(0,0),则log a b=0,则b=1,则y=log a(4+1)=log a5=2,得a=,则y=log(x+1),(0≤x<4),排除A,故选:C.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.9解:设他至少经过t小时候才可以驾车,则0.6×100(1﹣10%)t<20,即3×,即t×,所以t,所以t≥11,即至少经过11个小时即次日最早7点才可以驾车,故选:B.8.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.解:将函数的图象向左平移个单位长度得到函数g(x)的图象,则g(x)=cos[2(x+φ)﹣]=cos(2x+2φ﹣),若x1,x2使得f(x1)g(x2)=﹣1,则f(x1)=1,g(x2)=﹣1或f(x1)=﹣1,g(x2)=1,不妨设f(x1)=1,g(x2)=﹣1,则2x1﹣=2k1π,2x2+2φ﹣=2k2π+π,k1∈Z,k2∈Z,即2x1=2k1π+,2x2+=2k2π+π﹣2φ+,两式作差得2(x1﹣x2)=2(k1﹣k2)π+2φ﹣π,即(x1﹣x2)=(k1﹣k2)π+φ﹣,∵|x1﹣x2|的最小值为,∴当k1﹣k2=0时,最小,此时|φ﹣|=,∵0<φ<,∴φ﹣=﹣,得φ=﹣=,故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分.9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数解:对于A,经过30分钟,钟表的分针转过﹣π弧度,不是﹣2π弧度,所以A错;对于B,由sinθ>0,cosθ<0,可知θ为第二象限角,所以B对;对于C,sinθ+cosθ>1⇒sin2θ+cos2θ+2sinθcosθ>1⇒2sinθcosθ>0,又sinθ+cosθ=1>0,所以sinθ>0,cosθ>0,即θ为第一象限角,所以C对;对于D,函数y=sin|x|是偶函数,但不以π周期,如f()=1,f(π+)=﹣1,二者不等,所以D错;故选:BC.10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值解:函数f(x)=sin x+cos x=sin(x+),当x∈(,π)上,x+∈(,),故f(x)在上单调递减,故A 正确;令x=,求得f(x)=0,可得f(x)图象关于点对称,故B正确;f(x)图象的两条相邻对称轴之间的距离为=π,故C正确;当x=+2kπ,k∈Z时,f(x)=,为最大值,故D错误.故选:ABC.11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称解:函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),对于选项A,令x>0且a﹣x>0,解得0<x<a,故函数f(x)的定义域为(0,a),故选项A正确;对于选项B,f(x)=log a x+log a(a﹣x)=log a[(a﹣x)x]=log a(﹣x2+ax),因为y=﹣x2+ax图象开口向下,故y有最大值,但若0<a<1时,函数y=log a x单调递减,此时f(x)无最大值,故选项B错误;对于选项C,若f(x)在(0,2)上单调递增,①当0<a<1时,则y=﹣x2+ax在(0,2)上单调递减,故,解得a≤0,故不符合题意;②当a>1时,则y=﹣x2+ax在(0,2)上单调递增,故,解得a≥4,故选项C错误;对于选项D,f(x)=log a x+log a(a﹣x),则f(a﹣x)=log a(a﹣x)+log a x=f(x),所以f(x)图象关于直线对称,故选项D正确.故选:AD.12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)解:对于A,由题意a⊗a=log2(2a+2a)=a+1,故A错误;对于B,(a⊗b)⊗c=[log2(2a+2b)]⊗c=log2[2+2c]=log2(2a+2b+2c],a⊗(b⊗c)=a⊗[log2(2b+2c)]=log2[2a+2]=log2(2a+2b+2c]=(a⊗b)⊗c,故正确;对于C,a⊗b=log2(2a+2b),2a+2b≥2≥2=2+1,所以log2(2a+2b)≥log22+1,即,故正确;对于D,(a⊗b)﹣c=log2(2a+2b)﹣c(a﹣c)⊗(b﹣c)=log2(2a﹣c+2b﹣c)=log22=log22﹣c+log2(2a+2b)=﹣c+log2(2a+2b),故正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是(﹣1,+∞).解:函数f(x)=x2﹣2x﹣a有两个不同的零点,即方程x2﹣2x﹣a=0有两个不等实根,故△=(﹣2)2﹣4×(﹣a)>0⇒a>﹣1,故答案为:(﹣1,+∞).14.若幂函数的图象不经过原点,则实数m的值为﹣1.解:由函数是幂函数,所以m2﹣m﹣1=1,解得m=﹣1或m=2;当m=﹣1时,f(x)=x﹣1,图象不经过原点,满足题意;当m=2时,f(x)=x8,图象经过原点,不满足题意;所以m=﹣1.故答案为:﹣1.15.函数y=的定义域为[2kπ﹣,2kπ+],k∈Z.解:要使函数有意义,则sin x+≥0,及sin x≥﹣,及2kπ﹣≤x≤2kπ+,即函数的定义域为[2kπ﹣,2kπ+],k∈Z,故答案为:[2kπ﹣,2kπ+],k∈Z16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.解:可以分为三步,每步走60°,每步以与桌面右侧接触点为圆心,到P的距离为半径,第一步:r=2,L1=,第二步:r=,L2=,第三步:r=1,L3=,所以当点P第一次落在桌面上时,点P走过的路程为L1+L3+L3==.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.解:(1)原式===.(2)由于tanα=﹣2,原式====﹣1.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.解:若选①:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ)因为f(x)图象过点,所以,即,)又因为,所以,故.(2)由已知得,于是,解得,故g(x)的单调递增区间为.若选②:(1)由已知得,,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于直线对称,所以,即又因为,所以,故.(2)由已知得.由,)即.故g(x)的单调递增区间为.若选③:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于点对称,所以,即,又因为,所以,故.(2)由已知得,由,k∈Z,即故g(x)的单调递增区间为.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).解:(1)解:令t=log2x,由于,则t∈[﹣1,1].于是原函数变为,由于y(t)图象为开口向上的抛物线,对称轴,且,故当,y取最小值;当t=1时,y取最大值2.所以原函数的值域为.(2)解:当a>1时,原不等式可化为:,解得.故a>1时,原不等式的解集为.当0<a<1时,原不等式可化为:,即,解得﹣1<x<1.故0<a<1时,原不等式的解集为{x|﹣1<x<1}.综上可得,a>1时,原不等式的解集为.0<a<1时,原不等式的解集为{x|﹣1<x<1}.20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.解:(1)===,∵,所以2x+∈[﹣,],故当,即时,函数f(x)取得最小值1;当,即时,函数f(x)取得最大值.(2)由,得.于是==.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.解:(1)如图,PM=40﹣30cosθ,PN=40﹣30sinθ,于是S=(40﹣30sinθ)(40﹣30cosθ)=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,其中,,故S关于θ的函数关系式为S=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,(0≤θ≤);(2)令t=sinθ+cosθ,则,又,当时,,所以,于是=450t2﹣1200t+1150,S(t)为开口向上的抛物线,对称轴,又,故当t=1时,S取得最大值为400 m2,此时,θ=0或.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.解:(1)由题意知f(x)+g(x)=2e x,①可得f(﹣x)+g(﹣x)=2e﹣x,由f(x)为R上的奇函数,g(x)为R上的偶函数,可得f(﹣x)=﹣f(x),g(﹣x)=g(x),所以﹣f(x)+g(x)=2e﹣x,②于是①+②可得2g(x)=2 e x+2 e﹣x,即g(x)=e x+e﹣x,所以f(x)=e x﹣e﹣x;(2)由已知f(x2+3)+f(1﹣ax)>0在(0,+∞)上恒成立,又因为f(x)为R上的奇函数,所以f(x2+3)>f(ax﹣1)在(0,+∞)上恒成立,又因为f(x)=e x﹣e﹣x为R上的增函数,所以x2+3>ax﹣1在(0,+∞)上恒成立,即在(0,+∞)上恒成立,所以.因为,当且仅当,即x=2时取等号.所以a<4;(3)设h(x)=e﹣|x﹣m|,f(x)在[m,+∞)上的最小值为f(x)min,h(x)在[0,1]上的最小值为h(x)min,由题意,只需f(x)min≤h(x)min,因为f(x)=e x﹣e﹣x为R上的增函数,所以.当m≥0时,因为h(x)在(﹣∞,m)单调递增,在(m,+∞)单调递减,所以当x∈[0,1]时,h(x)min=min{h(0),h(1)}.于是,由h(0)=e﹣|m|≥e m﹣e﹣m得e m≤2 e﹣m,即e2m≤2,解得.考虑到,故h(1)=e﹣11﹣m|=e m﹣1≥e m﹣e﹣m,即,解得.因为,所以.当m<0时,h(x)在[0,1]单调递减,所以.又e m﹣1>0,e m﹣e ﹣m<0,所以对任意m<0,恒有h(1)=e m﹣1≥e m﹣e﹣m=f(x)min恒成立.综上,实数m的取值范围为.。

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

2021~2022学年度第一学期期末学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。

2.答卷前,务必将姓名和准考证号填涂在答题纸上。

3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.sin 210=A.12−B.12C.2−2.函数ln(4)y x =−的定义域为A.(0,4)B.(0,4]C.[0,4)D.[0,4]3.下列选项中不能用二分法求图中函数零点近似值的是DB4.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是 A.2xy = B.sin y x = C.3y x=D.ln y x =5.已知 1.13a =,0.23b =,2log 0.3c =,则,,a b c 的大小关系为 A.b a c << B.b c a <<C.c a b<< D.c b a <<6.已知函数(1),1()1(),1ex f x x f x x +<⎧⎪=⎨≥⎪⎩ ,则(1ln 5)f −+的值为A.15B.5C.e 5D.5e7.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f = A.3mB.4mC.5mD.6m8.设,a b ∈R ,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为 A.1−B.2−C.12−D.0二、选择题:本题共4小题,每小题5分,共20分。

山东省烟台市高一上学期期末数学试题(解析版)

山东省烟台市高一上学期期末数学试题(解析版)
A. 1011 1024
【答案】B
B. 1024 1011
1011
C.
1024
1024 D.
1011
【解析】
【分析】由奇函数 f x 满足 f 2 x f (x) ,推导出 f 2 x f x 2 ,得到函数的周期为 4,由
log
2
2022
10
log2
2022 1024
(0,1)


f (x) 0 有 1 个实数根;
当 2 m„ 0 时,方程 ex 1 0(x… m) 有 1 个实数根 x 0 ;方程 x2 4x 4 0(x m) 有 1 个实数根
x 2 ,所以方程 f (x) 0 有 2 个不同的实数根; 当 m„ 2 时,方程 ex 1 0(x… m) 有 1 个实数根 x 0 ;方程 x2 4x 4 0(x m) 没有实数根,所
所以 sin cos 2 1 2sin cos 4 ,所以 sin cos 2 3 ,
3
3
故选:A. 【点睛】本题考查了切化弦思想以及同角三角函数平方关系的应用,利用
sin cos 2 1 2sin cos 计算是解答的关键,考查计算能力,属于中等题.
7.
已知函数
f
x
lg x
22a
tan
6
sin 0 , cos 0 ,再由 sin cos 2 1 2sin cos 可计算出 sin cos 的值.
【详解】因为 tan 1 sin cos sin2 cos2 6 ,所以 sin cos 1 ,
tan cos sin sin cos
6
Q 0, ,则 sin 0 , cos 0 ,sin cos 0 .

山东省烟台市2016-2017学年高一上学期期末数学试卷 ( word版含答案)

山东省烟台市2016-2017学年高一上学期期末数学试卷 ( word版含答案)

2016-2017学年山东省烟台市高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线mx+ny﹣1=0过第一、三、四象限,则()A.m>0,n>0 B.m<0,n>0 C.m>0,n<0 D.m<0,n<02.函数f(x)=e x﹣的零点所在的区间是()A.B.C.D.3.设l,m,n表示三条直线,α,β,γ表示三个平面,则下面命题中不成立的是()A.若l⊥α.m⊥α,则l∥mB.若m⊂β,m⊥l,n是l在β内的射影,则m⊥nC.若m⊂α,n⊄α,m∥n,则n∥αD.若α⊥γ,β⊥γ,则α∥β.4.若直线l1:(k﹣3)x+(k+4)y+1=0与l2:(k+1)x+2(k﹣3)y+3=0垂直,则实数k的值是()A.3或﹣3 B.3或4 C.﹣3或﹣1 D.﹣1或45.一个几何体的三视图如图所示,则该几何体的表面积为()A.12+B.10+C.10D.11+6.直线mx+y﹣1=0在y轴上的截距是﹣1,且它的倾斜角是直线=0的倾斜角的2倍,则()A.m=﹣,n=﹣2 B.m=,n=2 C.m=,n=﹣2 D.m=﹣,n=2 7.母线长为1的圆锥的侧面展开图的圆心角等于120°,则该圆锥的体积为()A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,CD的中点为M,AA1的中点为N,则异面直线C1M与BN所成角为()A.30°B.60°C.90°D.120°9.已知点M(a,b)在直线3x+4y﹣20=0上,则的最小值为()A.3 B.4 C.5 D.610.已知边长为a的菱形ABCD中,∠ABC=60°,将该菱形沿对角线AC折起,使BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.11.在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C 的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°12.如图,在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=,且点E到平面ABCD的距离为2,则该多面体的体积为()A.B.5 C.6 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线3x+4y﹣5=0与直线6x+my+14=0平行,则它们之间的距离是.14.设函数f(x)=,若函数y=f(x)﹣k有且只有两个零点,则实数k的取值范围是.15.已知点(0,2)关于直线l的对称点为(4,0),点(6,3)关于直线l的对称点为(m,n),则m+n=.16.定义点P(x0,y0)到直线l:Ax+By+C=0(A2+B2≠0)的有向距离为d=.已知点P1,P2到直线l的有向距离分别是d1,d2,给出以下命题:①若d1=d2,则直线P1P2与直线l平行;②若d1=﹣d2,则直线P1P2与直线l垂直;③若d1•d2>0,则直线P1P2与直线l平行或相交;④若d1•d2<0,则直线P1P2与直线l相交,其中所有正确命题的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,三棱柱ABC﹣A1B1C1的侧棱垂直于底面,其高为6cm,底面三角形的边长分别为3cm,4cm,5cm,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V.18.过点P(3,0)有一条直线l,它夹在两条直线l1:2x﹣y﹣2=0与l2:x+y+3=0之间的线段恰被点P平分,求直线l的方程.19.如图,四棱锥P﹣ABCD中,BC∥AD,BC=1,AD=2,AC⊥CD,且平面PCD ⊥平面ABCD.(1)求证:AC⊥PD;(2)在线段PA上是否存在点E,使BE∥平面PCD?若存在,确定点E的位置,若不存在,请说明理由.20.如图,在△ABC中,边BC上的高所在的直线方程为x﹣3y+2=0,∠BAC的平分线所在的直线方程为y=0,若点B的坐标为(1,3).(1)求点A和点C的坐标;(2)求△ABC的面积.21.某化工厂每一天中污水污染指数f(x)与时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为污水治理调节参数,且a∈(0,1).(1)若,求一天中哪个时刻污水污染指数最低;(2)规定每天中f(x)的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a应控制在什么范围内?22.已知三棱锥P﹣ABC中,E、F分别是AC、AB的中点,△ABC,△PEF都是正三角形,PF⊥AB.(Ⅰ)证明PC⊥平面PAB;(Ⅱ)求二面角P﹣AB﹣C的平面角的余弦值;(Ⅲ)若点P、A、B、C在一个表面积为12π的球面上,求△ABC的边长.2016-2017学年山东省烟台市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线mx+ny﹣1=0过第一、三、四象限,则()A.m>0,n>0 B.m<0,n>0 C.m>0,n<0 D.m<0,n<0【考点】直线的一般式方程.【分析】根据题意,分析可得直线的斜率k为正,在y轴上的截距为正,即有﹣>0,<0,分析可得答案.【解答】解:根据题意,直线mx+ny﹣1=0过第一、三、四象,则直线的斜率k 为正,在y轴上的截距为正,如图:则必有﹣>0,<0,分析可得:m>0,n<0,故应选:C.2.函数f(x)=e x﹣的零点所在的区间是()A.B.C.D.【考点】函数零点的判定定理.【分析】根据零点存在定理,对照选项,只须验证f(0),f(),f(),等的符号情况即可.也可借助于图象分析:画出函数y=e x,y=的图象,由图得一个交点.【解答】解:画出函数y=e x,y=的图象:由图得一个交点,由于图的局限性,下面从数量关系中找出答案.∵,,∴选B.3.设l,m,n表示三条直线,α,β,γ表示三个平面,则下面命题中不成立的是()A.若l⊥α.m⊥α,则l∥mB.若m⊂β,m⊥l,n是l在β内的射影,则m⊥nC.若m⊂α,n⊄α,m∥n,则n∥αD.若α⊥γ,β⊥γ,则α∥β.【考点】命题的真假判断与应用.【分析】A,两条直线同垂直一平面,此两直线平行;B,由三垂线定理判定;C,由线面平行的判定定理判定;D,若α⊥γ.β⊥γ时,α、β可能相交;【解答】解:对于A,两条直线同垂直于一平面,此两直线平行,故正确;对于B,若m⊂β,m⊥l,n是l在β内的射影,则m⊥n,由三垂线定理知正确;对于C,若m⊂α,n⊄α,m∥n,则n∥α,由线面平行的判定知正确;对于D,若α⊥γ.β⊥γ时,α、β可能相交,故错;故选:D4.若直线l1:(k﹣3)x+(k+4)y+1=0与l2:(k+1)x+2(k﹣3)y+3=0垂直,则实数k的值是()A.3或﹣3 B.3或4 C.﹣3或﹣1 D.﹣1或4【考点】直线的一般式方程与直线的垂直关系.【分析】利用两条直线相互垂直与斜率的关系即可得出.【解答】解:∵直线l1:(k﹣3)x+(k+4)y+1=0与l2:(k+1)x+2(k﹣3)y+3=0互相垂直,∴(k﹣3)×(k+1)+(k+4)×2(k﹣3)=0,即k2﹣9=0,解得k=3或k=﹣3,故选:A.5.一个几何体的三视图如图所示,则该几何体的表面积为()A.12+B.10+C.10D.11+【考点】由三视图求面积、体积.【分析】三视图复原的几何体是为一个三棱柱截去一个三棱锥,三棱柱的底面为边长是2的等边三角形,高为2,求出几何体的表面积即可.【解答】解:由三视图知:原几何体为一个三棱柱截去一个三棱锥,三棱柱的底面为边长是2的等边三角形,高为2,所以该几何体的表面积为S==12+.故选A.6.直线mx+y﹣1=0在y轴上的截距是﹣1,且它的倾斜角是直线=0的倾斜角的2倍,则()A.m=﹣,n=﹣2 B.m=,n=2 C.m=,n=﹣2 D.m=﹣,n=2【考点】直线的斜截式方程.【分析】根据题意,设直线mx+y﹣1=0为直线l,由直线的一般式方程分析可得:直线=0的斜率k=,倾斜角为60°,结合题意可得直线l的倾斜角为120°,进而可得其斜率,又由其在y轴上的截距是﹣1,可得直线l的方程,结合直线的方程分析可得答案.【解答】解:根据题意,设直线mx+y﹣1=0为直线l,另一直线的方程为=0,变形可得y=(x﹣3),其斜率k=,则其倾斜角为60°,而直线l的倾斜角是直线=0的倾斜角的2倍,则直线l的倾斜角为120°,且斜率k=tan120°=﹣,又由l在y轴上的截距是﹣1,则其方程为y=﹣x﹣1;又由其一般式方程为mx+y﹣1=0,分析可得:m=﹣,n=﹣2;故选:A.7.母线长为1的圆锥的侧面展开图的圆心角等于120°,则该圆锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】先求出侧面展开图的弧长,从而求出底面圆半径,进而求出圆锥的高,由此能求出圆锥体积.【解答】解:∵母线长为1的圆锥的侧面展开图的圆心角等于120°,120°=,∴侧面展开图的弧长为:1×=,弧长=底面周长=2πr,∴r=,∴圆锥的高h==,∴圆锥体积V=×π×r2×h=π.故选:A.8.在正方体ABCD﹣A1B1C1D1中,CD的中点为M,AA1的中点为N,则异面直线C1M与BN所成角为()A.30°B.60°C.90°D.120°【考点】异面直线及其所成的角.【分析】由题意画出图形,取AB中点G,连接MG,可得四边形MGB1C1为平行四边形,则B1G∥C1M,则B1G与BN所成角即为异面直线C1M与BN所成角,由Rt△BAN≌Rt△B1BG,则有∠NBG+∠B1GB=90°,可得B1G⊥BN,即异面直线C1M 与BN所成角为90°.【解答】解:如图,取AB中点G,连接MG,可得四边形MGB1C1为平行四边形,则B1G∥C1M,∴B1G与BN所成角即为异面直线C1M与BN所成角,由题意可得Rt△BAN≌Rt△B1BG,则有∠NBG+∠B1GB=90°,∴B1G⊥BN,即异面直线C1M与BN所成角为90°.故选:C.9.已知点M(a,b)在直线3x+4y﹣20=0上,则的最小值为()A.3 B.4 C.5 D.6【考点】二次函数的性质;点到直线的距离公式.【分析】考虑a2+b2的几何意义,利用转化思想,求出原点到直线3x+4y﹣20=0的距离即可.【解答】解:∵点M(a,b)在直线3x+4y﹣20=0上,则的几何意义是点M(a,b)到原点的距离,而原点到直线的距离d==4,则的最小值为:4.故选:B.10.已知边长为a的菱形ABCD中,∠ABC=60°,将该菱形沿对角线AC折起,使BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥B﹣ACD是一个正四面体.过B点作BO⊥底面ACD,则点O是底面的中心,由勾股定理求出BO,由此能求出三棱锥D﹣ABC的体积.【解答】解:∵边长为a的菱形ABCD中,∠ABC=60°,将该菱形沿对角线AC折起,使BD=a,∴由题意可得:三棱锥B﹣ACD是一个正四面体.如图所示:过B点作BO⊥底面ACD,垂足为O,则点O是底面的中心,AO==.在Rt△ABO中,由勾股定理得BO===.∴三棱锥D﹣ABC的体积V===.故选:D.11.在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C 的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间的位置关系.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D 点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C12.如图,在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=,且点E到平面ABCD的距离为2,则该多面体的体积为()A.B.5 C.6 D.【考点】棱柱、棱锥、棱台的体积.【分析】法一:取AB中点G,CD中点H,连结GE、GH、EH,该多面体的体积V ABCDEF=V BCF﹣GHE +V E﹣AGHD,由此能求出结果.法二:连接BE、CE,求出四棱锥E﹣ABCD的体积V E﹣ABCD=6,由整个几何体大于四棱锥E﹣ABCD的体积,能求出结果.【解答】解法一:取AB中点G,CD中点H,连结GE、GH、EH,∵在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=,且点E到平面ABCD的距离为2,∴该多面体的体积:V ABCDEF=V BCF﹣GHE +V E﹣AGHD=S△BCF×EF+=+=.故选:D.解法二:如下图所示,连接BE、CE则四棱锥E﹣ABCD的体积V E﹣ABCD=×3×3×2=6,又∵整个几何体大于四棱锥E﹣ABCD的体积,∴所求几何体的体积V ABCDEF>V E﹣ABCD,故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线3x+4y﹣5=0与直线6x+my+14=0平行,则它们之间的距离是.【考点】直线的一般式方程与直线的平行关系.【分析】求出m,转化为直线3x+4y﹣5=0与直线3x+4y+7=0之间的距离.【解答】解:由题意,m=8,直线3x+4y﹣5=0与直线3x+4y+7=0之间的距离是=,故答案为:.14.设函数f(x)=,若函数y=f(x)﹣k有且只有两个零点,则实数k的取值范围是(,+∞).【考点】分段函数的应用.【分析】画出分段函数的图象,由题意可得f(x)=k有两个不等的实根,数形结合得答案.【解答】解:由y=f(x)﹣k=0,得f(x)=k.令y=k与y=f(x),作出函数y=k与y=f(x)的图象如图:由图可知,函数y=f(x)﹣k有且只有两个零点,则实数k的取值范围是(,+∞).故答案为:(,+∞).15.已知点(0,2)关于直线l的对称点为(4,0),点(6,3)关于直线l的对称点为(m,n),则m+n=.【考点】与直线关于点、直线对称的直线方程.【分析】根据题意,得到折痕为A,B的对称轴;也是C,D的对称轴,求出A,B的斜率及中点,求出对称轴方程,然后求出C,D的斜率令其等于对称轴斜率的负倒数,求出C,D的中点,将其代入对称轴方程,列出方程组,求出m,n 的值,得到答案.【解答】解:根据题意,得到折痕为A(0,2),B(4,0)的对称轴;也是C (6,3),D(m,n)的对称轴,AB的斜率为k AB=﹣,其中点为(2,1),所以图纸的折痕所在的直线方程为y﹣1=2(x﹣2)所以k CD==﹣,①CD的中点为(,),所以﹣1=2(﹣2)②由①②解得m=,n=,所以m+n=.故答案为:.16.定义点P(x0,y0)到直线l:Ax+By+C=0(A2+B2≠0)的有向距离为d=.已知点P1,P2到直线l的有向距离分别是d1,d2,给出以下命题:①若d1=d2,则直线P1P2与直线l平行;②若d1=﹣d2,则直线P1P2与直线l垂直;③若d1•d2>0,则直线P1P2与直线l平行或相交;④若d1•d2<0,则直线P1P2与直线l相交,其中所有正确命题的序号是③④.【考点】命题的真假判断与应用.【分析】根据有向距离的定义,及点P(x0,y0)与Ax1+By1+C的符号,分别对直线P1P2与直线l的位置关系进行判断.【解答】解:对于①,若d1﹣d2=0,则若d1=d2,∴Ax1+By1+C=Ax2+By2+C,∴若d1=d2=0时,即Ax1+By1+C=Ax2+By2+C=0,则点P1,P2都在直线l,∴此时直线P1P2与直线l重合,∴①错误.对于②,由①知,若d1=d2=0时,满足d1+d2=0,但此时Ax1+By1+C=Ax2+By2+C=0,则点P1,P2都在直线l,∴此时直线P1P2与直线l重合,∴②错误.对于③,若d1•d2>0,即(Ax1+By1+C)(Ax2+By2+C)>0,∴点P1,P2分别位于直线l的同侧,∴直线P1P2与直线l相交或平行,∴③正确;对于④,若d1•d2<0,即(Ax1+By1+C)(Ax2+By2+C)<0,∴点P1,P2分别位于直线l的两侧,∴直线P1P2与直线l相交,∴④正确.故答案为:③④.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,三棱柱ABC﹣A1B1C1的侧棱垂直于底面,其高为6cm,底面三角形的边长分别为3cm,4cm,5cm,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V.【考点】棱柱、棱锥、棱台的体积.【分析】求出三棱柱ABC﹣A1B1C1的体积和圆柱的体积,由,能求出剩余部分几何体的体积V.【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,其高为6cm,底面三角形的边长分别为3cm,4cm,5cm,∴△ABC是直角边长为3cm,4cm的直角三角形,∴.…设圆柱底面圆的半径为r,则,….…所以.…18.过点P(3,0)有一条直线l,它夹在两条直线l1:2x﹣y﹣2=0与l2:x+y+3=0之间的线段恰被点P平分,求直线l的方程.【考点】直线的一般式方程;两条直线的交点坐标.【分析】设出A与B两点的坐标,因为P为线段AB的中点,利用中点坐标公式即可列出两点坐标的两个关系式,然后把A的坐标代入直线l1,把B的坐标代入直线l2,又得到两点坐标的两个关系式,把四个关系式联立即可求出A的坐标,然后由A和P的坐标,利用两点式即可写出直线l的方程.【解答】解:如图,设直线l夹在直线l1,l2之间的部分是AB,且AB被P(3,0)平分.设点A,B的坐标分别是(x1,y1),(x2,y2),则有,又A,B两点分别在直线l1,l2上,所以.由上述四个式子得,即A点坐标是,B(,﹣)所以由两点式的AB即l的方程为8x﹣y﹣24=0.19.如图,四棱锥P﹣ABCD中,BC∥AD,BC=1,AD=2,AC⊥CD,且平面PCD ⊥平面ABCD.(1)求证:AC⊥PD;(2)在线段PA上是否存在点E,使BE∥平面PCD?若存在,确定点E的位置,若不存在,请说明理由.【考点】直线与平面垂直的性质.【分析】(1)利用面面垂直的性质定理证明AC⊥平面PCD,即可证明AC⊥PD;(2)当点E是线段PA的中点时,BE∥平面PCD.利用已知条件,得到四边形BCFE为平行四边形,再利用线面平行的判定定理即可证明.【解答】证明:(1)连接AC,∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC⊂平面ABCD,∴AC⊥平面PCD,…∵PD⊂平面PCD,所以AC⊥PD.…(2)当点E是线段PA的中点时,BE∥平面PCD.…证明如下:分别取AP,PD的中点E,F,连接BE,EF,CF.则EF为△PAD的中位线,所以EF∥AD,且,又BC∥AD,所以BC∥EF,且BC=EF,所以四边形BCFE是平行四边形,所以BE∥CF,…又因为BE⊄平面PCD,CF⊂平面PCD所以BE∥平面PCD.…20.如图,在△ABC中,边BC上的高所在的直线方程为x﹣3y+2=0,∠BAC的平分线所在的直线方程为y=0,若点B的坐标为(1,3).(1)求点A和点C的坐标;(2)求△ABC的面积.【考点】直线的一般式方程.【分析】(1)由,得顶点A.利用直线AB的斜率计算公式可得k AB,x轴是∠BAC的平分线,可得直线AC的斜率为﹣1,AC所在直线的方程.直线BC上的高所在直线的方程为x﹣3y+2=0,故直线BC的斜率为﹣3,可得直线BC 方程为.(2)利用两点之间的距离公式可得|BC|,又直线BC的方程是3x+y﹣6=0,利用点到直线的距离公式可得:A到直线BC的距离d,即可得出△ABC的面积.【解答】解:(1)由,得顶点A(﹣2,0).…又直线AB的斜率,x轴是∠BAC的平分线,故直线AC的斜率为﹣1,AC所在直线的方程为y=﹣x﹣2①直线BC上的高所在直线的方程为x﹣3y+2=0,故直线BC的斜率为﹣3,直线BC方程为y﹣3=﹣3(x﹣1),即y=﹣3x+6.②…联立方程①②,得顶点C的坐标为(4,﹣6).…(2),…又直线BC的方程是3x+y﹣6=0,所以A到直线BC的距离,…所以△ABC的面积=.…21.某化工厂每一天中污水污染指数f(x)与时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为污水治理调节参数,且a∈(0,1).(1)若,求一天中哪个时刻污水污染指数最低;(2)规定每天中f(x)的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a应控制在什么范围内?【考点】函数模型的选择与应用.【分析】(1)通过,化简,求出x=4.得到一天中早上4点该厂的污水污染指数最低.(2)设t=log25(x+1),设g(t)=|t﹣a|+2a+1,t∈[0,1],得到,利用分段函数,函数的单调性最值求解即可.【解答】解:(1)因为,则.…当f(x)=2时,,得,即x=4.所以一天中早上4点该厂的污水污染指数最低.…(2)设t=log25(x+1),则当0≤x≤24时,0≤t≤1.设g(t)=|t﹣a|+2a+1,t∈[0,1],则,…显然g(t)在[0,a]上是减函数,在[a,1]上是增函数,则f(x)max=max{g(0),g(1)},…因为g(0)=3a+1,g(1)=a+2,则有,解得,…又a∈(0,1),故调节参数a应控制在内.…22.已知三棱锥P﹣ABC中,E、F分别是AC、AB的中点,△ABC,△PEF都是正三角形,PF⊥AB.(Ⅰ)证明PC⊥平面PAB;(Ⅱ)求二面角P﹣AB﹣C的平面角的余弦值;(Ⅲ)若点P、A、B、C在一个表面积为12π的球面上,求△ABC的边长.【考点】直线与平面垂直的判定;球内接多面体;与二面角有关的立体几何综合题.【分析】(I)连接CF,由△ABC,△PEF是正三角形且E,F为AC、AB的中点,可得PE=EF=BC=AC,可得PA⊥PC①,由已知易证AB⊥面PCF,从而可得AB ⊥PC,利用线面垂直的判定定理可证(II):(法一定义法)由AB⊥PF,AB⊥CF可得,∠PFC为所求的二面角,由(I)可得△PEF为直角三角形,Rt△PEF中,求解即可(法二:三垂线法)作出P在平面ABC内的射影为O,即作PO⊥平面ABC,由已知可得O为等边三角形ABC的中心,由PF⊥AB,结合三垂线定理可得AB⊥OF,∠PFO为所求的二面角,在Rt△PFO中求解∠PFO(III)由题意可求PABC的外接球的半径R=,(法一)PC⊥平面PAB,PA⊥PB,可得PA⊥PB⊥PC,所以P﹣ABC的外接求即以PAPBPC为棱的正方体的外接球,从而有,代入可得PA,从而可求(法二)延长PO交球面于D,那么PD是球的直径.即PD=2,在直角三角形PFO中由tan⇒PO=,而OA=,利用OA2=OP•OD,代入可求【解答】解(Ⅰ)证明:连接CF.∵PE=EF=BC=AC∴AP⊥PC.∵CF⊥AB,PF⊥AB,∴AB⊥平面PCF.∵PC⊂平面PCF,∴PC⊥AB,∴PC⊥平面PAB.(Ⅱ)解法一:∵AB⊥PF,AB⊥CF,∴∠PFC为所求二面角的平面角.设AB=a,则AB=a,则PF=EF=,CF=a.∴cos∠PFC==.解法二:设P在平面ABC内的射影为O.∵△PAF≌△PAE,∴△PAB≌△PAC.得PA=PB=PC.于是O是△ABC的中心.∴∠PFO为所求二面角的平面角.设AB=a,则PF=,OF=•a.∴cos∠PFO==.(Ⅲ)解法一:设PA=x,球半径为R.∵PC⊥平面PAB,PA⊥PB,∴x=2R.∵4πR2=12π,∴R=.得x=2.∴△ABC的边长为2.解法二:延长PO交球面于D,那么PD是球的直径.连接OA、AD,可知△PAD 为直角三角形.设AB=x,球半径为R.∵4πR2=12π,∴PD=2.∵PO=OFtan∠PFO=x,OA=•x,∴=x(2﹣x).于是x=2.∴△ABC的边长为2.2017年2月28日。

山东省烟台市第一中学高一数学理上学期期末试卷含解析

山东省烟台市第一中学高一数学理上学期期末试卷含解析

山东省烟台市第一中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数是定义在R上的单调递增函数,且满足对任意实数都有,当时,函数零点的个数为A.4B.5C.6D.7参考答案:C函数f(x)是定义在R上的单调递增函数,满足对任意实数x都有,不妨设,则,即,则有,所以..当时,函数零点,即为,即的根.令,作出两函数图象如图所示,两函数共有6个交点.故选C.2. 若函数f(x)一asinx+bcosx(ab≠0)的图象向左平移个单位后得到的图象对应的函数是奇数,则直线ax-by+c=0的斜率为 A. B. C.一 D.一参考答案:D3. 若偶函数在上是增函数,则下列关系式中成立的是()A. B.C. D.参考答案:D略4. 已知,向量在向量上的投影为,则与的夹角为()A. B. C. D.参考答案:B记向量与向量的夹角为,在上的投影为.在上的投影为,,,.故选:B.5. 已知x,y∈R*,且x+y++=5,则x+y的最大值是()C6. 若集合中的元素是△的三边长,则△一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形参考答案:D解析:元素的互异性;7. 设,为平面内一组基向量,为平面内任意一点,关于点的对称点为,关于点的对称点为,则可以表示为()A. B.C.D.参考答案:B略8. 将函数的图像上各点的横坐标伸长为原来的2倍,再向右平移个单位,得到的函数图像的一个对称中心为( )A.B. C. D.参考答案:D将函数的图象上各点的横坐标伸长为原来的倍,可得函数的图象,向右平移个单位,得到函数的图象,令,可得,故所得函数的对称中心为,令,可得函数图象的一个对称中心为,故选D.9. 已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且,则下列结论正确的是( )A.f(cos α)>f(cos β) B.f(sin α)>f(sin β)C.f(sin α)>f(cos β) D.f(sin α)<f(cos β)参考答案:B10. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A. B. C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 用秦九韶算法计算多项式的值时,当x=5时,求的值为__参考答案:-36512. 已知函数f(x)=,则f(x)的值域是.参考答案:[﹣2,+∞)【考点】对数函数的图象与性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】先分析内函数y=3+2x﹣x2的图象和性质,进而得到最大值,再由外函数是减函数,得到答案.【解答】解:∵函数y=3+2x﹣x2的图象是开口朝下,且以直线x=1为对称轴的抛物线,故当x=1时,函数取最大值4,故当x=1时,函数f(x)=取最小值﹣2,无最大值,故f(x)的值域是[﹣2,+∞),故答案为:[﹣2,+∞).【点评】本题考查的知识点是对数函数的图象和性质,复合函数的单调性,难度中档.13. 已知全集U=R,集合A={x|x﹣a≤0},B={x|x2﹣3x+2≤0},且A∪?U B=R,则实数a的取值范围是.参考答案:a≥2【考点】交、并、补集的混合运算.【专题】计算题;集合思想;不等式的解法及应用;集合.【分析】由全集R及B,求出B的补集,根据A与B补集的并集为R,确定出a的范围即可.【解答】解:∵全集U=R,B={x|x2﹣3x+2≤0}={x|1≤x≤2},∴?U B={x|x<1或x>2}.∵A={x|x﹣a≤0}={x|x≤a},A∪(?U B)=R,∴a≥2,则a的取值范围为a≥2.故答案为:a≥2.【点评】本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键,是基础题.14. 已知集合,,若,则实数=参考答案:略15. 若,则m 的值为______________。

山东省烟台市2020-2021学年高一上学期期末考试数学试题答案

山东省烟台市2020-2021学年高一上学期期末考试数学试题答案

2020-2021学年度第一学期期末学业水平诊断高一数学参考答案一、单项选择题1.B2.D3.A4.C5.B6.C7. B8. D二、多项选择题9.BC 10.ABC 11.AD 12.BCD三、填空题13. 1a >−14. 1− 15. 7{|22,}66x k x k k ππππ−≤≤+∈Z 16.(1π 四、解答题 17.解:原式222224()1log log 333=++− ……………………3分 2411+log 92=+ …………………4分 49= ……………………5分 (2)解:原式2sin cos cos sin αααα+=− ……………………7分 2tan 11tan αα+=− . ……………………9分1=− ……………………10分18.解:若选①:(1)由已知得 22T ππω==,则1ω=, ………………………2分 于是()2sin()f x x ϕ=+因为()f x 图象过点(,1)2π,所以1sin()22πϕ+=,即1cos 2ϕ=, …………4分 又因为02πϕ−<<,所以3πϕ=−,故()2sin()3f x x π=−. ……………6分(2)由已知得 ()2sin(2)4g x x π=−, ……………………9分 于是 222242k x k πππππ−≤−≤+, ………………10分 解得 388k x k ππππ−≤≤+, 故()g x 的单调递增区间为3[,]()88k k k ππππ−+∈Z . ……………………12分若选②:(1)由已知得,22T ππω==,则1ω=, ………………………2分于是()2sin()f x x ϕ=+.因为()f x 图象关于直线23x π=对称, 所以2,32k ππϕπ+=+ ……………4分 即()6k k πϕπ=−∈Z 又因为02πϕ−<<,所以6πϕ=−,故()2sin()6f x x π=−. ………………………6分(2)由已知得 ()2sin(2)12g x x π=−. ………………………9分2222122k x k πππππ−≤−≤+, ………………………10分 即572424k x k ππππ−≤≤+. 故()g x 的单调递增区间为57[,]()2424k k k ππππ−+∈Z . ………………………12分 若选③:(1)由已知得 22T ππω==,则1ω=, ………………………2分 于是()2sin()f x x ϕ=+.因为()f x 图象关于点(,0)6π对称,所以,6k πϕπ+= ………………………4分 即()6k k πϕπ=−∈Z ,又因为02πϕ−<<, 所以6πϕ=−,故()2sin()6f x x π=−. ………………………6分 (2)由已知得 ()2sin(2)12g x x π=−. ………………………9分2222122k x k πππππ−≤−≤+,即572424k x k ππππ−≤≤+ 故()g x 的单调递增区间为57[,]()2424k k k ππππ−+∈Z . ……………………12分 19.解:(1)解:令2log t x =,由于1[,2]2x ∈ ,则[1,1]t ∈−. …………2分于是原函数变为 2211()24y t t t =+=+−, ()y t 图象为开口向上的抛物线,对称轴12t =−,且11()(1)1()22−−−<−−, ……4分 故当12t =−,y 取最小值14−;当1t =时,y 取最大值2. ………………5分 所以原函数的值域为1[,2]4−. ……………………………………6分(2)解:当1a >时,原不等式可化为:223013x x x⎧−>⎨+>−⎩ , ……………………………………………7分即12x x x ⎧<<⎪⎨><−⎪⎩或解得1x <<. 故1a >时,原不等式的解集为{1x x <<. ………………………9分 当01a <<时,原不等式可化为:21013x x x +>⎧⎨+<−⎩, ……………………………………………10分 即121x x >−⎧⎨−<<⎩,解得11x −<<. 故01a <<时,原不等式的解集为{11}x x −<<. ………………………12分20.解:1()2(cos )cos 122f x x x x =++2cos cos 1x x x =+ ……………………1分1cos 2sin 2122x x +=++ . …………………………2分3sin(2)62x π=++…………………………………………3分 因为[,]63x ππ∈−,所以52[,]666x πππ+∈−, 故当266x ππ+=−,即6x π=−时,函数()f x 取得最小值1; …………………5分 当262x ππ+=,即6x π=时,函数()f x 取得最大值52; ……………………7分 (2)由3311()sin[2()]sin(2)121262326f ππππααα+=+++=++= 得 1sin(2)33πα+=. ……………………9分 于是73cos(2)cos[(2)]623πππαα−=−+sin(2)3πα=−+ ………………………………11分13=−. …………………………………12分21.解:(1)如图,4030cos PM θ=−,4030sin PN θ=−, ……………………2分于是(4030sin )(4030cos )S θθ=−−1200(sin cos )900sin cos 1600θθθθ=−+++ ……………………4分 其中,02πθ≤≤. ………………………………………………5分(2)令sin cos t θθ=+,则22(sin cos )11sin cos .22t θθθθ+−−== …………7分又sin cos )4t πθθθ=+=+,且当02πθ≤≤时,3444πππθ≤+≤,所以t ∈. ……………………8分 于是211200900+16002t S t −=−+⨯ 24501200+1150t t =−. …………………………9分()S t 为开口向下的抛物线,对称轴43t =44133<−, 故当1t =时,S 取得最大值为2400m . ………………………10分 此时, 0θ=或2π. ……………………………12分 22.解:(1)由题意知 ()()2e ,()()2e x x f x g x f x g x −+=−+=. …………………1分 于是2()2e 2e x x g x −=+,解得()e e x xg x −=+; ………………………2分 2()2e 2e x x f x −=−,解得()e e x x f x −=−. ………………………3分 (2)由已知 2(3)(1)0f x f ax ++−>在(0,)+∞上恒成立.因为()f x 为R 上的奇函数,所以2(3)(1)f x f ax +>−在(0,)+∞上恒成立. ………………………4分 又因为()e e x xf x −=−为R 上的增函数所以231x ax +>−在(0,)+∞上恒成立 ………………………5分 即4a x x<+在(0,)+∞上恒成立 所以min 4()a x x <+ ………………………6分因为44x x +≥=,当且仅当4x x=,即2x =时取等号. 所以4a <. ………………………7分 (3)设||()e x m h x −−=,()f x 在[,)m +∞上的最小值为min ()f x ,()h x 在[0,1]上的最小值为min ()h x ,由题意,只需min min ()()f x h x ≤. ………………………8分 因为()e e x x f x −=−为R 上的增函数,所以min ()f x =e e m m −−.当0m ≥时,因为()h x 在(,)m −∞单调递增,在(,)m +∞单调递减,所以当[0,1]x ∈时, min ()min{(0),(1)}h x h h =.于是|||1|(0)e e e (1)ee e m m mm m m h h −−−−−⎧=≥−⎨=≥−⎩ 由||(0)ee e m m m h −−=≥−得e 2e m m −≤,即2e 2m ≤, 解得 1ln 22m ≤. ………………………9分 考虑到1ln 212m ≤<,故|1|1(1)e e e e m m m m h −−−−==≥−,即2e e e 1m ≤−, 解得1e ln 2e 1m ≤−. 因为e 2e 1<−,所以1e 0ln 2e 1m ≤≤− . ………………………10分 当0m <时,()h x 在[0,1]单调递减,所以1min ()(1)e m h x h −==.又1e 0m −>, e e 0m m −−<,所以对任意0m <,恒有1min (1)e e e ()m m m h f x −−=≥−=恒成立. ………………………11分 综上,实数m 的取值范围为1e (,ln ]2e 1−∞−. ………………………12分。

2017-2018学年山东省烟台市高一(上)期末数学试卷(解析版)

2017-2018学年山东省烟台市高一(上)期末数学试卷(解析版)

2017-2018学年山东省烟台市高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.若直线经过两点A(m,2),B(m,2m-1),且倾斜角为45°,则m的值为()A. 2B. 1C.D.2.x)D.3.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A′B′C′D′(如图所示),其中A′D′=2,B′C′=4,A′B′=1,则直角梯形DC边的长度是()'A. B. C. D.4.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A. ①和②B. ②和③C. ③和④D. ②和④6.已知集合A={(x,y)|3x+5y+16=0,-2≤x≤3},B={(x,y)|kx-y+1-k=0},若A∩B≠Ø,则实数k的取值范围是()A. B.C. D.7.若点A(1,1)关于直线y=kx+b的对称点是B(-3,3),则直线y=kx+b在y轴上的截距是()A. 1B. 2C. 3D. 48.若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是,则m+n=()A. 0B. 1C.D.9.设点E,F分别是空间四边形的边AB,CD的中点,且EF=5,BC=6,AD=8,则异面直线AD与EF所成角的正弦值是()A. B. C. D.10.若方程|lg x|-()x+a=0有两个不相等的实数根,则实根a的取值范围是()A. B. C. D.11.各侧棱长都相等,底面是正多边形的棱锥称为正棱锥,正三棱锥P-ABC的侧棱长为a,侧面都是直角三角形,且四个顶点都在同一个球面上,则该球的表面积为()A. B. C. D.12.已知[x]表示不大于x的最大整数,若函数f(x)=x2+a[x]x-a在(0,2)上仅有一个零点,则实数a的取值范围为()A. B.C. D.二、填空题(本大题共4小题,共20.0分)13.若直线l经过点(-2,0),且与斜率为-的直线垂直,则直线l的方程为______.14.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若△ABC绕直线BC旋转一周,则所形成的几何体的体积是______.15.在正方体ABCD-A1B1C1D1中,直线A1C与平面BB1D1D所成角的正弦值为______.16.已知a,b,c为直角三角形的三边长,c为斜边长,若点M(m,n)在直线l:ax+by+2c=0上,则m2+n2的最小值为______.三、解答题(本大题共6小题,共70.0分)17.已知直线l1:(2m+1)x+(m-2)y+3-4m=0,无论m为何实数,直线l1恒过一定点M.(1)求点M的坐标;(2)若直线l2过点M,且与x轴正半轴、y轴正半轴围成的三角形面积为4,求直线l2的方程.18.如图,三棱柱ABC-A1B1C1中,点D是AB的中点.(1)求证:AC1∥平面CDB1;(2)若AA1⊥平面ABC,AC⊥BC,AA1=1,AC=BC=,求二面角B1-CD-B的大小.19.已知△ABC的顶点A(4,1),AB边上的中线CM所在的直线方程为x-2y+2=0,AC边上的高BH所在的直线方程为2x+3y-2=0.(1)求点C的坐标;(2)求BC所在直线的方程.20.如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥平面ABCD,E是AB的中点.(1)求证:平面PDE⊥平面PAB;(2)棱PC上是否存在一点F,使得BF∥平面PDE?若存在,确定F的位置并加以证明;若不存在,请说明理由.21.如图所示,一块形状为四棱柱的木料,E,F分别为A1D1,AD的中点.(1)要经过E和FC将木料锯开,在木料上底面A1B1C1D1内应怎样画线?请说明理由;(2)若底面ABCD是边长为2的菱形,∠BAD=60°,AA1⊥平面ABCD,且AA1=,求几何体CFA1B1C1D1的体积.22.某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油m吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前x个周需求量y吨与x的函数关系式为y=a(1≤x≤16,x∈N*),a为常数,且前4个周城区内汽车的汽油需求量为100吨.(1)试写出第x个周结束时,汽油存储量M(吨)与x的函数关系式;(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定m的取值范围.答案和解析1.【答案】A【解析】解:经过两点A(m,2),B(m,2m-1)的直线的斜率为k=,又直线的倾斜角为45°,∴=tan45°=1,即m=2.故选:A.由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列式求得m的值.本题考查直线的倾斜角,考查了直线倾斜角与斜率的关系,是基础题.2.【答案】C【解析】解:令f(x)=e x-x-2,由图表知,f(1)=2.72-3=-0.28<0,f(2)=7.39-4=3.39>0,方程e x-x-2=0的一个根所在的区间为(1,2),故选:C.令f(x)=e x-x-2,方程e x-x-2=0的根即函数f(x)=e x-x-2的零点,由f(1)<0,f(2)>0知,方程e x-x-2=0的一个根所在的区间为(1,2).本题考查方程的根就是对应函数的零点,以及函数在一个区间上存在零点的条件.3.【答案】B【解析】解:由已知作出梯形ABCD是直角梯形,如右图:∵按照斜二测画法画出它的直观图A′B′C′D′,A′D′=2,B′C′=4,A′B′=1,∴直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,过D作DE⊥BC,交BC于E,则DE=AB=2,EC=BC-AD=4-2=2,∴直角梯形DC边的长度为:=2.故选:B.由已知直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,由此能求出直角梯形DC边的长度.本题考查直角梯形中斜边长的求法,是基础题,解题时要认真审题,注意斜二测画法的合理运用.4.【答案】B【解析】解:由题意可知B≠0,故直线的方程可化为,由AB>0,BC>0可得>0,<0,由斜率和截距的几何意义可知直线不经过第二象限,故选:B.化直线的方程为斜截式,由已知条件可得斜率和截距的正负,可得答案.本题考查直线的斜率和截距的几何意义,属基础题.5.【答案】D【解析】解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.6.【答案】A【解析】解:集合A={(x,y)|3x+5y+16=0,-2≤x≤3},B={(x,y)|kx-y+1-k=0},如图,把集合转化为函数图象,集合A表示(-2,-2)到(3,-5)的线段,集合B表示过定点(1,1)的直线,∵A∩B≠Ø,∴(-2,-2)到(3,-5)的线段和过定点(1,1)的直线有交点,∴实数k的取值范围是(-∞,-3][1,+∞).故选:A.集合A表示(-2,-2)到(3,-5)的线段,集合B表示过定点(1,1)的直线,A∩B≠Ø,说明(-2,-2)到(3,-5)的线段和过定点(1,1)的直线有交点,由此能求出实数k的取值范围.本题考查实数的取值范围的求法,考查交集定义等基础知识,考查函数与方程思想、数形结合思想,是基础题.7.【答案】D【解析】解:∵点A(1,1)关于直线y=kx+b的对称点是B(-3,3),由中点坐标公式得AB的中点坐标为(,)=(-1,2),代入y=kx+b得2=-k+b,①直线AB得斜率为=-,则k=2.代入①得,b=k+2=4.∴直线y=kx+b在y轴上的截距是4.故选:D.由中点坐标公式求出AB中点的坐标,代入直线方程,再由AB的斜率与直线y=kx+b的斜率互为负倒数求得k,即可求出b的值.本题考查了点关于直线的对称点的求法,关键是掌握该类问题的解决方法,是基础题.8.【答案】C【解析】解:由题意,解得n=-4,即直线l2:x-2y-3=0,所以两直线之间的距离为d=,解得m=2,所以m+n=-2,故选:C.化简直线l2,利用两直线之间的距离为d=,求出m,即可得出结论.本题考查两条平行线间的距离,考查学生的计算能力,属于中档题.9.【答案】C【解析】解:如图所示,取AC的中点M,连接EM,FM.则EM∥BC,FM∥AD,EM=BC=3,FM=AD=4,∴∠EFM或其补角即为异面直线AD与EF所成角.在△MEF中,EM2+FM2=3=EF2,∴∠EMF=90°.∴异面直线AD与EF所成角的正弦值为,故选:C.取AC的中点M,连接EM,FM.利用三角形中位线定理,可得∠EFM或其补角即为异面直线AD与EF所成角,求解三角形得答案.本题考查了空间位置关系、异面直线所成的角、三角形中位线定理,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:∵有两个不相等的实数根等价于有两个不等的实数根等价于函数y=|lgx|与函数的图象有两个不同的交点,在同一直角坐标系中画出两个函数的图象:(如图)要使两个函数的图象有两个交点,必须有,解得:a<,故选:B.将方程的根的个数问题转化为两个函数的图象的交点的个数问题,在画图解决.本题考查了函数的零点、指数函数、对数函数的图象、以及数形结合思想.属难题.11.【答案】D【解析】解:∵侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:a;∴球的表面积为:4π()2=3πa2.故选:D.侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,说明三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,求出直径,即可求出球的表面积.本题考查三棱锥的外接球的表面积的求法,三棱锥扩展为正方体是本题的关键,考查正方体的对角线是外接球的直径,是基础题.12.【答案】C【解析】解:由[x]表示不大于x的最大整数,若函数f(x)=x2+a[x]x-a(a≠0)在(0,2)上仅有一个零点,由x∈(0,2),讨论[x]=0,即0<x<1,可得x2+a[x]x-a=x2-a,由f(x)=0可得a=x2,求得a∈(0,1);若[x]=1,即1≤x<2,x=1时,方程无解,x∈(1,2)时,可得x2+a[x]x-a=x2+ax-a,a===∈(-∞,-4),则a的取值范围是(-∞,-4)(0,1).故选:C.由题意可得x∈(0,2),讨论若[x]=0,即0<x<1,若[x]=1,即1≤x<2,令f(x)=0,分离参数后运用函数的值域即可得到所求a的范围.本题考查函数方程的转化思想,以及分类讨论思想方法,考查运算能力,属于中档题.13.【答案】3x-2y+6=0【解析】解:∵直线l与斜率为-的直线垂直,∴直线l的斜率k=,∴直线l的方程为:y-0=(x+2),化为:3x-2y+6=0,故答案为:3x-2y+6=0.直线l与斜率为-的直线垂直,可得直线l的斜率k=,再利用点斜式即可得出.本题考查了相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.14.【答案】【解析】解:依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为:如图,大圆锥的体积减去小圆锥的体积就是旋转体的体积,结合题意计算可得答案.本题考查圆锥的体积,考查空间想象能力,是基础题.15.【答案】【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD-A1B1C1D1中棱长为1,则A1(1,0,1),C(0,1,0),D(0,0,0),B(1,1,0),D1(0,0,1),=(-1,1,-1),=(1,1,0),=(0,0,1),设平面BB1D1D的法向量=(x,y,z),则,取x=1,得=(1,-1,0),设直线A1C与平面BB1D1D所成角为θ,则sinθ=|cos<,>|===.∴直线A1C与平面BB1D1D所成角的正弦值为.故答案为:.以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线A1C与平面BB1D1D所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.16.【答案】4【解析】解:∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为:4由题意可得m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得.本题考查了点到直线的距离,数形结合是解决问题的关键,属基础题.17.【答案】解:(1)将直线l1:(2m+1)x+(m-2)y+3-4m=0的方程整理为:m(2x+y-4)+(x-2y+3)=0,解方程组,得x=1,y=2.∴定点M的坐标为(1,2);(2)由题意直线l2的斜率存在,设为k(k<0),于是l2:y-2=k(x-1),即y=kx+2-k,令y=0,得;令x=0,得y=2-k,于是,解得k=-2.∴直线l2的方程为y=-2x+2-(-2),即2x+y-4=0.【解析】(1)将直线l1:(2m+1)x+(m-2)y+3-4m=0的方程整理为:m(2x+y-4)+(x-2y+3)=0,解方程组,即可求出点M的坐标;(2)由题知直线l2的斜率k<0,设直线l2:y-2=k(x-1),求出与坐标轴的交点,然后由三角形面积公式计算即可得答案.本题考查了三角形面积计算公式、直线方程、直线系的应用,考查了推理能力与计算能力,属于中档题.18.【答案】证明:(1)连接BC1,交B1C于点E,连接ED.因为ABC-A1B1C1是三棱柱,所有四边形BCC1B1为平行四边形.所以E是BC1的中点.因为点D是AB的中点,所以ED是△ABC1的中位线,所以ED∥AC1,又ED⊂平面CDB1,AC1⊄平面CDB1,所以AC1∥平面CDB1.解:(2)∠BDB1是二面角B1-CD-B的平面角.事实上,因为AA1⊥面ABC,CD⊂面ABC,所以AA1⊥CD.在△ABC中,AC=BC,D是底边AB的中点,所以CD⊥AB.因为CD⊥AB,CD⊥AA1,AB∩AA1=A,所以CD⊥平面ABB1A1,因为DB1⊂平面ABB1A1,DB⊂平面ABB1A1,所以DB1⊥CD,DB⊥CD,所以∠BDB1是二面角B1-CD-B的平面角.在直角三角形B1DB中,BB1=1,,所以△B1DB为等腰直角三角形,所以∠BDB1=45°.故二面角B1-CD-B的大小为45°.【解析】(1)连接BC1,交B1C于点E,连接ED.推导出四边形BCC1B1为平行四边形,从而E是BC1的中点,由点D是AB的中点,得ED∥AC1,由此能证明AC1∥平面CDB1.(2)由AA1⊥面ABC,得AA1⊥CD,再求出CD⊥AB.从而CD⊥平面ABB1A1,进而DB1⊥CD,DB⊥CD,∠BDB1是二面角B1-CD-B的平面角.由此能求出二面角B1-CD-B的大小.本题考查线面平行的证明,考查二面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)因为AC⊥BH,BH的方程为2x+3y-2=0,不妨设直线AC的方程为3x-2y+m=0,将A(4,1)代入得12-2+m=0,解得m=-10,所以直线AC的方程为3x-2y-10=0,联立直线AC,CM的方程,即,解得点C的坐标为(6,4).(2)设B(x0,y0),则,,因为点B在BH上,点M在CM上,所以,解得B(-2,2),所以,所以直线BC的方程为,整理得x-4y+10=0.【解析】(1)不妨设直线AC的方程为3x-2y+m=0,将A(4,1)代入得12-2+m=0,求出m的值,可得直线方程,再解方程组,可得C的坐标.(2)设B(x0,y0),则,求出点B的坐标,即可求出直线BC的斜率,再根据点斜式方程即可求出.本题主要考查两条直线垂直的性质,用两点式求直线的方程,求两条直线的交点,属于基础题.20.【答案】解:(1)连接BD,因为底面ABCD是菱形,∠BCD=60°,所以△ABD为正三角形;因为E是AB的中点,所以DE⊥AB,因为PA⊥面ABCD,DE⊂面ABCD,∴DE⊥PA,因为DE⊥AB,DE⊥PA,AB∩PA=A,所以DE⊥面PAB.又DE⊂面PDE,所以面PDE⊥面PAB.(2)当点F为PC的中点时,BF∥面PDE.事实上,取PC的中点F,PD的中点G,连结FG,GE,∵FG为三角形PCD的中位线,∴FG∥CD且,又在菱形ABCD中,E为AB的中点,∴BE∥CD且,∴FG∥BE且FG=BE,所以四边形BEGF为平行四边形.所以BF∥GE,又GE⊂面PDE,BF⊄面PDE,∴BF∥面PDE,结论得证.【解析】(1)连接BD,由题意知△ABD为正三角形,得出DE⊥AB,DE⊥PA,证明DE⊥平面PAB,从而证明平面PDE⊥平面PAB;(2)当点F为PC的中点时,BF∥平面PDE;证明F为PC的中点时,BF∥平面PDE即可.本题考查了空间中的平行与垂直关系应用问题,也考查了逻辑思维与空间想象能力,是中档题.21.【答案】解:(1)连接EC1,则EC1就是应画的线;事实上,连接EF,在四棱柱A1B1C1D1-ABCD中,因为E,F分别为A1D1,AD的中点,所以D1E∥DF,D1E=DF,所以D1EFD为平行四边形,所以EF∥DD1,又在ABCD-A1B1C1D1四棱柱中CC1∥DD1,所以EF∥CC1,所以点E,F,C,C1共面,又EC1⊂面A1B1C1D1,所以EC1就是应画线.(2)几何体CFA1B1C1D1是由三棱锥F-B1C1C和四棱锥F-A1B1C1D1组成.因为底面A1B1C1D1是边长为2的菱形,∠B1A1D1=60°,AA1⊥平面A1B1C1D1,连接FB,FB即为三棱锥F-B1C1C的高,又,所以△ ,连接FE,FE为四棱锥F-A1B1C1D1的高,又,所以,所以几何体CFA1B1C1D1的体积为3.【解析】(1)连接EC1,则EC1就是应画的线.连接EF,推导出D1EFD为平行四边形,从而EF∥DD1,由EF∥CC1,得点E,F,C,C1共面,从而EC1就是应画线.(2)几何体CFA1B1C1D1是由三棱锥F-B1C1C和四棱锥F-A1B1C1D1组成.连接FB,FB即为三棱锥F-B1C1C的高,,连接FE,FE为四棱锥F-A1B1C1D1的高,所以,由此能求出几何体CFA1B1C1D1的体积.本题考查在木料上底面A1B1C1D1内应怎样画线的判断与证明,考查几何的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(1)由已知条件得,解得a=50.∴,∈,则,∈;(2)由题意,0≤M≤150,∴ (1≤x≤16,x∈N*)恒成立,即(1≤x≤16,x∈N*)恒成立.设,则,∴ ()恒成立,由()恒成立,得(当,即x=4时取等号);由()恒成立,得(当t=,即x=16时取等号),∴m的取值范围是,.【解析】(1)由已知条件得,解得a=50,可得y与x的关系,进一步得到M与x的函数关系式;(2)由题意,0≤M≤150,可得(1≤x≤16,x∈N*)恒成立,分离参数m,换元后分别利用配方法求得m的范围,取交集得答案.本题考查根据实际问题性质函数类型,考查简单的数学建模思想方法,理解题意是关键,是中档题.。

山东省烟台市新元中学高一数学理上学期期末试题含解析

山东省烟台市新元中学高一数学理上学期期末试题含解析

山东省烟台市新元中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则的子集个数为()A.2B.3C.4D.16参考答案:C2. 若角的终边经过点且,则m的值为()A. B. C. D.参考答案:B3. 下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x参考答案:C略4. 下列函数在(0,+ ∞)上是增函数的是()A. B. C. D.参考答案:C【分析】根据函数的单调性的定义,结合初等函数的单调性,逐项判定,即可求解.【详解】根据指数函数的性质,可得函数在为单调递减函数,不符合题意;根据一次函数的性质,可得函数在为单调递减函数,不符合题意;根据对数函数的性质,可得函数在为单调递增函数,符合题意;根据反比例函数的性质,可得函数在为单调递减函数,不符合题意.故选:C.【点睛】本题主要考查了函数的单调性的判定,其中解答中熟记初等函数的图象与性质是解答的关键,着重考查了推理与论证能力,属于基础题.5. 若a>b,则下列命题成立的是()A.ac>bc B.C.D.ac2≥bc2参考答案:D【考点】不等式的基本性质.【专题】计算题.【分析】通过给变量取特殊值,举反例可得A、B、C都不正确,对于a>b,由于c2≥0,故有ac2≥bc2,故D成立.【解答】解:∵a>b,故当c=0时,ac=bc=0,故A不成立.当b=0 时,显然B、C不成立.对于a>b,由于c2≥0,故有 ac2≥bc2,故D成立.故选D.【点评】本题主要考查不等式与不等关系,不等式性质的应用,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.6. 已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠?,则实数a的取值范围是() A.{1}B.(-∞,0)C.(1,+∞)D.(0,1)参考答案:D7. 已知直线ax+y+2=0及两点P(-2,1)、Q(3,2),若直线与线段PQ相交,则a的取值范围是()A、a≤-或a≥B、a≤-或a≥C、-≤a≤D、-≤a≤参考答案:A8. 已知,,且,,成等比数列,则()、有最大值、有最大值、有最小值、有最小值参考答案:C略9. 已知幂函数f(x)=(m﹣3)x m,则下列关于f(x)的说法不正确的是()A.f(x)的图象过原点B.f(x)的图象关于原点对称C.f(x)的图象关于y轴对称D.f(x)=x4参考答案:B【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】根据幂函数的定义求出f(x)的解析式,判断四个选项是否正确即可.【解答】解:∵f(x)=(m﹣3)x m是幂函数,∴m﹣3=1,解得m=4,∴函数解析式是f(x)=x4,且当x=0时,y=f(0)=0,即函数f(x)的图象过原点,又函数f(x)的图象关于y轴对称;∴选项A、C、D正确,B错误.故选:B.【点评】本题考查了幂函数的定义以及幂函数的图象与性质的应用问题,是基础题目.10. 1920°转化为弧度数为()A. B. C. D.参考答案:D已知180°对应弧度,则1920°转化为弧度数为.本题选择D选项二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:-2略12. 已知数列{a n}满足,则数列{a n}的通项公式a n =,数列{a n}的n 项和S n =.参考答案:因为,所以,可得数列是以2为首项,以3为公差的等差数列,所以数列的n项和,13. 已知,则_______.参考答案:3略14. 函数f (x) =是定义在(–1,1)上的奇函数,且f =,则a = ,b = .参考答案:a = 1 ,b = 015. 已知函数对于满足的任意,,给出下列结论:①②③④其中正确的是A. ①③B. ①④C. ②③D. ②④参考答案:C略16. 函数的定义域是_________.参考答案:略17. 设函数y=,则函数的值域为.参考答案:[﹣2,]【考点】同角三角函数基本关系的运用.【分析】函数解析式变形后【解答】解:函数y===3﹣,∵﹣1≤sinx≤1,∴1≤sinx+2≤3,即≤≤1,∴﹣2≤y≤,则函数的值域为[﹣2,].故答案为:[﹣2,]三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省烟台市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a ≠0时,下列函数:①y=ax +k ;②y=ax 2+bx+c ;③y=alog m x 中能恰当的描述该商品的市场价y 与上市时间x 的变化关系的是(只需写出序号即可) .12.如图所示,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,当底面四边形A 1B 1C 1D 1满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m 被两条平行直线l 1:x ﹣y+1=0与l 2:2x ﹣2y+5=0所截得的线段长为,则直线m 的倾斜角等于 .14.已知函数f (x )对任意的x ∈R 满足f (﹣x )=f (x ),且当x ≥0时,f (x )=x 2﹣x+1,若f (x )有4个零点,则实数a 的取值范围是 .15.如图,在棱长都相等的四面体SABC 中,给出如下三个命题:①异面直线AB 与SC 所成角为60°;②BC 与平面SAB 所成角的余弦值为;③二面角S ﹣BC ﹣A 的余弦值为,其中所有正确命题的序号为 .三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA 1B 1B 是圆柱的轴截面,C 是底面圆周上异于A ,B 的一点,AA 1=AB=2.(1)求证:平面AA 1C ⊥平面BA 1C ;(2)若AC=BC ,求几何体A 1﹣ABC 的体积V .17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的范围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年山东省烟台市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S=4πR2,球截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),(1﹣x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x)=a,即1﹣x=2a,∴中间的一个根满足log2解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90x中能恰当的描述根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alogm该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y=ax+k 和y=alog m x 显然都是单调函数,不满足题意,∴y=ax 2+bx+c .故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,当底面四边形A 1B 1C 1D 1满足条件 AC ⊥BD 或四边形ABCD 为菱形 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A 1C ⊥B 1D 1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A 1C 1⊥B 1D 1,即AC ⊥BD ,又由菱形的几何特征可判断出四边形ABCD 为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A 1C ⊥B 1D 1,由四棱柱ABCD ﹣A 1B 1C 1D 1为直四棱柱,AA 1⊥B 1D 1,易得B 1D 1⊥平面AA 1BB 1, 则A 1C 1⊥B 1D 1,即AC ⊥BD , 则四边形ABCD 为菱形,故答案为:AC ⊥BD 或四边形ABCD 为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m 被两条平行直线l 1:x ﹣y+1=0与l 2:2x ﹣2y+5=0所截得的线段长为,则直线m 的倾斜角等于 135° .【分析】由两平行线间的距离,得直线m 和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m 的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值范围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD﹣A 的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的范围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R(x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的范围.(3)当x >5时,由函数f (x )递减,知f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=﹣0.4(x ﹣4)2+3.6,当x=4时,f (x )有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G (x )=2.8+x .…(2分)∵,…(4分)∴f (x )=R (x )﹣G (x )=.…(6分)(2)∵f (x )=,∴当0≤x ≤5时,由f (x )=﹣0.4x 2+3.2x ﹣2.8>0,得1<x ≤5;.…(7分)当x >5时,由f (x )=8.2﹣x >0,得5<x <8.2.∴要使工厂有盈利,求产量x 的范围是(1,8.2)..…(8分)(3)∵f (x )=,∴当x >5时,函数f (x )递减,∴f (x )<f (5)=3.2(万元).…(10分) 当0≤x ≤5时,函数f (x )=﹣0.4(x ﹣4)2+3.6, 当x=4时,f (x )有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC 中,A (2,﹣1),AB 边上的中线CM 所在直线方程为3x+2y+1=0.角B 的平分线所在直线BT 的方程为x ﹣y+2=0. (1)求顶点B 的坐标; (2)求直线BC 的方程.【分析】(1)设B (x 0,y 0),利用中点坐标公式可得:AB 的中点M ,代入直线CM .又点B 在直线BT 上,联立即可得出.(2)设点A (2,﹣1)关于直线BT 的对称点的坐标为A′(a ,b ),则点A′在直线BC 上,利用对称的性质即可得出.【解答】解:(1)设B (x 0,y 0),则AB 的中点M 在直线CM 上,所以+1=0,即3x 0+2y 0+6=0 ①…(2分)又点B 在直线BT 上,所以x 0﹣y 0+2=0 ②…(4分) 由①②得:x 0=﹣2,y 0=0,即顶点B (﹣2,0).…(6分)(2)设点A (2,﹣1)关于直线BT 的对称点的坐标为A′(a ,b ),则点A′在直线BC 上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC ===﹣4,…(11分) 所以直线BC 的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB 为圆O 的直径,点E ,F 在圆O 上,且AB ∥EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1. (1)设FC 的中点为M ,求证:OM ∥面DAF ;(2)求证:AF ⊥面CBF .【分析】(1)先证明OM ∥AN ,根据线面平行的判定定理即可证明OM ∥面DAF ;(2)由题意可先证明AF ⊥CB ,由AB 为圆O 的直径,可证明AF ⊥BF ,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF ⊥面CBF .【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得a范围;令y=0,解得x=>0,解得a范围.求交集可得:a<﹣1.利用S= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.△AOB【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值范围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.=|a﹣2|||==3+≥∴S△AOB3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。

相关文档
最新文档